September  2020, 16(5): 2439-2457. doi: 10.3934/jimo.2019062

Minimizing total completion time in a two-machine no-wait flowshop with uncertain and bounded setup times

1. 

Department of Mathematical Sciences, Kean University, New Jersey, USA

2. 

Department of Industrial and Management Systems Engineering, Kuwait University, Kuwait

1Corresponding Author: Muberra Allahverdi

Received  October 2018 Revised  February 2019 Published  May 2019

We address a two-machine no-wait flowshop scheduling problem with respect to the performance measure of total completion time. Minimizing total completion time is important when inventory cost is of concern. Setup times are treated separately from processing times. Furthermore, setup times are uncertain with unknown distributions and are within some lower and upper bounds. We develop a dominance relation and propose eight algorithms to solve the problem. The proposed algorithms, which assign different weights to the processing and setup times on both machines, convert the two-machine problem into a single-machine one for which an optimal solution is known. We conduct computational experiments to evaluate the proposed algorithms. Computational experiments reveal that one of the proposed algorithms, which assigns the same weight to setup and processing times, is superior to the rest of the algorithms. The results are statistically verified by constructing confidence intervals and test of hypothesis.

Citation: Muberra Allahverdi, Ali Allahverdi. Minimizing total completion time in a two-machine no-wait flowshop with uncertain and bounded setup times. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2439-2457. doi: 10.3934/jimo.2019062
References:
[1]

A. Allahverdi, The third comprehensive survey on scheduling problems with setup times/costs, European Journal of Operational Research, 246 (2015), 345-378.  doi: 10.1016/j.ejor.2015.04.004.  Google Scholar

[2]

A. Allahverdi, A survey of scheduling problems with no-wait in process, European Journal of Operational Research, 255 (2016), 665-686.  doi: 10.1016/j.ejor.2016.05.036.  Google Scholar

[3]

A. Allahverdi, Two-machine flowshop scheduling problem to minimize makespan with bounded setup and processing times, Int. Journal of Agile Manufacturing, 8 (2005), 145-153.   Google Scholar

[4]

A. Allahverdi, Two-machine flowshop scheduling problem to minimize total completion time with bounded setup and processing times, Int. Journal of Production Economics, 103 (2006a), 386-400.   Google Scholar

[5]

A. Allahverdi, Two-machine flowshop scheduling problem to minimize maximum lateness with bounded setup and processing times, Kuwait Journal of Science and Engineering, 33 (2006), 233-251.   Google Scholar

[6]

A. AllahverdiT. Aldowaisan and Y. N. Sotskov, Two-machine flowshop scheduling problem to minimize makespan or total completion time with random and bounded setup times, Int. Journal of Mathematics and Mathematical Sciences, 39 (2003), 2475-2486.  doi: 10.1155/S016117120321019X.  Google Scholar

[7]

A. Allahverdi and M. Allahverdi, Two-machine no-wait flowshop scheduling problem with uncertain setup times to minimize maximum lateness, Computational and Applied Mathematics, 37 (2018), 6774-6794.  doi: 10.1007/s40314-018-0694-3.  Google Scholar

[8]

A. Allahverdi and H. Aydilek, Heuristics for two-machine flowshop scheduling problem to minimize maximum lateness with bounded processing times, Computers and Mathematics with Applications, 60 (2010), 1374-1384.  doi: 10.1016/j.camwa.2010.06.019.  Google Scholar

[9]

A. AydilekH. Aydilek and A. Allahverdi, Increasing the profitability and competitiveness in a production environment with random and bounded setup times, Int. Journal of Production Research, 51 (2013), 106-117.  doi: 10.1080/00207543.2011.652263.  Google Scholar

[10]

A. AydilekH. Aydilek and A. Allahverdi, Production in a two-machine flowshop scheduling environment with uncertain processing and setup times to minimize makespan, Int. Journal of Production Research, 53 (2015), 2803-2819.  doi: 10.1080/00207543.2014.997403.  Google Scholar

[11]

A. AydilekH. Aydilek and A. Allahverdi, Algorithms for minimizing the number of tardy jobs for reducing production cost with uncertain processing times, Applied Mathematical Modelling, 45 (2017), 982-996.  doi: 10.1016/j.apm.2017.01.039.  Google Scholar

[12]

O. BraunT. C. LaiG. Schmidt and Y. N. Sotskov, Stability of Johnson's schedule with respect to limited machine availability, Int. Journal of Production Research, 40 (2002), 4381-4400.   Google Scholar

[13]

A. A. Cunningham and S. K. Dutta, Scheduling jobs with exponentially distributed processing times on two machines of a flow shop, Naval Research Logistics Quarterly, 20 (1973), 69-81.  doi: 10.1002/nav.3800200107.  Google Scholar

[14]

O. Engin and A. Güçlü, A new hybrid ant colony optimization algorithm for solving the no-wait flow shop scheduling problems, Applied Soft Computing Journal, 72 (2018), 166-176.  doi: 10.1016/j.asoc.2018.08.002.  Google Scholar

[15]

O. Engin and C. Günaydin, An adaptive learning approach for no-wait flowshop scheduling problems to minimize makespan, International Journal of Computational Intelligence Systems, 4 (2011), 521-529.  doi: 10.1080/18756891.2011.9727810.  Google Scholar

[16]

