
-
Previous Article
Improved SVRG for finite sum structure optimization with application to binary classification
- JIMO Home
- This Issue
-
Next Article
Optimal investment-reinsurance policy with regime switching and value-at-risk constraint
Analytical modeling of laminated composite plates using Kirchhoff circuit and wave digital filters
Department of Information Engineering, Kun Shan University, Taiwan |
A physical-based numerical algorithm using Kirchhoff circuit is detailed for modelling the free vibration of moderate thick symmetrically laminated plates based on the first order shear deformation theory (FSDT). With the help of multidimensional passivity of analog circuit and nonlinear optimization solvers, the philosophy gives rise to a nonlinear programming (NLP) model that can apply further to explore stability characteristics and optimum performance of the resultant multidimensional wave digital filtering network representing the FSDT plate. Various optimization methods exploiting gradient-based and direct search methods are adopted with efficient broad search power to tackle the NLP model. As a result, the necessary Courant-Friedrichs-Levy stability criterion can be fully satisfied at all time with least restriction on the spatially discretized geometry of the scattering problem. With full stability guaranteed, the waveform is analyzed by the power cepstrum for spectra peaks detection, which has led to more accurate estimate of various vibration effects in predicting nature frequencies with different fiber orientations, stacking sequences, stiffness ratios and boundary conditions. These results have shown in excellent agreement with early published works based on the finite element solutions of the high-order shear deformation theory and other well known numerical techniques.
References:
[1] |
S. Atluri and S. Zhu,
A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Computational Mechanics, 22 (1998), 117-127.
doi: 10.1007/s004660050346. |
[2] |
S. Basu and A. Zerzghi, Multidimensional digital filter approach for numerical solution of a class of PDEs of the propagating wave type, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187), 5 (1998), 74–77, Monterey, California, USA.
doi: 10.1109/ISCAS.1998.694411. |
[3] |
S. Billbao, Wave and Scattering Methods for Numerical Simulation, New York: Wiley, 2004.
doi: 10.1002/0470870192. |
[4] |
B. P. Bogert, M. J. R. Healy and J. W. Tukey, The quefrency alanysis of time series for echoes: Cepstrum, pseudo autocovariance, cross-cepstrum and saphe cracking, Proceedings of the Symposium on Time Series Analysis (M. Rosenblatt, Ed) New York: Wiley, 1963, Chapter 15, 209–243. Google Scholar |
[5] |
T. Bui, M. Nguyen and C. Zhang,
An efficient meshfree method for vibration analysis of laminated composite plates, Computational Mechanics, 48 (2011), 175-193.
doi: 10.1007/s00466-011-0591-8. |
[6] |
R. Byrd, M. Hribar and J. Nocedal,
An interior point algorithm for large-scale nonlinear programming, SIAM Journal on Optimization, 9 (1999), 877-900.
doi: 10.1137/S1052623497325107. |
[7] |
K. Y. Dai, G. R. Liu, K. M. Lim and X. L. Chen, A mesh-free method for static and free vibration analysis of shear deformation laminated composite plates, J. Sound & Vibration, 269 (2004), 633-652. Google Scholar |
[8] |
Z. Dong, B. Tan, Y. Zhang, J. Yuan, E. Feng, H. Yin and Z. Xiu, Strong stability of an optimal control hybrid system in fed-batch fermentation, International Journal of Biomathematics, 11 (2018), 1850045, 17pp.
doi: 10.1142/S1793524518500456. |
[9] |
A. A. J. Ferreira and G. Fasshauer,
Analysis of natural frequencies of composite plates by an RBF-pseudospectral method, Composite Structures, 79 (2007), 202-210.
doi: 10.1016/j.compstruct.2005.12.004. |
[10] |
A. J. M. Ferreira, C. M. C. Roque and R. M. N. Jorge,
Free vibration analysis of symmetric laminated composite plates by FSDT and radial basis functions., Computer Methods in Applied Mechanics and Engineering, 194 (2005), 4265-4278.
doi: 10.1016/j.cma.2004.11.004. |
[11] |
A. Fettweis,
Wave digital filters: Theory and practice, Proceedings of the IEEE, 74 (1986), 270-327.
doi: 10.1109/PROC.1986.13458. |
[12] |
A. Fettweis and G. Nitsche,
Numerical integration of partial differential equations using principles of multidimensional wave digital filters, J. VLSI Signal Processing, 3 (1991), 7-24.
doi: 10.1007/978-1-4615-4036-6_2. |
[13] |
A. Fettweis and G. Nitsche,
Transformation approach to numerical integrating PDEs by means of WDF principles, Multidimensional Systems and Signal Processing, 2 (1991), 127-159.
doi: 10.1007/BF01938221. |
[14] |
A. Fettweis,
Robust numerical integration using wave-digital concepts, Multidim. Syst. Signal Process., 17 (2006), 7-25.
doi: 10.1007/s11045-005-6236-3. |
[15] |
A. Fettweis and K. Meerkötter,
On parasitic oscillations in digital filters under looped conditions, IEEE Transactions on Circuits and Systems, 25 (1978), 1060-1066.
doi: 10.1109/TCS.1978.1084425. |
[16] |
D. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning. Addison-Wesley, 1989. Google Scholar |
[17] |
S. Han,
A globally convergent method for nonlinear programming, Journal of Optimization Theory and Applications, 22 (1977), 297-309.
doi: 10.1007/BF00932858. |
[18] |
M. Jones, Mechanics of Composite Materials, 2/E. Taylor & Francis, London, 1998.
doi: 10.1201/9781498711067. |
[19] |
K. Kant and K. Swaminathan,
Estimation of transverse/interlaminar stresses in laminated composites-a selective review and survey of current developments, Composite Structures, 49 (2000), 65-75.
doi: 10.1016/S0263-8223(99)00126-9. |
[20] |
A. Khdeir and L. Librescu, Analysis of symmetric cross-ply elastic plates using a higher-order theory, Part II: buckling and free vibration, Composite Structures, 9 (1988), 259-277. Google Scholar |
[21] |
A. Y. T. Leung, C. Xiao, B. Zhu and S. Yuanet,
Free vibration of laminated composite plates subjected to in-plane stresses using trapezoidal p-element, Composite Structures, 68 (2005), 167-175.
doi: 10.1016/j.compstruct.2004.03.011. |
[22] |
R. Lewis and V. Torczon,
A globally convergent augmented Lagrangian pattern search algorithm for optimization with general constraints and simple bounds, SIAM Journal on Optimization, 12 (2002), 1075-1089.
doi: 10.1137/S1052623498339727. |
[23] |
K. Liew,
Solving the vibration of thick symmetric laminates by Reissner/Mindlin plates theory and the p-Ritz method, Journal of Sound and Vibration, 198 (1996), 343-360.
doi: 10.1006/jsvi.1996.0574. |
[24] |
K. M. Liew, Y. Q. Huang and J. N. Reddy,
Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method, Computer Methods in Applied Mechanics and Engineering, 192 (2003), 2203-2222.
doi: 10.1016/S0045-7825(03)00238-X. |
[25] |
X. Liu and A. Fettweis,
Multidimensional digital filtering by using parallel algorithms based on diagonal processing, Multidimensional Systems and Signal Processing, 1 (1990), 51-66.
doi: 10.1007/BF01812206. |
[26] |
P. Malekzadeh and A. Setoodeh,
Large deformation analysis of moderately thick laminated plates on nonlinear elastic foundations by DQM, Composite Structures, 80 (2007), 569-579.
doi: 10.1016/j.compstruct.2006.07.004. |
[27] |
P. Malekzadeh,
Differential quadrature large amplitude free vibration analysis of laminated skew plates based on FSDT, Composite Structures, 83 (2008), 189-200.
doi: 10.1016/j.compstruct.2007.04.007. |
[28] |
F. Mohammadi and R. Sedaghati, Nonlinear free vibration analysis of sandwich shell structures with a constrained electrorheological fluid layer, Smart Materials and Structures, 21 (2012), 075035.