E. M. Gonzalez-NeiraD. FeroneS. Hatami and A. A. Juan, A biased-randomized simheuristic for the distributed assembly permutation flowshop problem with stochastic processing times, Simulation Modelling Practice and Theory, 79 (2017), 23-36.  doi: 10.1016/j.simpat.2017.09.001.  Google Scholar

[17]

N. G. Hall and C. Sriskandarajah, A survey of machine scheduling problems with blocking and no-wait in process, Operations Research, 44 (1996), 510-525.  doi: 10.1287/opre.44.3.510.  Google Scholar

[18]

P. J. Kalczynski and J. Kamburowski, A heuristic for minimizing the expected makespan in two-machine flowshops with consistent coefficients of variation, European Journal of Operational Research, 169 (2006), 742-750.  doi: 10.1016/j.ejor.2004.08.045.  Google Scholar

[19]

I. H. Karacizmeli and S. N. Ogulata, Energy consumption management in textile finishing plants: A cost effective and sequence dependent scheduling model, Textile and Apparel, 27 (2017), 145-152.   Google Scholar

[20]

S. C. Kim and P. M. Bobrowski, Scheduling jobs with uncertain setup times and sequence dependency, Omega Int. Journal of Management Science, 25 (1997), 437-447.  doi: 10.1016/S0305-0483(97)00013-3.  Google Scholar

[21]

G. M. KopanosJ. Miguel Lainez and L. Puigjaner, An efficient mixed-integer linear programming scheduling framework for addressing sequence-dependent setup issues in batch plants, Industrial & Engineering Chemistry Research, 48 (2009), 6346-6357.  doi: 10.1021/ie801127t.  Google Scholar

[22]

P. S. Ku and S. C. Niu, On Johnson's two-machine flow shop with random processing times, Operations Research, 34 (1986), 130-136.  doi: 10.1287/opre.34.1.130.  Google Scholar

[23]

T. C. LaiY. N. SotskovN. Y. Sotskova and F. Werner, Optimal makespan scheduling with given bounds of processing times, Mathematical and Computer Modelling, 26 (1997), 67-86.  doi: 10.1016/S0895-7177(97)00132-5.  Google Scholar

[24]

X. Li, Z. Yang, R. Ruiz, T. Chen and S. Sui, An iterated greedy heuristic for no-wait flow shops with sequence dependent setup times, learning and forgetting effects, Information Sciences, 453 (2018), 408–425. doi: 10.1016/j.ins.2018.04.038.  Google Scholar

[25]

R. MacchiaroliS. Molè and S. Riemma, Modelling and optimization of industrial manufacturing processes subject to no-wait constraints, Int. Journal of Production Research, 37 (1999), 2585-2607.  doi: 10.1080/002075499190671.  Google Scholar

[26]

N. M. MatsveichukY. N. SotskovN. G. Egorova and T. C. Lai, Schedule execution for two-machine flow-shop with interval processing times, Mathematical and Computer Modelling, 49 (2009), 991-1011.  doi: 10.1016/j.mcm.2008.02.004.  Google Scholar

[27]

N. M. MatsveichukY. N. Sotskov and F. Werner, Partial job order for solving the two-machine flow-shop minimum-length problem with uncertain processing times, Optimization, 60 (2011), 1493-1517.  doi: 10.1080/02331931003657691.  Google Scholar

[28]

M. Pinedo, Stochastic scheduling with release dates and due dates, Operations Research, 31 (1983), 559-572.  doi: 10.1287/opre.31.3.559.  Google Scholar

[29]

M. Pinedo, Scheduling Theory, Algorithms, and Systems, Prentice Hall, Englewood Cliffs, New Jersey, Page 349, 1995. Google Scholar

[30]

V. Portougal and D. Trietsch, Johnson's problem with stochastic processing times and optimal service level, European Journal of Operational Research, 169 (2006), 751-760.  doi: 10.1016/j.ejor.2004.09.056.  Google Scholar

[31]

V. Riahi and M. Kazemi, A new hybrid ant colony algorithm for scheduling of no-wait flowshop, Operational Research, 18 (2018), 55-74.  doi: 10.1007/s12351-016-0253-x.  Google Scholar

[32]

D. K. SeoC. M. Klein and W. Jang, Single machine stochastic scheduling to minimize the expected number of tardy jobs using mathematical programming models, Computers and Industrial Engineering, 48 (2005), 153-161.  doi: 10.1016/j.cie.2005.01.002.  Google Scholar

[33]

H. M. Soroush, Sequencing and due-date determination in the stochastic single machine problem with earliness and tardiness costs, European Journal of Operational Research, 113 (1999), 450-468.   Google Scholar

[34]

H. M. Soroush, Minimizing the weighted number of early and tardy jobs in a stochastic single machine scheduling problem., European Journal of Operational Research, 181 (2007), 266-287.  doi: 10.1016/j.ejor.2006.05.036.  Google Scholar

[35]

Y. N. Sotskov and N. M. Matsveichuk, Uncertainty measure for the Bellman-Johnson problem with interval processing times, Cybernetics and System Analysis, 48 (2012), 641-652.  doi: 10.1007/s10559-012-9445-4.  Google Scholar

[36]

Y. N. SotskovN. G. Egorova and T. C. Lai, Minimizing total weighted flow time of a set of jobs with interval processing times, Mathematical and Computer Modelling, 50 (2009), 556-573.  doi: 10.1016/j.mcm.2009.03.006.  Google Scholar

[37]

Y. N. Sotskov and T. C. Lai, Minimizing total weighted flow under uncertainty using dominance and a stability box, Computers and Operations Research, 39 (2012), 1271-1289.  doi: 10.1016/j.cor.2011.02.001.  Google Scholar