doi: 10.1088/0964-1726/21/7/075035. |
[29] |
P. M. Mohite and C. S. Upadhyay,
Region-by-region modeling of laminated composite plates, Computers & Structures, 85 (2007), 1808-1827.
doi: 10.1016/j.compstruc.2007.04.005. |
[30] |
D. Ngo-Cong, N. Mai-Duy, W. Karunasena and T. Tran-Cong,
Free vibration analysis of laminated composite plates based on FSDT using one-dimensional IRBFN method, Computers & Structures, 89 (2011), 1-13.
doi: 10.1016/j.compstruc.2010.07.012. |
[31] |
H. Nguyen-Van, N. Mai-Duy and T. Tran-Cong,
Free vibration analysis of laminated plate/shell structures based on FSDT with a stabilized nodal-integrated quadrilateral element, Journal of Sound and Vibration, 313 (2008), 205-223.
doi: 10.1016/j.jsv.2007.11.043. |
[32] |
G. Nitsche, Numerische L$\ddot{o}$sung partieller Differentialgleichungen mit hilfe von Wellendigitalfiltern., PhD thesis, Ruhr-Universit$\ddot{a}$t Bochum, 1993. Google Scholar |
[33] |
J. Nocedal and S. Wright, Numerical Optimization, Springer Series in Operations Research, Springer Verlag, 1999.
doi: 10.1007/b98874. |
[34] |
O. Ochoa and J. Reddy, Finite Element Analysis of Composite Laminates (Solid Mechanics and Its Applications), Kluwer Acedemic Publisher, The Netherlands, 1992. Google Scholar |
[35] |
M. K. Pandit, Free vibration analysis of laminated composite rectangular plate using finite element method, Journal of Reinforced Plastics & Composites, 26 (2007), 69-80. Google Scholar |
[36] | J. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2/ed, CRC Press, London, 2004. Google Scholar |
[37] |
C. Roque, D. Cunha, C. Shu and A. A. J. Ferreira,
A local radial basis functions-Finite differences technique for the analysis of composite plates, Engineering Analysis with Boundary Elements, 35 (2011), 363-374.
doi: 10.1016/j.enganabound.2010.09.012. |
[38] |
C. H. Tseng,
Modelling and visualization of a time-dependent shallow water system using nonlinear Kirchhoff circuit, IEEE Transactions on Circuits and Systems I: Regular Papers, 59 (2012), 1265-1277.
doi: 10.1109/TCSI.2011.2173511. |
[39] |
C. H. Tseng,
Numerical stability verification of a two-dimensional time-dependent nonlinear shallow water system using multidimensional wave digital filtering network, Circuits, Systems and Signal Processing, 32 (2013), 299-319.
doi: 10.1007/s00034-012-9461-7. |
[40] |
C. H. Tseng,
Analysis of parallel multidimensional wave digital filtering network on IBM cell broadband engine, Journal of Computational Engineering, 2014 (2014), 1-13.
doi: 10.1155/2014/793635. |
[41] |
C. H. Tseng and S. Lawson,
Initial and boundary conditions in multidimensional wave digital filter algorithms for plate vibration, IEEE Transactions on Circuits and Systems I: Regular papers, 51 (2004), 1648-1663.
doi: 10.1109/TCSI.2004.832796. |
[42] |
C. H. Tseng,
An optimal modeling of multidimensional wave digital filtering network for free vibration analysis of symmetrically laminated composite FSDT plates, Mechanical Systems and Signal Processing, 52/53 (2015), 465-494.
doi: 10.1016/j.ymssp.2014.07.001. |
[43] |
C. H. Tseng, The multidimensional wave digital filtering network for dynamic vibration analysis of laminated composite FSDT plates, TW patent I494783, 1/8/2015-30/3/2034. Google Scholar |
[44] |
C. H. Tseng,
Static bending deflection and free vibration analysis of moderate thick symmetric laminated plates using multidimensional wave digital filters, Mechanical Systems and Signal Processing, 106 (2018), 367-394.
doi: 10.1016/j.ymssp.2017.12.044. |
[45] |
C. H. Tseng, The full parallel architecture of multidimensional wave digital filtering network., TW patent I501149, 21/9/2015-14/10/2033. Google Scholar |
[46] |
S. Xiang, et al., Natural frequencies of generally laminated composite plates using the Gaussian radial basis function and first-order shear deformation theory. Thin-Walled Structures, 47 (2009), 1265–1271.
doi: 10.1016/j.tws.2009.04.002. |
[47] |
J. Zhang, J. Yuan, E. Feng, H. Yin and Z. Xiu,
Strong stability of a nonlinear multi-stage dynamic system in batch culture of glycerol bioconversion to 1, 3-propanediol, Mathematical Modelling and Analysis, 21 (2016), 159-173.
doi: 10.3846/13926292.2016.1142481. |
[48] |
J. Zhang, J. Yuan, Z. Dong, E. Feng, H. Yin and Z. Xiu, Strong stability of optimal design to dynamic system for the fed-batch culture, International Journal of Biomathematics, 10 (2017), 1750018, 18pp.
doi: 10.1142/S1793524517500188. |
show all references
References:
[1] |
S. Atluri and S. Zhu,
A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Computational Mechanics, 22 (1998), 117-127.
doi: 10.1007/s004660050346. |
[2] |
S. Basu and A. Zerzghi, Multidimensional digital filter approach for numerical solution of a class of PDEs of the propagating wave type, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187), 5 (1998), 74–77, Monterey, California, USA.
doi: 10.1109/ISCAS.1998.694411. |
[3] |
S. Billbao, Wave and Scattering Methods for Numerical Simulation, New York: Wiley, 2004.
doi: 10.1002/0470870192. |
[4] |
B. P. Bogert, M. J. R. Healy and J. W. Tukey, The quefrency alanysis of time series for echoes: Cepstrum, pseudo autocovariance, cross-cepstrum and saphe cracking, Proceedings of the Symposium on Time Series Analysis (M. Rosenblatt, Ed) New York: Wiley, 1963, Chapter 15, 209–243. Google Scholar |
[5] |
T. Bui, M. Nguyen and C. Zhang,
An efficient meshfree method for vibration analysis of laminated composite plates, Computational Mechanics, 48 (2011), 175-193.
doi: 10.1007/s00466-011-0591-8. |
[6] |
R. Byrd, M. Hribar and J. Nocedal,
An interior point algorithm for large-scale nonlinear programming, SIAM Journal on Optimization, 9 (1999), 877-900.
doi: 10.1137/S1052623497325107. |
[7] |
K. Y. Dai, G. R. Liu, K. M. Lim and X. L. Chen, A mesh-free method for static and free vibration analysis of shear deformation laminated composite plates, J. Sound & Vibration, 269 (2004), 633-652. Google Scholar |
[8] |
Z. Dong, B. Tan, Y. Zhang, J. Yuan, E. Feng, H. Yin and Z. Xiu, Strong stability of an optimal control hybrid system in fed-batch fermentation, International Journal of Biomathematics, 11 (2018), 1850045, 17pp.
doi: 10.1142/S1793524518500456. |
[9] |
A. A. J. Ferreira and G. Fasshauer,
Analysis of natural frequencies of composite plates by an RBF-pseudospectral method, Composite Structures, 79 (2007), 202-210.
doi: 10.1016/j.compstruct.2005.12.004. |
[10] |
A. J. M. Ferreira, C. M. C. Roque and R. M. N. Jorge,
Free vibration analysis of symmetric laminated composite plates by FSDT and radial basis functions., Computer Methods in Applied Mechanics and Engineering, 194 (2005), 4265-4278.
doi: 10.1016/j.cma.2004.11.004. |
[11] |
A. Fettweis,
Wave digital filters: Theory and practice, Proceedings of the IEEE, 74 (1986), 270-327.
doi: 10.1109/PROC.1986.13458. |
[12] |
A. Fettweis and G. Nitsche,
Numerical integration of partial differential equations using principles of multidimensional wave digital filters, J. VLSI Signal Processing, 3 (1991), 7-24.