[38]

K. Wang and S. H. Choi, A decomposition-based approach to flexible flow shop scheduling under machine breakdown, Int. Journal of Production Research, 50 (2012), 215-234.  doi: 10.1080/00207543.2011.571456.  Google Scholar

[39]

Y. WangX. LiR. Ruiz and S. Sui, An iterated greedy heuristic for mixed no-wait flowshop problems, IEEE Transactions on Cybernetics, 48 (2018), 1553-1566.  doi: 10.1109/TCYB.2017.2707067.  Google Scholar

[40]

K. C. Ying and S. W. Lin, Minimizing makespan for no-wait flowshop scheduling problems with setup times, Computers and Industrial Engineering, 121 (2018), 73-81.  doi: 10.1016/j.cie.2018.05.030.  Google Scholar

show all references

References:
[1]

A. Allahverdi, The third comprehensive survey on scheduling problems with setup times/costs, European Journal of Operational Research, 246 (2015), 345-378.  doi: 10.1016/j.ejor.2015.04.004.  Google Scholar

[2]

A. Allahverdi, A survey of scheduling problems with no-wait in process, European Journal of Operational Research, 255 (2016), 665-686.  doi: 10.1016/j.ejor.2016.05.036.  Google Scholar

[3]

A. Allahverdi, Two-machine flowshop scheduling problem to minimize makespan with bounded setup and processing times, Int. Journal of Agile Manufacturing, 8 (2005), 145-153.   Google Scholar

[4]

A. Allahverdi, Two-machine flowshop scheduling problem to minimize total completion time with bounded setup and processing times, Int. Journal of Production Economics, 103 (2006a), 386-400.   Google Scholar

[5]

A. Allahverdi, Two-machine flowshop scheduling problem to minimize maximum lateness with bounded setup and processing times, Kuwait Journal of Science and Engineering, 33 (2006), 233-251.   Google Scholar

[6]

A. AllahverdiT. Aldowaisan and Y. N. Sotskov, Two-machine flowshop scheduling problem to minimize makespan or total completion time with random and bounded setup times, Int. Journal of Mathematics and Mathematical Sciences, 39 (2003), 2475-2486.  doi: 10.1155/S016117120321019X.  Google Scholar

[7]

A. Allahverdi and M. Allahverdi, Two-machine no-wait flowshop scheduling problem with uncertain setup times to minimize maximum lateness, Computational and Applied Mathematics, 37 (2018), 6774-6794.  doi: 10.1007/s40314-018-0694-3.  Google Scholar

[8]

A. Allahverdi and H. Aydilek, Heuristics for two-machine flowshop scheduling problem to minimize maximum lateness with bounded processing times, Computers and Mathematics with Applications, 60 (2010), 1374-1384.  doi: 10.1016/j.camwa.2010.06.019.  Google Scholar

[9]

A. AydilekH. Aydilek and A. Allahverdi, Increasing the profitability and competitiveness in a production environment with random and bounded setup times, Int. Journal of Production Research, 51 (2013), 106-117.  doi: 10.1080/00207543.2011.652263.  Google Scholar

[10]

A. AydilekH. Aydilek and A. Allahverdi, Production in a two-machine flowshop scheduling environment with uncertain processing and setup times to minimize makespan, Int. Journal of Production Research, 53 (2015), 2803-2819.  doi: 10.1080/00207543.2014.997403.  Google Scholar

[11]

A. AydilekH. Aydilek and A. Allahverdi, Algorithms for minimizing the number of tardy jobs for reducing production cost with uncertain processing times, Applied Mathematical Modelling, 45 (2017), 982-996.  doi: 10.1016/j.apm.2017.01.039.  Google Scholar

[12]

O. BraunT. C. LaiG. Schmidt and Y. N. Sotskov, Stability of Johnson's schedule with respect to limited machine availability, Int. Journal of Production Research, 40 (2002), 4381-4400.   Google Scholar

[13]

A. A. Cunningham and S. K. Dutta, Scheduling jobs with exponentially distributed processing times on two machines of a flow shop, Naval Research Logistics Quarterly, 20 (1973), 69-81.  doi: 10.1002/nav.3800200107.  Google Scholar

[14]

O. Engin and A. Güçlü, A new hybrid ant colony optimization algorithm for solving the no-wait flow shop scheduling problems, Applied Soft Computing Journal, 72 (2018), 166-176.  doi: 10.1016/j.asoc.2018.08.002.  Google Scholar

[15]

O. Engin and C. Günaydin, An adaptive learning approach for no-wait flowshop scheduling problems to minimize makespan, International Journal of Computational Intelligence Systems, 4 (2011), 521-529.  doi: 10.1080/18756891.2011.9727810.  Google Scholar

[16]

E. M. Gonzalez-NeiraD. FeroneS. Hatami and A. A. Juan, A biased-randomized simheuristic for the distributed assembly permutation flowshop problem with stochastic processing times, Simulation Modelling Practice and Theory, 79 (2017), 23-36.  doi: 10.1016/j.simpat.2017.09.001.  Google Scholar

[17]

N. G. Hall and C. Sriskandarajah, A survey of machine scheduling problems with blocking and no-wait in process, Operations Research, 44 (1996), 510-525.  doi: 10.1287/opre.44.3.510.  Google Scholar

[18]