doi: 10.1007/978-1-4615-4036-6_2. |
[13] |
A. Fettweis and G. Nitsche,
Transformation approach to numerical integrating PDEs by means of WDF principles, Multidimensional Systems and Signal Processing, 2 (1991), 127-159.
doi: 10.1007/BF01938221. |
[14] |
A. Fettweis,
Robust numerical integration using wave-digital concepts, Multidim. Syst. Signal Process., 17 (2006), 7-25.
doi: 10.1007/s11045-005-6236-3. |
[15] |
A. Fettweis and K. Meerkötter,
On parasitic oscillations in digital filters under looped conditions, IEEE Transactions on Circuits and Systems, 25 (1978), 1060-1066.
doi: 10.1109/TCS.1978.1084425. |
[16] |
D. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning. Addison-Wesley, 1989. Google Scholar |
[17] |
S. Han,
A globally convergent method for nonlinear programming, Journal of Optimization Theory and Applications, 22 (1977), 297-309.
doi: 10.1007/BF00932858. |
[18] |
M. Jones, Mechanics of Composite Materials, 2/E. Taylor & Francis, London, 1998.
doi: 10.1201/9781498711067. |
[19] |
K. Kant and K. Swaminathan,
Estimation of transverse/interlaminar stresses in laminated composites-a selective review and survey of current developments, Composite Structures, 49 (2000), 65-75.
doi: 10.1016/S0263-8223(99)00126-9. |
[20] |
A. Khdeir and L. Librescu, Analysis of symmetric cross-ply elastic plates using a higher-order theory, Part II: buckling and free vibration, Composite Structures, 9 (1988), 259-277. Google Scholar |
[21] |
A. Y. T. Leung, C. Xiao, B. Zhu and S. Yuanet,
Free vibration of laminated composite plates subjected to in-plane stresses using trapezoidal p-element, Composite Structures, 68 (2005), 167-175.
doi: 10.1016/j.compstruct.2004.03.011. |
[22] |
R. Lewis and V. Torczon,
A globally convergent augmented Lagrangian pattern search algorithm for optimization with general constraints and simple bounds, SIAM Journal on Optimization, 12 (2002), 1075-1089.
doi: 10.1137/S1052623498339727. |
[23] |
K. Liew,
Solving the vibration of thick symmetric laminates by Reissner/Mindlin plates theory and the p-Ritz method, Journal of Sound and Vibration, 198 (1996), 343-360.
doi: 10.1006/jsvi.1996.0574. |
[24] |
K. M. Liew, Y. Q. Huang and J. N. Reddy,
Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method, Computer Methods in Applied Mechanics and Engineering, 192 (2003), 2203-2222.
doi: 10.1016/S0045-7825(03)00238-X. |
[25] |
X. Liu and A. Fettweis,
Multidimensional digital filtering by using parallel algorithms based on diagonal processing, Multidimensional Systems and Signal Processing, 1 (1990), 51-66.
doi: 10.1007/BF01812206. |
[26] |
P. Malekzadeh and A. Setoodeh,
Large deformation analysis of moderately thick laminated plates on nonlinear elastic foundations by DQM, Composite Structures, 80 (2007), 569-579.
doi: 10.1016/j.compstruct.2006.07.004. |
[27] |
P. Malekzadeh,
Differential quadrature large amplitude free vibration analysis of laminated skew plates based on FSDT, Composite Structures, 83 (2008), 189-200.
doi: 10.1016/j.compstruct.2007.04.007. |
[28] |
F. Mohammadi and R. Sedaghati, Nonlinear free vibration analysis of sandwich shell structures with a constrained electrorheological fluid layer, Smart Materials and Structures, 21 (2012), 075035.
doi: 10.1088/0964-1726/21/7/075035. |
[29] |
P. M. Mohite and C. S. Upadhyay,
Region-by-region modeling of laminated composite plates, Computers & Structures, 85 (2007), 1808-1827.
doi: 10.1016/j.compstruc.2007.04.005. |
[30] |
D. Ngo-Cong, N. Mai-Duy, W. Karunasena and T. Tran-Cong,
Free vibration analysis of laminated composite plates based on FSDT using one-dimensional IRBFN method, Computers & Structures, 89 (2011), 1-13.
doi: 10.1016/j.compstruc.2010.07.012. |
[31] |
H. Nguyen-Van, N. Mai-Duy and T. Tran-Cong,
Free vibration analysis of laminated plate/shell structures based on FSDT with a stabilized nodal-integrated quadrilateral element, Journal of Sound and Vibration, 313 (2008), 205-223.
doi: 10.1016/j.jsv.2007.11.043. |
[32] |
G. Nitsche, Numerische L$\ddot{o}$sung partieller Differentialgleichungen mit hilfe von Wellendigitalfiltern., PhD thesis, Ruhr-Universit$\ddot{a}$t Bochum, 1993. Google Scholar |
[33] |
J. Nocedal and S. Wright, Numerical Optimization, Springer Series in Operations Research, Springer Verlag, 1999.
doi: 10.1007/b98874. |
[34] |
O. Ochoa and J. Reddy, Finite Element Analysis of Composite Laminates (Solid Mechanics and Its Applications), Kluwer Acedemic Publisher, The Netherlands, 1992. Google Scholar |
[35] |
M. K. Pandit, Free vibration analysis of laminated composite rectangular plate using finite element method, Journal of Reinforced Plastics & Composites, 26 (2007), 69-80. Google Scholar |
[36] | J. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2/ed, CRC Press, London, 2004. Google Scholar |
[37] |
C. Roque, D. Cunha, C. Shu and A. A. J. Ferreira,
A local radial basis functions-Finite differences technique for the analysis of composite plates, Engineering Analysis with Boundary Elements, 35 (2011), 363-374.
doi: 10.1016/j.enganabound.2010.09.012. |
[38] |
C. H. Tseng,
Modelling and visualization of a time-dependent shallow water system using nonlinear Kirchhoff circuit, IEEE Transactions on Circuits and Systems I: Regular Papers, 59 (2012), 1265-1277.
doi: 10.1109/TCSI.2011.2173511. |
[39] |
C. H. Tseng,
Numerical stability verification of a two-dimensional time-dependent nonlinear shallow water system using multidimensional wave digital filtering network, Circuits, Systems and Signal Processing, 32 (2013), 299-319.
doi: 10.1007/s00034-012-9461-7. |
[40] |
C. H. Tseng,
Analysis of parallel multidimensional wave digital filtering network on IBM cell broadband engine, Journal of Computational Engineering, 2014 (2014), 1-13.
doi: 10.1155/2014/793635. |
[41] |
C. H. Tseng and S. Lawson,
Initial and boundary conditions in multidimensional wave digital filter algorithms for plate vibration, IEEE Transactions on Circuits and Systems I: Regular papers, 51 (2004), 1648-1663.
doi: 10.1109/TCSI.2004.832796. |
[42] |
C. H. Tseng,
An optimal modeling of multidimensional wave digital filtering network for free vibration analysis of symmetrically laminated composite FSDT plates, Mechanical Systems and Signal Processing, 52/53 (2015), 465-494.
doi: 10.1016/j.ymssp.2014.07.001. |
[43] |
C. H. Tseng, The multidimensional wave digital filtering network for dynamic vibration analysis of laminated composite FSDT plates, TW patent I494783, 1/8/2015-30/3/2034. Google Scholar |
[44] |
C. H. Tseng,
Static bending deflection and free vibration analysis of moderate thick symmetric laminated plates using multidimensional wave digital filters, Mechanical Systems and Signal Processing, 106 (2018), 367-394.
doi: 10.1016/j.ymssp.2017.12.044. |
[45] |
C. H. Tseng, The full parallel architecture of multidimensional wave digital filtering network., TW patent I501149, 21/9/2015-14/10/2033. Google Scholar |
[46] |
S. Xiang, et al., Natural frequencies of generally laminated composite plates using the Gaussian radial basis function and first-order shear deformation theory. Thin-Walled Structures, 47 (2009), 1265–1271.
doi: 10.1016/j.tws.2009.04.002. |
[47] |
J. Zhang, J. Yuan, E. Feng, H. Yin and Z. Xiu,
Strong stability of a nonlinear multi-stage dynamic system in batch culture of glycerol bioconversion to 1, 3-propanediol, Mathematical Modelling and Analysis, 21 (2016), 159-173.