P. J. Kalczynski and J. Kamburowski, A heuristic for minimizing the expected makespan in two-machine flowshops with consistent coefficients of variation, European Journal of Operational Research, 169 (2006), 742-750.  doi: 10.1016/j.ejor.2004.08.045.  Google Scholar

[19]

I. H. Karacizmeli and S. N. Ogulata, Energy consumption management in textile finishing plants: A cost effective and sequence dependent scheduling model, Textile and Apparel, 27 (2017), 145-152.   Google Scholar

[20]

S. C. Kim and P. M. Bobrowski, Scheduling jobs with uncertain setup times and sequence dependency, Omega Int. Journal of Management Science, 25 (1997), 437-447.  doi: 10.1016/S0305-0483(97)00013-3.  Google Scholar

[21]

G. M. KopanosJ. Miguel Lainez and L. Puigjaner, An efficient mixed-integer linear programming scheduling framework for addressing sequence-dependent setup issues in batch plants, Industrial & Engineering Chemistry Research, 48 (2009), 6346-6357.  doi: 10.1021/ie801127t.  Google Scholar

[22]

P. S. Ku and S. C. Niu, On Johnson's two-machine flow shop with random processing times, Operations Research, 34 (1986), 130-136.  doi: 10.1287/opre.34.1.130.  Google Scholar

[23]

T. C. LaiY. N. SotskovN. Y. Sotskova and F. Werner, Optimal makespan scheduling with given bounds of processing times, Mathematical and Computer Modelling, 26 (1997), 67-86.  doi: 10.1016/S0895-7177(97)00132-5.  Google Scholar

[24]

X. Li, Z. Yang, R. Ruiz, T. Chen and S. Sui, An iterated greedy heuristic for no-wait flow shops with sequence dependent setup times, learning and forgetting effects, Information Sciences, 453 (2018), 408–425. doi: 10.1016/j.ins.2018.04.038.  Google Scholar

[25]

R. MacchiaroliS. Molè and S. Riemma, Modelling and optimization of industrial manufacturing processes subject to no-wait constraints, Int. Journal of Production Research, 37 (1999), 2585-2607.  doi: 10.1080/002075499190671.  Google Scholar

[26]

N. M. MatsveichukY. N. SotskovN. G. Egorova and T. C. Lai, Schedule execution for two-machine flow-shop with interval processing times, Mathematical and Computer Modelling, 49 (2009), 991-1011.  doi: 10.1016/j.mcm.2008.02.004.  Google Scholar

[27]

N. M. MatsveichukY. N. Sotskov and F. Werner, Partial job order for solving the two-machine flow-shop minimum-length problem with uncertain processing times, Optimization, 60 (2011), 1493-1517.  doi: 10.1080/02331931003657691.  Google Scholar

[28]

M. Pinedo, Stochastic scheduling with release dates and due dates, Operations Research, 31 (1983), 559-572.  doi: 10.1287/opre.31.3.559.  Google Scholar

[29]

M. Pinedo, Scheduling Theory, Algorithms, and Systems, Prentice Hall, Englewood Cliffs, New Jersey, Page 349, 1995. Google Scholar

[30]

V. Portougal and D. Trietsch, Johnson's problem with stochastic processing times and optimal service level, European Journal of Operational Research, 169 (2006), 751-760.  doi: 10.1016/j.ejor.2004.09.056.  Google Scholar

[31]

V. Riahi and M. Kazemi, A new hybrid ant colony algorithm for scheduling of no-wait flowshop, Operational Research, 18 (2018), 55-74.  doi: 10.1007/s12351-016-0253-x.  Google Scholar

[32]

D. K. SeoC. M. Klein and W. Jang, Single machine stochastic scheduling to minimize the expected number of tardy jobs using mathematical programming models, Computers and Industrial Engineering, 48 (2005), 153-161.  doi: 10.1016/j.cie.2005.01.002.  Google Scholar

[33]

H. M. Soroush, Sequencing and due-date determination in the stochastic single machine problem with earliness and tardiness costs, European Journal of Operational Research, 113 (1999), 450-468.   Google Scholar

[34]

H. M. Soroush, Minimizing the weighted number of early and tardy jobs in a stochastic single machine scheduling problem., European Journal of Operational Research, 181 (2007), 266-287.  doi: 10.1016/j.ejor.2006.05.036.  Google Scholar

[35]

Y. N. Sotskov and N. M. Matsveichuk, Uncertainty measure for the Bellman-Johnson problem with interval processing times, Cybernetics and System Analysis, 48 (2012), 641-652.  doi: 10.1007/s10559-012-9445-4.  Google Scholar

[36]

Y. N. SotskovN. G. Egorova and T. C. Lai, Minimizing total weighted flow time of a set of jobs with interval processing times, Mathematical and Computer Modelling, 50 (2009), 556-573.  doi: 10.1016/j.mcm.2009.03.006.  Google Scholar

[37]

Y. N. Sotskov and T. C. Lai, Minimizing total weighted flow under uncertainty using dominance and a stability box, Computers and Operations Research, 39 (2012), 1271-1289.  doi: 10.1016/j.cor.2011.02.001.  Google Scholar

[38]

K. Wang and S. H. Choi, A decomposition-based approach to flexible flow shop scheduling under machine breakdown, Int. Journal of Production Research, 50 (2012), 215-234.  doi: 10.1080/00207543.2011.571456.  Google Scholar

[39]