doi: 10.3846/13926292.2016.1142481. |
[48] |
J. Zhang, J. Yuan, Z. Dong, E. Feng, H. Yin and Z. Xiu, Strong stability of optimal design to dynamic system for the fed-batch culture, International Journal of Biomathematics, 10 (2017), 1750018, 18pp.
doi: 10.1142/S1793524517500188. |

















Options for ASA selection | Value | Options for ASA termination | Value |
Number of objective function evaluations | Maxi. number of iterations | ||
Max. change for finite-difference gradients | Tolerance on objective function | ||
Min. change for finite-difference gradients | Tolerance of maxi. constraint | ||
Finite difference type | forward | Maxi. number of SQP iterations | |
Tolerance on SQP constraint violation | |||
Options for IPA selection | Value | Options for IPA termination | Value |
Number of objective function evaluations | Maximum number of iterations | ||
Initial barrier value | Tolerance on objective function | ||
Max. change for finite-difference gradients | Tolerance of maxi. constraint | ||
Min. change for finite-difference gradients | Maxi. number of PCG iterations | 2 | |
Finite difference type | forward | Tolerance of PCG algorithm |
Options for ASA selection | Value | Options for ASA termination | Value |
Number of objective function evaluations | Maxi. number of iterations | ||
Max. change for finite-difference gradients | Tolerance on objective function | ||
Min. change for finite-difference gradients | Tolerance of maxi. constraint | ||
Finite difference type | forward | Maxi. number of SQP iterations | |
Tolerance on SQP constraint violation | |||
Options for IPA selection | Value | Options for IPA termination | Value |
Number of objective function evaluations | Maximum number of iterations | ||
Initial barrier value | Tolerance on objective function | ||
Max. change for finite-difference gradients | Tolerance of maxi. constraint | ||
Min. change for finite-difference gradients | Maxi. number of PCG iterations | 2 | |
Finite difference type | forward | Tolerance of PCG algorithm |
Options for ALGA selection | Value | Options for ALGA termination | Value |
Size of population | Maxi. number of iterations | 100 | |
Probability of crossover | Tolerance on fitness function | ||
Probability of mutation | Tolerance of maxi. constraint | ||
Size of elitism | Tolerance of nonlinear constraint | ||
Initial penalty parameter | Max. stall generations | ||
Penalty update parameter | |||
Options for ALPSA selection | Value | Options for ALPSA termination | Value |
Number of objective function evaluations | Maxi. number of iterations | ||
Initial penalty parameter | Tolerance on function value | ||
Penalty update parameter | Min. tolerance for mesh size | ||
Poll method | Tolerance of nonlinear constraint | ||
Search method/Iteration limit | Bind tolerance | ||
Options for ALGA selection | Value | Options for ALGA termination | Value |
Size of population | Maxi. number of iterations | 100 | |
Probability of crossover | Tolerance on fitness function | ||
Probability of mutation | Tolerance of maxi. constraint | ||
Size of elitism | Tolerance of nonlinear constraint | ||
Initial penalty parameter | Max. stall generations | ||
Penalty update parameter | |||
Options for ALPSA selection | Value | Options for ALPSA termination | Value |
Number of objective function evaluations | Maxi. number of iterations | ||
Initial penalty parameter | Tolerance on function value | ||
Penalty update parameter | Min. tolerance for mesh size | ||
Poll method | Tolerance of nonlinear constraint | ||
Search method/Iteration limit | Bind tolerance | ||
ASA | IPA | |||||||||
Iter. | F-count | Max. constr. | Iter. | F-count | Max. constr. | |||||
10 | 0 | 2 | 2.53311 | 0.001187 | Infeasible | 0 | 2 | 3.523114 | 0.5000 | Infeasible |
1 | 4 | 29.1438 | -0.0007862 | 3.86 | 1 | 5 | 3.239829 | 0.4950 | 0.2833 | |
2 | 6 | 16.995 | -0.0002634 | 2.22 | 5 | 16 | 2.558054 | 2.486e-2 | 0.1092 | |
3 | 8 | 12.6526 | -4.356e-5 | 0.531 | 9 | 25 | 5.851129 | 5.661e-3 | 3.331e-2 | |
4 | 10 | 11.9075 | -1.283e-6 | 6.59e-2 | 13 | 33 | 12.04055 | 1.342e-1 | 1.866 | |
5 | 12 | 11.8842 | -1.256e-9 | 2.19e-3 | 17 | 41 | 11.88414 | 3.321e-6 | 3.957e-5 | |
6 | 14 | 11.8841 | -1.225e-15 | 2.37e-6 | 20 | 52 | 11.88414 | 2.196e-13 | 0 | |
20 | 0 | 2 | 2.53311 | 0.002611 | Infeasible | 0 | 2 | 3.523114 | 0.5000 | Infeasible |
1 | 4 | 53.9773 | -0.005372 | 27.4 | 1 | 5 | 3.243753 | 0.4950 | 0.2794 | |
2 | 6 | 29.4623 | -0.00122 | 4.2 | 5 | 16 | 2.574543 | 4.123e-2 | 9.694e-2 | |
3 | 8 | 19.2631 | -2.112e-4 | 1.59 | 9 | 25 | 9.093263 | 2.175e-3 | 1.320e-2 | |
4 | 10 | 16.5631 | -1.48e-5 | 0.184 | 13 | 33 | 16.41998 | 8.452e-2 | 1.516 | |
5 | 12 | 16.343 | -9.832e-8 | 1.55e-2 | 17 | 41 | 16.34150 | 2.417e-6 | 3.959e-5 | |
6 | 14 | 16.3415 | -4.458e-12 | 1.05e-4 | 20 | 52 | 16.34150 | 2.654e-13 | 0 | |
30 | 0 | 2 | 2.53311 | 0.004084 | Infeasible | 0 | 2 | 3.523114 | 0.5000 | Infeasible |
1 | 4 | 78.4373 | -0.01117 | 8.75 | 1 | 5 | 3.247713 | 0.4950 | 0.2754 | |
2 | 6 | 41.7109 | -0.002616 | 5.44 | 5 | 16 | 2.589383 | 5.592e-2 | 8.980e-2 | |
3 | 8 | 25.542 | -5.07e-4 | 2.63 | 9 | 26 | 11.41252 | 3.059 | 8.636 | |
4 | 10 | 20.4244 | -5.079e-5 | 0.486 | 13 | 36 | 21.52822 | 1.733 | 8.5 | |