Y. WangX. LiR. Ruiz and S. Sui, An iterated greedy heuristic for mixed no-wait flowshop problems, IEEE Transactions on Cybernetics, 48 (2018), 1553-1566.  doi: 10.1109/TCYB.2017.2707067.  Google Scholar

[40]

K. C. Ying and S. W. Lin, Minimizing makespan for no-wait flowshop scheduling problems with setup times, Computers and Industrial Engineering, 121 (2018), 73-81.  doi: 10.1016/j.cie.2018.05.030.  Google Scholar

Figure 1.  Flowchart of the algorithms
Figure 2.  The distributions used for generating $ s_{i, k} $ within $ Ls_{i, k} $ and $ Us_{i, k} $
Figure 3.  Overall Avg. Error of Algorithms
Figure 4.  Avg. Std. of Algorithms
Figure 5.  Overall Avg. Error of Algorithms with respect to $H$
Figure 6.  Overall Avg. Error of Algorithms with respect to $H$
Figure 7.  Overall Avg. Error of Algorithm $ALG-6$ with respect to $H$
Figure 8.  Overall Avg. Error of Algorithms with respect to distributions
Table 1.  Error of Algorithms for Positive Linear Distribution
$n$
Algorithm $H$ 100 200 300 400 500 Avg.
$ALG-1$ 20 9.08 9.11 9.17 9.17 9.27 9.16
$ALG-2$ 9.38 9.37 9.28 9.34 9.3 9.33
$ALG-3$ 3.05 2.98 2.95 2.96 2.97 2.98
$ALG-4$ 4.99 4.93 4.88 4.9 4.9 4.92
$ALG-5$ 4.85 4.81 4.76 4.81 4.83 4.79
$ALG-6$ 0.1 0.02 0 0 0 0.02
$ALG-7$ 4.23 4.1 4.02 4 3.95 4.06
$ALG-8$ 2.44 2.35 2.44 2.44 2.44 2.42
$ALG-1$ 30 9.17 9.33 9.42 9.4 9.4 9.34
$ALG-2$ 9.5 9.56 9.48 9.47 9.47 9.50
$ALG-3$ 3.04 3.1 3.03 3.03 3 3.04
$ALG-4$ 5.04 5.07 4.97 4.98 4.98 5.01
$ALG-5$ 4.81 4.93 4.95 4.95 4.95 4.92
$ALG-6$ 0.08 0.01 0 0 0 0.02
$ALG-7$ 4.2 4.12 4.02 4.04 3.96 4.07
$ALG-8$ 2.48 2.45 2.46 2.49 2.49 2.47
$ALG-1$ 40 9.37 9.47 9.49 9.54 9.56 9.49
$ALG-2$ 9.65 9.69 9.64 9.63 9.67 9.66
$ALG-3$ 3.01 3.07 3.06 3.05 3.08 3.05
$ALG-4$ 5.06 5.06 5.06 5.05 5.06 5.06
$ALG-5$ 4.93 5.01 4.96 5 5.05 4.99
$ALG-6$ 0.09 0.02 0 0 0 0.02
$ALG-7$ 4.24 4.17 4.03 4.1 4.12 4.13
$ALG-8$ 2.47 2.51 2.53 2.51 2.57 2.52
Avg. 4.80 4.80 4.78 4.79 4.79
$n$
Algorithm $H$ 100 200 300 400 500 Avg.
$ALG-1$ 20 9.08 9.11 9.17 9.17 9.27 9.16
$ALG-2$ 9.38 9.37 9.28 9.34 9.3 9.33
$ALG-3$ 3.05 2.98 2.95 2.96 2.97 2.98
$ALG-4$ 4.99 4.93 4.88 4.9 4.9 4.92
$ALG-5$ 4.85 4.81 4.76 4.81 4.83 4.79
$ALG-6$ 0.1 0.02 0 0 0 0.02
$ALG-7$ 4.23 4.1 4.02 4 3.95 4.06
$ALG-8$ 2.44 2.35 2.44 2.44 2.44 2.42
$ALG-1$ 30 9.17 9.33 9.42 9.4 9.4 9.34
$ALG-2$ 9.5 9.56 9.48 9.47 9.47 9.50
$ALG-3$ 3.04 3.1 3.03 3.03 3 3.04
$ALG-4$ 5.04 5.07 4.97 4.98 4.98 5.01
$ALG-5$ 4.81 4.93 4.95 4.95 4.95 4.92
$ALG-6$ 0.08 0.01 0 0 0 0.02
$ALG-7$ 4.2 4.12 4.02 4.04 3.96 4.07
$ALG-8$ 2.48 2.45 2.46 2.49 2.49 2.47
$ALG-1$ 40 9.37 9.47 9.49 9.54 9.56 9.49
$ALG-2$ 9.65 9.69 9.64 9.63 9.67 9.66
$ALG-3$ 3.01 3.07 3.06 3.05 3.08 3.05
$ALG-4$ 5.06 5.06 5.06 5.05 5.06 5.06
$ALG-5$ 4.93 5.01 4.96 5 5.05 4.99
$ALG-6$ 0.09 0.02 0 0 0 0.02
$ALG-7$ 4.24 4.17 4.03 4.1 4.12 4.13
$ALG-8$ 2.47 2.51 2.53 2.51 2.57 2.52
Avg. 4.80 4.80 4.78 4.79 4.79
Table 2.  Error of Algorithms for Negative Linear Distribution
$n$
Algorithm $H$ 100 200 300 400 500 Avg.
$ALG-1$ 20 9.08 9.13 9.22 9.26 9.27 9.19
$ALG-2$ 9.38 9.26 9.33 9.35 9.27 9.32
$ALG-3$ 3.05 2.97 3.04 3.02 2.99 3.01
$ALG-4$ 4.99 4.85 4.92 4.9 4.87 4.91
$ALG-5$ 4.75 4.73 4.89 4.92 4.86 4.83
$ALG-6$ 0.1 0.02 0 0 0 0.02
$ALG-7$ 4.23 4.1 4.06 4.07 3.95 4.08
$ALG-8$ 2.44 2.41 2.44 2.5 2.43 2.44
$ALG-1$ 30 9.17 9.37 9.37 9.37 9.41 9.34
$ALG-2$ 9.5 9.51 9.53 9.5 9.51 9.51
$ALG-3$ 3.04 3.05 3.04 3.04 3.05 3.04
$ALG-4$ 5.04 5 5.03 5 4.99 5.01
$ALG-5$ 4.81 4.92 4.9 4.94 4.93 4.90
$ALG-6$ 0.08 0.01 0 0 0 0.02
$ALG-7$ 4.2 4.15 4.1 4.05 4.01 4.10
$ALG-8$ 2.48 2.54 2.46 2.55 2.53 2.51
$ALG-1$ 40 9.37 9.37 9.5 9.51 9.55 9.46
$ALG-2$ 9.65 9.54 9.59 9.64 9.62 9.61
$ALG-3$ 3.01 2.96 3.04 3.09 3.07 3.03
$ALG-4$ 5.06 4.97 5.01 5.06 5.05 5.03
$ALG-5$ 4.93 4.85 4.95 4.97 5.01 4.94
$ALG-6$ 0.09 0.01 0 0 0 0.02
$ALG-7$ 4.24 4.12 4.08 4.07 4.08 4.12
$ALG-8$ 2.47 2.44 2.58 2.54 2.57 2.52
Avg. 4.80 4.76 4.80 4.81 4.79
$n$
Algorithm $H$ 100 200 300 400 500 Avg.
$ALG-1$ 20 9.08 9.13 9.22 9.26 9.27 9.19
$ALG-2$ 9.38 9.26 9.33 9.35 9.27 9.32
$ALG-3$ 3.05 2.97 3.04 3.02 2.99 3.01
$ALG-4$ 4.99 4.85 4.92 4.9 4.87 4.91
$ALG-5$ 4.75 4.73 4.89 4.92 4.86 4.83
$ALG-6$ 0.1 0.02 0 0 0 0.02
$ALG-7$ 4.23 4.1 4.06 4.07 3.95 4.08
$ALG-8$ 2.44 2.41 2.44 2.5 2.43 2.44
$ALG-1$ 30 9.17 9.37 9.37 9.37 9.41 9.34
$ALG-2$ 9.5 9.51 9.53 9.5 9.51 9.51
$ALG-3$ 3.04 3.05 3.04 3.04 3.05 3.04
$ALG-4$ 5.04 5 5.03 5 4.99 5.01
$ALG-5$ 4.81 4.92 4.9 4.94 4.93 4.90
$ALG-6$ 0.08 0.01 0 0 0 0.02
$ALG-7$ 4.2 4.15 4.1 4.05 4.01 4.10
$ALG-8$ 2.48 2.54 2.46 2.55 2.53 2.51
$ALG-1$ 40 9.37 9.37 9.5 9.51 9.55 9.46
$ALG-2$ 9.65 9.54 9.59 9.64 9.62 9.61
$ALG-3$ 3.01 2.96 3.04 3.09 3.07 3.03
$ALG-4$ 5.06 4.97 5.01 5.06 5.05 5.03
$ALG-5$ 4.93 4.85 4.95 4.97 5.01 4.94
$ALG-6$ 0.09 0.01 0 0 0 0.02
$ALG-7$ 4.24 4.12 4.08 4.07 4.08 4.12
$ALG-8$ 2.47 2.44 2.58 2.54 2.57 2.52
Avg. 4.80 4.76 4.80 4.81 4.79
Table 3.  Error of Algorithm for Uniform Distribution
$n$
Algorithm $H$ 100 200 300 400 500 Avg.
$ALG-1$ 20 9.05 9.32 9.34 9.37 9.41 9.30
$ALG-2$ 9.39 9.45 9.43 9.49 9.43 9.44
$ALG-3$ 3.09 3.02 2.97 3.04 3.04 3.03
$ALG-4$ 4.98 4.96 4.92 4.98 4.96 4.96
$ALG-5$ 4.86 4.88 4.87 4.94 4.95 4.90
$ALG-6$ 0.1 0.02 0 0 0 0.02
$ALG-7$ 4.24 4.08 4.09 4.09 4.05 4.11
$ALG-8$ 2.42 4.08 4.09 4.09 4.05 4.11
$ALG-1$ 30 9.09 9.47 9.52 9.64 9.56 9.46
$ALG-2$ 9.59 9.61 9.63 9.67 9.59 9.63
$ALG-3$ 3.1 3.04 3.04 3.09 3.03 3.06
$ALG-4$ 5.13 5.03 5.02 5.06 5 5.05
$ALG-5$ 4.86 4.94 4.96 5.05 5.02 4.97
$ALG-6$ 0.1 0.02 0 0 0 0.02