5 | 12 | 19.7832 | -7.972e-7 | 3.76e-2 | 17 | 44 | 19.77675 | 4.03e-3 | 1.526e-2 | |
6 | 14 | 19.7728 | -2.093e-10 | 6.29e-4 | 20 | 50 | 19.77282 | 2.0e-6 | 3.960e-5 | |
7 | 16 | 19.7728 | -1.789e-17 | 1.92e-7 | 23 | 58 | 19.77282 | 7.136e-9 | 2.069e-14 | |
40 | 0 | 2 | 2.53311 | 0.005573 | Infeasible | 0 | 2 | 3.523114 | 0.5000 | Infeasible |
1 | 4 | 102.773 | -0.01904 | 20.1 | 1 | 5 | 3.251616 | 0.4950 | 0.2715 | |
2 | 6 | 53.8883 | -0.004527 | 5.94 | 5 | 16 | 2.603136 | 6.948e-2 | 8.390e-2 | |
3 | 8 | 31.7156 | -9.314e-4 | 3.55 | 9 | 26 | 13.44820 | 3.121 | 10.49 | |
4 | 10 | 23.9651 | -1.138e-4 | 0.874 | 13 | 36 | 24.51400 | 1.666 | 9.295 | |
5 | 12 | 22.7118 | -2.976e-6 | 6.42e-2 | 17 | 44 | 22.68110 | 4.026e-3 | 1.542e-2 | |
6 | 14 | 22.6772 | -2.266e-9 | 1.87e-3 | 20 | 50 | 22.67716 | 1.754e-6 | 3.960e-5 | |
7 | 16 | 22.6772 | -1.351e-15 | 1.28e-6 | 22 | 54 | 22.67716 | 8.846e-9 | 3.960e-7 |
ASA | IPA | |||||||||
Iter. | F-count | Max. constr. | Iter. | F-count | Max. constr. | |||||
10 | 0 | 2 | 2.53311 | 0.001187 | Infeasible | 0 | 2 | 3.523114 | 0.5000 | Infeasible |
1 | 4 | 29.1438 | -0.0007862 | 3.86 | 1 | 5 | 3.239829 | 0.4950 | 0.2833 | |
2 | 6 | 16.995 | -0.0002634 | 2.22 | 5 | 16 | 2.558054 | 2.486e-2 | 0.1092 | |
3 | 8 | 12.6526 | -4.356e-5 | 0.531 | 9 | 25 | 5.851129 | 5.661e-3 | 3.331e-2 | |
4 | 10 | 11.9075 | -1.283e-6 | 6.59e-2 | 13 | 33 | 12.04055 | 1.342e-1 | 1.866 | |
5 | 12 | 11.8842 | -1.256e-9 | 2.19e-3 | 17 | 41 | 11.88414 | 3.321e-6 | 3.957e-5 | |
6 | 14 | 11.8841 | -1.225e-15 | 2.37e-6 | 20 | 52 | 11.88414 | 2.196e-13 | 0 | |
20 | 0 | 2 | 2.53311 | 0.002611 | Infeasible | 0 | 2 | 3.523114 | 0.5000 | Infeasible |
1 | 4 | 53.9773 | -0.005372 | 27.4 | 1 | 5 | 3.243753 | 0.4950 | 0.2794 | |
2 | 6 | 29.4623 | -0.00122 | 4.2 | 5 | 16 | 2.574543 | 4.123e-2 | 9.694e-2 | |
3 | 8 | 19.2631 | -2.112e-4 | 1.59 | 9 | 25 | 9.093263 | 2.175e-3 | 1.320e-2 | |
4 | 10 | 16.5631 | -1.48e-5 | 0.184 | 13 | 33 | 16.41998 | 8.452e-2 | 1.516 | |
5 | 12 | 16.343 | -9.832e-8 | 1.55e-2 | 17 | 41 | 16.34150 | 2.417e-6 | 3.959e-5 | |
6 | 14 | 16.3415 | -4.458e-12 | 1.05e-4 | 20 | 52 | 16.34150 | 2.654e-13 | 0 | |
30 | 0 | 2 | 2.53311 | 0.004084 | Infeasible | 0 | 2 | 3.523114 | 0.5000 | Infeasible |
1 | 4 | 78.4373 | -0.01117 | 8.75 | 1 | 5 | 3.247713 | 0.4950 | 0.2754 | |
2 | 6 | 41.7109 | -0.002616 | 5.44 | 5 | 16 | 2.589383 | 5.592e-2 | 8.980e-2 | |
3 | 8 | 25.542 | -5.07e-4 | 2.63 | 9 | 26 | 11.41252 | 3.059 | 8.636 | |
4 | 10 | 20.4244 | -5.079e-5 | 0.486 | 13 | 36 | 21.52822 | 1.733 | 8.5 | |
5 | 12 | 19.7832 | -7.972e-7 | 3.76e-2 | 17 | 44 | 19.77675 | 4.03e-3 | 1.526e-2 | |
6 | 14 | 19.7728 | -2.093e-10 | 6.29e-4 | 20 | 50 | 19.77282 | 2.0e-6 | 3.960e-5 | |
7 | 16 | 19.7728 | -1.789e-17 | 1.92e-7 | 23 | 58 | 19.77282 | 7.136e-9 | 2.069e-14 | |
40 | 0 | 2 | 2.53311 | 0.005573 | Infeasible | 0 | 2 | 3.523114 | 0.5000 | Infeasible |
1 | 4 | 102.773 | -0.01904 | 20.1 | 1 | 5 | 3.251616 | 0.4950 | 0.2715 | |
2 | 6 | 53.8883 | -0.004527 | 5.94 | 5 | 16 | 2.603136 | 6.948e-2 | 8.390e-2 | |
3 | 8 | 31.7156 | -9.314e-4 | 3.55 | 9 | 26 | 13.44820 | 3.121 | 10.49 | |
4 | 10 | 23.9651 | -1.138e-4 | 0.874 | 13 | 36 | 24.51400 | 1.666 | 9.295 | |
5 | 12 | 22.7118 | -2.976e-6 | 6.42e-2 | 17 | 44 | 22.68110 | 4.026e-3 | 1.542e-2 | |
6 | 14 | 22.6772 | -2.266e-9 | 1.87e-3 | 20 | 50 | 22.67716 | 1.754e-6 | 3.960e-5 | |
7 | 16 | 22.6772 | -1.351e-15 | 1.28e-6 | 22 | 54 | 22.67716 | 8.846e-9 | 3.960e-7 |
Model( |
CFL no. | Div. step | |||||||
10 | 4.33 | 0.1552 | 1.18 | -0.19 | 49.95 | [-45, 2471] | [-22, 2505] | 108 | |
4.27 | 0.1530 | 1.22 | -0.10 | 51.90 | [-63, 1224] | [-34, 1263] | 182 | ||
4.24 | 0.1522 | 1.23 | -0.06 | 52.67 | [-54,454] | [-37,499] | 331 | ||
4.21 | 0.1507 | 1.26 | 0 | 54.03 | reference | reference | X | ||
4.16 | 0.1492 | 1.28 | 0.07 | 55.43 | [-47, 12] | [-36, 2.2] | X | ||
4.14 | 0.1485 | 1.30 | 0.10 | 56.15 | [-45, 14] | [-39, 4.4] | X | ||
4.08 | 0.1462 | 1.34 | 0.20 | 5C.37 | [-42, 19] | [-40, 8.9] | X | ||
1.68 | 0.0602 | 8.17 | 17.13 | 416.5 | [-30, 32] | [-30, 23] | X | ||
1.05 | 0.0376 | 21.0 | 48.94 | 1089 | [-30, 32] | [-30, 24] | X | ||
20 | 3.15 | 0.1129 | 7.17 | -0.32 | 127.5 | [-44, 2712] | [-18, 2746] | 102 | |
3.11 | 0.1112 | 7.40 | -0.16 | 132.4 | [-47, 1590] | [-30, 1628] | 153 | ||
3.09 | 0.1107 | 7.48 | -0.11 | 134.1 | [-49, 1031] | [-46, 1073] | 210 | ||
3.06 | 0.1096 | 7.64 | 0 | 137.4 | reference | reference | X | ||
3.03 | 0.1085 | 7.79 | 0.11 | 140.8 | [-49, A.7] | [-56, 2.9] | X | ||
3.01 | 0.1080 | 7.88 | 0.16 | 142.5 | [-47, 9.6] | [-32, 5.4] | X | ||
2.97 | 0.1063 | 8.11 | 0.33 | 147.6 | [-44, 14] | [-47, 9] | X | ||
1.22 | 0.0438 | 48.7 | 28.50 | 1017 | [-37, 38] | [-26, 23] | X | ||
0.76 | 0.0274 | 125.0 | 81.31 | 2651 | [-32, 40] | [-41, 22] | X | ||
Model( |
CFL no. | Div. step | |||||||
10 | 4.33 | 0.1552 | 1.18 | -0.19 | 49.95 | [-45, 2471] | [-22, 2505] | 108 | |
4.27 | 0.1530 | 1.22 | -0.10 | 51.90 | [-63, 1224] | [-34, 1263] | 182 | ||
4.24 | 0.1522 | 1.23 | -0.06 | 52.67 | [-54,454] | [-37,499] | 331 | ||
4.21 | 0.1507 | 1.26 | 0 | 54.03 | reference | reference | X | ||
4.16 | 0.1492 | 1.28 | 0.07 | 55.43 | [-47, 12] | [-36, 2.2] | X | ||
4.14 | 0.1485 | 1.30 | 0.10 | 56.15 | [-45, 14] | [-39, 4.4] | X | ||
4.08 | 0.1462 | 1.34 | 0.20 | 5C.37 | [-42, 19] | [-40, 8.9] | X | ||
1.68 | 0.0602 | 8.17 | 17.13 | 416.5 | [-30, 32] | [-30, 23] | X | ||
1.05 | 0.0376 | 21.0 | 48.94 | 1089 | [-30, 32] | [-30, 24] | X | ||
20 | 3.15 | 0.1129 | 7.17 | -0.32 | 127.5 | [-44, 2712] | [-18, 2746] | 102 | |
3.11 | 0.1112 | 7.40 | -0.16 | 132.4 | [-47, 1590] | [-30, 1628] | 153 | ||
3.09 | 0.1107 | 7.48 | -0.11 | 134.1 | [-49, 1031] | [-46, 1073] | 210 | ||
3.06 | 0.1096 | 7.64 | 0 | 137.4 | reference | reference | X | ||
3.03 | 0.1085 | 7.79 | 0.11 | 140.8 | [-49, A.7] | [-56, 2.9] | X | ||
3.01 | 0.1080 | 7.88 | 0.16 | 142.5 | [-47, 9.6] | [-32, 5.4] | X | ||
2.97 | 0.1063 | 8.11 | 0.33 | 147.6 | [-44, 14] | [-47, 9] | X | ||
1.22 | 0.0438 | 48.7 | 28.50 | 1017 | [-37, 38] | [-26, 23] | X | ||
0.76 | 0.0274 | 125.0 | 81.31 | 2651 | [-32, 40] | [-41, 22] | X | ||
Model( |
CFL no. | Div. step | |||||||
30 | 2.61 | 0.0933 | 21.68 | -0.45 | 209.1 | [-46, 2761] | [-20, 2810] | 101 | |
2.57 | 0.0919 | 22.37 | -0.23 | 217.0 | [-49, 1692] | [-47, 1743] | 147 | ||
2.55 | 0.0915 | 22.61 | -0.15 | 219.7 | [-51, 1177] | [-37, 1231] | 190 | ||
2.53 | 0.0905 | 23.07 | 0 | 225.0 | reference | reference | X | ||
2.50 | 0.0897 | 23.55 | 0.15 | 230.5 | [-51, 12] | [-47, 5.1] | X | ||
2.49 | 0.0892 | 23.79 | 0.23 | 233.3 | [-49, 15] | [-51, 7.6] | X | ||
2.46 | 0.0879 | 24.49 | 0.46 | 241.5 | [-47, 22] | [-30, 11] | X | ||
1.01 | 0.0362 | 146.2 | 39.8 | 1644 | [-37, 36] | [-30, 24] | X | ||
0.63 | 0.0226 | 374.9 | 113.7 | 4280 | [-34, 38] | [-33, 24] | X | ||
40 | 2.27 | 0.0814 | 48.41 | -0.58 | 291.9 | [-47, 2792] | [-26, 2850] | 100 | |
2.24 | 0.0801 | 49.94 | -0.29 | 302.9 | [-50, 1735] | [-333, 1796] | 144 | ||
2.23 | 0.0798 | 50.46 | -0.19 | 306.6 | [-52, 1238] | [-34, 1302] | 184 | ||
2.20 | 0.0789 | 51.50 | 0 | 314.1 | reference | reference | X | ||
2.18 | 0.0782 | 52.54 | 0.19 | 321.6 | [-52, 10] | [-52, 2.7] | X | ||
2.17 | 0.0778 | 53.10 | 0.29 | 325.4 | [-50, 14] | [-44, 4.7] | X | ||
2.14 | 0.0766 | 54.67 | 0.59 | 336.9 | [-47, 20] | [-36, 8.3] | X | ||
0.88 | 0.0315 | 325.3 | 51.1 | 2280 | [-36, 37] | [-22, 23] | X | ||
0.55 | 0.0197 | 833.7 | 146.1 | 5932 | [-35, 38] | [-30, 24] | X | ||
Model( |
CFL no. | Div. step | |||||||
30 | 2.61 | 0.0933 | 21.68 | -0.45 | 209.1 | [-46, 2761] | [-20, 2810] | 101 | |
2.57 | 0.0919 | 22.37 | -0.23 | 217.0 | [-49, 1692] | [-47, 1743] | 147 | ||
2.55 | 0.0915 | 22.61 | -0.15 | 219.7 | [-51, 1177] | [-37, 1231] | 190 | ||
2.53 | 0.0905 | 23.07 | 0 | 225.0 | reference | reference | X | ||
2.50 | 0.0897 | 23.55 | 0.15 | 230.5 | [-51, 12] | [-47, 5.1] | X | ||
2.49 | 0.0892 | 23.79 | 0.23 | 233.3 | [-49, 15] | [-51, 7.6] | X | ||
2.46 | 0.0879 | 24.49 | 0.46 | 241.5 | [-47, 22] | [-30, 11] | X | ||
1.01 | 0.0362 | 146.2 | 39.8 | 1644 | [-37, 36] | [-30, 24] | X | ||
0.63 | 0.0226 | 374.9 | 113.7 | 4280 | [-34, 38] | [-33, 24] | X | ||
40 | 2.27 | 0.0814 | 48.41 | -0.58 | 291.9 | [-47, 2792] | [-26, 2850] | 100 | |
2.24 | 0.0801 | 49.94 | -0.29 | 302.9 | [-50, 1735] | [-333, 1796] | 144 | ||
2.23 | 0.0798 | 50.46 | -0.19 | 306.6 | [-52, 1238] | [-34, 1302] | 184 | ||
2.20 | 0.0789 | 51.50 | 0 | 314.1 | reference | reference | X | ||
2.18 | 0.0782 | 52.54 | 0.19 | 321.6 | [-52, 10] | [-52, 2.7] | X | ||
2.17 | 0.0778 | 53.10 | 0.29 | 325.4 | [-50, 14] | [-44, 4.7] | X | ||
2.14 | 0.0766 | 54.67 | 0.59 | 336.9 | [-47, 20] | [-36, 8.3] | X | ||
0.88 | 0.0315 | 325.3 | 51.1 | 2280 | [-36, 37] | [-22, 23] | X | ||
0.55 | 0.0197 | 833.7 | 146.1 | 5932 | [-35, 38] | [-30, 24] | X | ||
10 | 1211.6 | 2414.9 | 2.60175 | 9.83369172 | 0.195963 |
20 | 985.2 | 1964.3 | 3.24926 | 12.28105278 | 0.823283 |
30 | 852.1 | 1699.3 | 3.69751 | 13.97527101 | 0.599417 |
40 | 782.7 | 1561.0 | 4.02499 | 15.21304757 | 0.462573 |
10 | 1211.6 | 2414.9 | 2.60175 | 9.83369172 | 0.195963 |
20 | 985.2 | 1964.3 | 3.24926 | 12.28105278 | 0.823283 |
30 | 852.1 | 1699.3 | 3.69751 | 13.97527101 | 0.599417 |
40 | 782.7 | 1561.0 | 4.02499 | 15.21304757 | 0.462573 |
Mode |
||||||
10 | 9.83369172 | 18.81513016 | 27.66930905 | 33.20317086 | 34.20932756 | 44.79792894 |
20 | 12.28105278 | 22.82830988 | 32.74947408 | 38.42388791 | 40.00837813 | 51.06332472 |
30 | 13.97527101 | 25.11064738 | 35.17371580 | 41.92581303 | 45.15087558 | 53.36012568 |
40 | 15.21304757 | 2A.79312856 | 36.38796514 | 44.14277738 | 48.08409679 | 59.83798712 |
Mode |
||||||
10 | 9.83369172 | 18.81513016 | 27.66930905 | 33.20317086 | 34.20932756 | 44.79792894 |
20 | 12.28105278 | 22.82830988 | 32.74947408 | 38.42388791 | 40.00837813 | 51.06332472 |
30 | 13.97527101 | 25.11064738 | 35.17371580 | 41.92581303 | 45.15087558 | 53.36012568 |
40 | 15.21304757 | 2A.79312856 | 36.38796514 | 44.14277738 | 48.08409679 | 59.83798712 |
ALGA | ALPSA | ||||||||
Gen. | F-count | Max. constr. | Iter. | F-count | Max. constr. | Mesh size | |||
10 | 1 | 1066 | C.28321 | 1.678e-4 | 0 | 1 | 3.79967 | 2.088e-4 | 1 |
3 | 3146 | 2.53318 | 1.187e-3 | 1 | 94 | 5.37203 | 2.596e-4 | 1.074e-3 | |
5 | 5226 | 2.53311 | 1.187e-3 | 2 | 343 | 14.091 | 0 | 3.333e-4 | |
7 | 7306 | 2.53311 | 1.187e-3 | 3 | 451 | 11.8842 | 0 | 3.333e-6 | |