$ALG-7$ 4.17 4.17 4.08 4.13 4.06 4.12
$ALG-8$ 2.44 2.49 2.53 2.59 2.56 2.52
$ALG-1$ 40 9.32 9.68 9.68 9.7 9.79 9.63
$ALG-2$ 9.67 9.89 9.85 9.87 9.89 9.83
$ALG-3$ 3.05 3.06 3.06 3.08 3.1 3.07
$ALG-4$ 5.07 5.14 5.13 5.13 5.13 5.12
$ALG-5$ 4.86 5.09 5.04 5.07 5.09 5.03
$ALG-6$ 0.09 0.01 0 0 0 0.02
$ALG-7$ 4.31 4.28 4.23 4.19 4.21 4.24
$ALG-8$ 2.43 2.61 2.64 2.68 2.68 2.61
Avg. 4.81 4.86 4.86 4.89 4.88
$n$
Algorithm $H$ 100 200 300 400 500 Avg.
$ALG-1$ 20 9.05 9.32 9.34 9.37 9.41 9.30
$ALG-2$ 9.39 9.45 9.43 9.49 9.43 9.44
$ALG-3$ 3.09 3.02 2.97 3.04 3.04 3.03
$ALG-4$ 4.98 4.96 4.92 4.98 4.96 4.96
$ALG-5$ 4.86 4.88 4.87 4.94 4.95 4.90
$ALG-6$ 0.1 0.02 0 0 0 0.02
$ALG-7$ 4.24 4.08 4.09 4.09 4.05 4.11
$ALG-8$ 2.42 4.08 4.09 4.09 4.05 4.11
$ALG-1$ 30 9.09 9.47 9.52 9.64 9.56 9.46
$ALG-2$ 9.59 9.61 9.63 9.67 9.59 9.63
$ALG-3$ 3.1 3.04 3.04 3.09 3.03 3.06
$ALG-4$ 5.13 5.03 5.02 5.06 5 5.05
$ALG-5$ 4.86 4.94 4.96 5.05 5.02 4.97
$ALG-6$ 0.1 0.02 0 0 0 0.02
$ALG-7$ 4.17 4.17 4.08 4.13 4.06 4.12
$ALG-8$ 2.44 2.49 2.53 2.59 2.56 2.52
$ALG-1$ 40 9.32 9.68 9.68 9.7 9.79 9.63
$ALG-2$ 9.67 9.89 9.85 9.87 9.89 9.83
$ALG-3$ 3.05 3.06 3.06 3.08 3.1 3.07
$ALG-4$ 5.07 5.14 5.13 5.13 5.13 5.12
$ALG-5$ 4.86 5.09 5.04 5.07 5.09 5.03
$ALG-6$ 0.09 0.01 0 0 0 0.02
$ALG-7$ 4.31 4.28 4.23 4.19 4.21 4.24
$ALG-8$ 2.43 2.61 2.64 2.68 2.68 2.61
Avg. 4.81 4.86 4.86 4.89 4.88
Table 4.  Error of Algorithm for Normal Distribution
$n$
Algorithm $H$ 100 200 300 400 500 Avg.
$ALG-1$ 20 9.04 9.3 9.32 9.35 9.38 9.28
$ALG-2$ 9.5 9.46 9.45 9.46 9.5 9.47
$ALG-3$ 3.03 3 3 3.03 3.06 3.02
$ALG-4$ 5.01 4.97 4.92 4.96 4.95 4.90
$ALG-5$ 4.81 4.88 4.9 4.94 4.95 4.90
$ALG-6$ 0.08 0.01 0 0 0 0.02
$ALG-7$ 4.27 4.09 4.13 4.08 4.06 4.13
$ALG-8$ 2.47 2.46 2.45 2.5 2.55 2.49
$ALG-1$ 30 9.43 9.43 9.54 9.57 9.71 9.54
$ALG-2$ 9.8 9.71 9.66 9.7 9.72 9.72
$ALG-3$ 3.11 3 3.09 3.08 3.12 3.08
$ALG-4$ 5.16 5.06 5.06 5.05 5.11 5.09
$ALG-5$ 4.99 4.92 5 4.99 5.08 5.00
$ALG-6$ 0.1 0.02 0 0 0 0.02
$ALG-7$ 4.38 4.15 4.17 4.17 4.17 4.21
$ALG-8$ 2.52 2.52 2.59 2.57 2.62 2.56
$ALG-1$ 40 9.57 9.7 9.77 9.78 9.86 9.74
$ALG-2$ 10.04 9.96 9.9 9.86 9.86 9.92
$ALG-3$ 3.12 3.03 3.05 3.07 3.05 3.06
$ALG-4$ 5.25 5.17 5.14 5.11 5.12 5.16
$ALG-5$ 5.01 5.03 5.05 5.11 5.1 5.06
$ALG-6$ 0.08 0.01 0 0 0 0.02
$ALG-7$ 4.47 4.2 4.21 4.24 4.19 4.26
$ALG-8$ 2.69 2.6 2.73 2.71 2.7 2.69
Avg. 4.91 4.86 4.88 4.89 4.91
$n$
Algorithm $H$ 100 200 300 400 500 Avg.
$ALG-1$ 20 9.04 9.3 9.32 9.35 9.38 9.28
$ALG-2$ 9.5 9.46 9.45 9.46 9.5 9.47
$ALG-3$ 3.03 3 3 3.03 3.06 3.02
$ALG-4$ 5.01 4.97 4.92 4.96 4.95 4.90
$ALG-5$ 4.81 4.88 4.9 4.94 4.95 4.90
$ALG-6$ 0.08 0.01 0 0 0 0.02
$ALG-7$ 4.27 4.09 4.13 4.08 4.06 4.13
$ALG-8$ 2.47 2.46 2.45 2.5 2.55 2.49
$ALG-1$ 30 9.43 9.43 9.54 9.57 9.71 9.54