10 | 10516 | 11.8842 |
0 | 4 | 501 | 11.8842 |
0 | 3.333e-8 | |
20 | 1 | 530 | 2.53311 | 2.611e-3 | 0 | 1 | 3.79967 | 2.108e-3 | 1 |
3 | 1570 | 2.53311 | 2.611e-3 | 1 | 61 | 24.7257 | 0 | 3.333e-4 | |
5 | 2610 | 2.53311 | 2.611e-3 | 2 | 262 | 16.3415 | 0 | 3.333e-6 | |
7 | 3668 | 1A.4907 | 0 | 3 | 433 | 16.3415 |
0 | 3.333e-8 | |
10 | 5269 | 16.3415 |
0 | ||||||
30 | 0 | 0 | 2.53311 | Infeasible | 0 | 1 | 2.53311 | 4.084e-3 | 1 |
1 | 1072 | 24.6611 | 0 | 1 | 25 | 43.6032 | 0 | 3.333e-4 | |
2 | 2138 | 19.7728 | 0 | 2 | 266 | 19.7728 | 0 | 3.333e-6 | |
3 | 3190 | 19.7728 |
0 | 3 | 437 | 19.7728 |
0 | 3.333e-8 | |
40 | 0 | 0 | 2.53311 | Infeasible | 0 | 1 | 2.53311 | 5.573e-3 | 1 |
1 | 1072 | 2C.3387 | 0 | 1 | 29 | 48.9484 | 0 | 3.333e-4 | |
2 | 2138 | 22.6772 | 0 | 2 | 258 | 22.6772 | 0 | 3.333e-6 | |
3 | 3190 | 22.6772 |
0 | 3 | 441 | 22.6772 |
0 | 3.333e-8 |
ALGA | ALPSA | ||||||||
Gen. | F-count | Max. constr. | Iter. | F-count | Max. constr. | Mesh size | |||
10 | 1 | 1066 | C.28321 | 1.678e-4 | 0 | 1 | 3.79967 | 2.088e-4 | 1 |
3 | 3146 | 2.53318 | 1.187e-3 | 1 | 94 | 5.37203 | 2.596e-4 | 1.074e-3 | |
5 | 5226 | 2.53311 | 1.187e-3 | 2 | 343 | 14.091 | 0 | 3.333e-4 | |
7 | 7306 | 2.53311 | 1.187e-3 | 3 | 451 | 11.8842 | 0 | 3.333e-6 | |
10 | 10516 | 11.8842 |
0 | 4 | 501 | 11.8842 |
0 | 3.333e-8 | |
20 | 1 | 530 | 2.53311 | 2.611e-3 | 0 | 1 | 3.79967 | 2.108e-3 | 1 |
3 | 1570 | 2.53311 | 2.611e-3 | 1 | 61 | 24.7257 | 0 | 3.333e-4 | |
5 | 2610 | 2.53311 | 2.611e-3 | 2 | 262 | 16.3415 | 0 | 3.333e-6 | |
7 | 3668 | 1A.4907 | 0 | 3 | 433 | 16.3415 |
0 | 3.333e-8 | |
10 | 5269 | 16.3415 |
0 | ||||||
30 | 0 | 0 | 2.53311 | Infeasible | 0 | 1 | 2.53311 | 4.084e-3 | 1 |
1 | 1072 | 24.6611 | 0 | 1 | 25 | 43.6032 | 0 | 3.333e-4 | |
2 | 2138 | 19.7728 | 0 | 2 | 266 | 19.7728 | 0 | 3.333e-6 | |
3 | 3190 | 19.7728 |
0 | 3 | 437 | 19.7728 |
0 | 3.333e-8 | |
40 | 0 | 0 | 2.53311 | Infeasible | 0 | 1 | 2.53311 | 5.573e-3 | 1 |
1 | 1072 | 2C.3387 | 0 | 1 | 29 | 48.9484 | 0 | 3.333e-4 | |
2 | 2138 | 22.6772 | 0 | 2 | 258 | 22.6772 | 0 | 3.333e-6 | |
3 | 3190 | 22.6772 |
0 | 3 | 441 | 22.6772 |
0 | 3.333e-8 |
NLP | ||||||
Method | Algorithm | Para. | ||||
FSDT-MDWDF | ASA | 11.88413667 | 16.34149675 | 19.77282249 | 22.67715857 | |
0.15072042 | 0.10960942 | 0.09058808 | 0.07898617 | |||
CPU time(ms) | 2411.1 | 2425.98 | 2461.76 | 2502.44 | ||
9.83369172 | 12.28105278 | 13.97527101 | 15.21304757 | |||
0.19596347 | 0.82328368 | 0.59941701 | 0.46257394 | |||
IPA | 11.88413707 | 16.34149709 | 19.77282289 | 22.67715898 | ||
0.15072041 | 0.10960942 | 0.09058808 | 0.07898617 | |||
CPU time(ms) | 2265.58 | 1745.8 | 1824.4 | 1972.86 | ||
9.83369205 | 12.28105303 | 13.97527129 | 15.21304784 | |||
0.19596011 | 0.82328166 | 0.59941904 | 0.46257571 | |||
ALGA | 11.88413869 | 16.34149995 | 19.77282581 | 22.67716160 | ||
0.15072040 | 0.10960941 | 0.09058807 | 0.07898617 | |||
CPU time(ms) | 6262.2 | 6137.32 | 4223.16 | 4194.09 | ||
9.83370380 | 12.28105800 | 13.97527405 | 15.21304960 | |||
0.1958408 | 0.82324156 | 0.59943894 | 0.46258734 | |||
ALPSA | 11.88415178 | 16.34150453 | 19.77282756 | 22.67716223 | ||
0.15072013 | 0.10960929 | 0.09058806 | 0.07898616 | |||
CPU time(ms) | 2924.57 | 2781.15 | 2593.6 | 2857.36 | ||
9.83370423 | 12.28105862 | 13.97527458 | 15.21305002 | |||
0.19583654 | 0.82323649 | 0.59944269 | 0.46259008 | |||
FSDT-GRBF [46] | 9.539 | 11.977 | 13.716 | 15.059 | ||
3.18684664 | 3.27868852 | 1.26691621 | 0.55471175 | |||
FSDT-EFG [7] | 9.670 | 12.115 | 13.799 | 15.068 | ||
1.85730234 | 1.00506618 | 0.66945004 | 0.49527834 | |||
FSDT-FEM [36] | 9.841 | 12.138 | 13.864 | 15.107 | ||
0.12179031 | 0.16342539 | 0.20155485 | 0.23773360 | |||
TSDT-EFG [7] | 9.842 | 12.138 | 14.154 | 15.145 | ||
0.11164112 | 0.16342539 | 1.90757270 | 0.01320742 | |||
TSDT-FEM [36] | 9.853 | 12.238 | 13.892 | 15.143 | ||
NLP | ||||||
Method | Algorithm | Para. | ||||
FSDT-MDWDF | ASA | 11.88413667 | 16.34149675 | 19.77282249 | 22.67715857 | |
0.15072042 | 0.10960942 | 0.09058808 | 0.07898617 | |||
CPU time(ms) | 2411.1 | 2425.98 | 2461.76 | 2502.44 | ||
9.83369172 | 12.28105278 | 13.97527101 | 15.21304757 | |||
0.19596347 | 0.82328368 | 0.59941701 | 0.46257394 | |||
IPA | 11.88413707 | 16.34149709 | 19.77282289 | 22.67715898 | ||
0.15072041 | 0.10960942 | 0.09058808 | 0.07898617 | |||
CPU time(ms) | 2265.58 | 1745.8 | 1824.4 | 1972.86 | ||
9.83369205 | 12.28105303 | 13.97527129 | 15.21304784 | |||
0.19596011 | 0.82328166 | 0.59941904 | 0.46257571 | |||
ALGA | 11.88413869 | 16.34149995 | 19.77282581 | 22.67716160 | ||
0.15072040 | 0.10960941 | 0.09058807 | 0.07898617 | |||
CPU time(ms) | 6262.2 | 6137.32 | 4223.16 | 4194.09 | ||
9.83370380 | 12.28105800 | 13.97527405 | 15.21304960 | |||
0.1958408 | 0.82324156 | 0.59943894 | 0.46258734 | |||
ALPSA | 11.88415178 | 16.34150453 | 19.77282756 | 22.67716223 | ||
0.15072013 | 0.10960929 | 0.09058806 | 0.07898616 | |||
CPU time(ms) | 2924.57 | 2781.15 | 2593.6 | 2857.36 | ||
9.83370423 | 12.28105862 | 13.97527458 | 15.21305002 | |||
0.19583654 | 0.82323649 | 0.59944269 | 0.46259008 | |||
FSDT-GRBF [46] | 9.539 | 11.977 | 13.716 | 15.059 | ||
3.18684664 | 3.27868852 | 1.26691621 | 0.55471175 | |||
FSDT-EFG [7] | 9.670 | 12.115 | 13.799 | 15.068 | ||
1.85730234 | 1.00506618 | 0.66945004 | 0.49527834 | |||
FSDT-FEM [36] | 9.841 | 12.138 | 13.864 | 15.107 | ||
0.12179031 | 0.16342539 | 0.20155485 | 0.23773360 | |||
TSDT-EFG [7] | 9.842 | 12.138 | 14.154 | 15.145 | ||
0.11164112 | 0.16342539 | 1.90757270 | 0.01320742 | |||
TSDT-FEM [36] | 9.853 | 12.238 | 13.892 | 15.143 | ||
NLP | ||||||
Method | Algorithm | Para. | ||||
FSDT-MDWDF | ASA | 12.91506498 | 17.80436624 | 21.46965556 | 24.53187819 | |
0.14077503 | 0.10211645 | 0.08468317 | 0.07411249 | |||
9.75894349 | 12.09708139 | 13.65712101 | 14.70474902 | |||
0.35793863 | 0.37405733 | 0.59012307 | 0.41481091 | |||
IPA | 12.91506538 | 17.80436635 | 21.46965596 | 24.53187859 | ||
0.14077502 | 0.10211645 | 0.08468318 | 0.07411249 | |||
9.75894379 | 12.09708146 | 13.65712126 | 14.70474926 | |||
0.35793557 | 0.00374057 | 0.59012491 | 0.41480929 | |||
ALGA | 12.91506688 | 17.80436836 | 21.46965818 | 24.53190153 | ||
0.14077501 | 0.10211643 | 0.08468316 | 0.0741124239 | |||
9.75894493 | 12.09708282 | 13.65712267 | 14.70476301 | |||
0.35792393 | 0.37406920 | 0.59013530 | 0.41471617 | |||
ALPSA | 12.91825286 | 17.81031318 | 21.46968482 | 24.53190155 | ||
0.14074029 | 0.10208235 | 0.08468306 | 0.0741124238 | |||
9.76135232 | 12.10112200 | 13.65713962 | 14.70476302 | |||
0.33334367 | 0.00407583 | 0.00590260 | 0.41471610 | |||
HSDT-FEM [20] | 9.794 | 12.052 | 13.577 | 14.766 | ||
NLP | ||||||
Method | Algorithm | Para. | ||||
FSDT-MDWDF | ASA | 12.91506498 | 17.80436624 | 21.46965556 | 24.53187819 | |
0.14077503 | 0.10211645 | 0.08468317 | 0.07411249 | |||
9.75894349 | 12.09708139 | 13.65712101 | 14.70474902 | |||
0.35793863 | 0.37405733 | 0.59012307 | 0.41481091 | |||
IPA | 12.91506538 | 17.80436635 | 21.46965596 | 24.53187859 | ||
0.14077502 | 0.10211645 | 0.08468318 | 0.07411249 | |||
9.75894379 | 12.09708146 | 13.65712126 | 14.70474926 | |||
0.35793557 | 0.00374057 | 0.59012491 | 0.41480929 | |||
ALGA | 12.91506688 | 17.80436836 | 21.46965818 | 24.53190153 | ||
0.14077501 | 0.10211643 | 0.08468316 | 0.0741124239 | |||
9.75894493 | 12.09708282 | 13.65712267 | 14.70476301 | |||
0.35792393 | 0.37406920 | 0.59013530 | 0.41471617 | |||
ALPSA | 12.91825286 | 17.81031318 | 21.46968482 | 24.53190155 | ||
0.14074029 | 0.10208235 | 0.08468306 | 0.0741124238 | |||
9.76135232 | 12.10112200 | 13.65713962 | 14.70476302 | |||
0.33334367 | 0.00407583 | 0.00590260 | 0.41471610 | |||
HSDT-FEM [20] | 9.794 | 12.052 | 13.577 | 14.766 | ||
NLP | |||||
Algorithm | Para. | ||||
ASA | 11.12198459 | 15.31530671 | 18.56722410 | 21.43934366 | |
0.15957798 | 0.11588562 | 0.09558908 | 0.08375115 | ||
9.53036311 | 11.97168174 | 13.53757952 | 5.46066961 | ||
IPA | 11.12198460 | 15.31530709 | 18.56722348 | 21.32430073 | |
0.15957798 | 0.11588562 | 0.09558908 | 0.08323011 | ||
9.53036311 | 11.97168204 | 13.69778710 | 15.02075228 | ||
ALGA | 11.12198680 | 15.31531111 | 18.56722310 | 21.32430035 | |
0.15957795 | 0.11588559 | 0.09558908 | 0.08323011 | ||
9.53036500 | 11.97168518 | 13.69778682 | 15.02075202 | ||
ALPSA | 11.12199160 | 15.31530987 | 18.56722509 | 21.32430176 | |
0.15957788 | 0.11588560 | 0.09558907 | 0.08323010 | ||
9.53036911 | 11.97168421 | 13.69778829 | 15.02075301 |
NLP | |||||
Algorithm | Para. | ||||
ASA | 11.12198459 | 15.31530671 | 18.56722410 | 21.43934366 | |
0.15957798 | 0.11588562 | 0.09558908 | 0.08375115 | ||
9.53036311 | 11.97168174 | 13.53757952 | 5.46066961 | ||
IPA | 11.12198460 | 15.31530709 | 18.56722348 | 21.32430073 | |
0.15957798 | 0.11588562 | 0.09558908 | 0.08323011 | ||
9.53036311 | 11.97168204 | 13.69778710 | 15.02075228 | ||
ALGA | 11.12198680 | 15.31531111 | 18.56722310 | 21.32430035 | |
0.15957795 | 0.11588559 | 0.09558908 | 0.08323011 | ||
9.53036500 | 11.97168518 | 13.69778682 | 15.02075202 | ||
ALPSA | 11.12199160 | 15.31530987 | 18.56722509 | 21.32430176 | |
0.15957788 | 0.11588560 | 0.09558907 | 0.08323010 | ||
9.53036911 | 11.97168421 | 13.69778829 | 15.02075301 |
[1] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[2] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[3] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[4] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[5] |
Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109 |
[6] |
Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051 |
[7] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[8] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[9] |
Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933 |
[10] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[11] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[12] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[13] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[14] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028 |
[15] |
Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023 |
[16] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[17] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[18] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[19] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[20] |
Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]