$ALG-2$ 9.8 9.71 9.66 9.7 9.72 9.72
$ALG-3$ 3.11 3 3.09 3.08 3.12 3.08
$ALG-4$ 5.16 5.06 5.06 5.05 5.11 5.09
$ALG-5$ 4.99 4.92 5 4.99 5.08 5.00
$ALG-6$ 0.1 0.02 0 0 0 0.02
$ALG-7$ 4.38 4.15 4.17 4.17 4.17 4.21
$ALG-8$ 2.52 2.52 2.59 2.57 2.62 2.56
$ALG-1$ 40 9.57 9.7 9.77 9.78 9.86 9.74
$ALG-2$ 10.04 9.96 9.9 9.86 9.86 9.92
$ALG-3$ 3.12 3.03 3.05 3.07 3.05 3.06
$ALG-4$ 5.25 5.17 5.14 5.11 5.12 5.16
$ALG-5$ 5.01 5.03 5.05 5.11 5.1 5.06
$ALG-6$ 0.08 0.01 0 0 0 0.02
$ALG-7$ 4.47 4.2 4.21 4.24 4.19 4.26
$ALG-8$ 2.69 2.6 2.73 2.71 2.7 2.69
Avg. 4.91 4.86 4.88 4.89 4.91
Table 5.  Error of Algoithms with respect to $ n $
n
Algorithm 100 200 300 400 500 Avg.
$ALG-1$ 9.27 9.39 9.45 9.47 9.51 9.42
$ALG-2$ 9.64 9.58 9.56 9.58 9.57 9.59
$ALG-3$ 3.07 3.02 3.03 3.05 3.05 3.04
$ALG-4$ 5.09 5.02 5.01 5.02 5.01 5.03
$ALG-5$ 4.88 4.92 4.94 4.97 4.99 4.94
$ALG-6$ 0.09 0.02 0.00 0.00 0.00 0.02
$ALG-7$ 4.28 4.14 4.10 4.10 4.07 4.14
$ALG-8$ 2.49 2.49 2.53 2.55 2.56 2.52
n
Algorithm 100 200 300 400 500 Avg.
$ALG-1$ 9.27 9.39 9.45 9.47 9.51 9.42
$ALG-2$ 9.64 9.58 9.56 9.58 9.57 9.59
$ALG-3$ 3.07 3.02 3.03 3.05 3.05 3.04
$ALG-4$ 5.09 5.02 5.01 5.02 5.01 5.03
$ALG-5$ 4.88 4.92 4.94 4.97 4.99 4.94
$ALG-6$ 0.09 0.02 0.00 0.00 0.00 0.02
$ALG-7$ 4.28 4.14 4.10 4.10 4.07 4.14
$ALG-8$ 2.49 2.49 2.53 2.55 2.56 2.52
Table 6.  Error of Algorithms with respect to $ H $
$H$
Algorithm 20 30 40 Avg.
$ALG-1$ 9.24 9.42 9.59 9.42
$ALG-2$ 9.40 9.60 9.77 9.59
$ALG-3$ 3.01 3.06 3.06 3.04
$ALG-4$ 4.94 5.04 5.10 5.03
$ALG-5$ 4.86 4.94 5.01 4.94
$ALG-6$ 0.02 0.02 0.02 0.02
$ALG-7$ 4.10 4.13 4.19 4.14
$ALG-8$ 2.46 2.52 2.59 2.52
$H$
Algorithm 20 30 40 Avg.
$ALG-1$ 9.24 9.42 9.59 9.42
$ALG-2$ 9.40 9.60 9.77 9.59
$ALG-3$ 3.01 3.06 3.06 3.04
$ALG-4$ 4.94 5.04 5.10 5.03
$ALG-5$ 4.86 4.94 5.01 4.94
$ALG-6$ 0.02 0.02 0.02 0.02
$ALG-7$ 4.10 4.13 4.19 4.14
$ALG-8$ 2.46 2.52 2.59 2.52
Table 7.  Confidence Intervals for Average Errors
Algorithm 95$\%$ Confidence Interval on the Avg. Error
$ALG-1$ (09.33-9.51)
$ALG-2$ (9.50-9.68)
$ALG-3$ (2.98-3.11)
$ALG-4$ (4.95-5.10)
$ALG-5$ (4.86-5.01)
$ALG-6$ (0.02-0.03)
$ALG-7$ (4.07-4.21)
$ALG-8$ (2.45-2.59)
Algorithm 95$\%$ Confidence Interval on the Avg. Error
$ALG-1$ (09.33-9.51)
$ALG-2$ (9.50-9.68)
$ALG-3$ (2.98-3.11)
$ALG-4$ (4.95-5.10)
$ALG-5$ (4.86-5.01)
$ALG-6$ (0.02-0.03)
$ALG-7$ (4.07-4.21)
$ALG-8$ (2.45-2.59)
[1]

Mehmet Duran Toksari, Emel Kizilkaya Aydogan, Berrin Atalay, Saziye Sari. Some scheduling problems with sum of logarithm processing times based learning effect and exponential past sequence dependent delivery times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021044

[2]

Muberra Allahverdi, Harun Aydilek, Asiye Aydilek, Ali Allahverdi. A better dominance relation and heuristics for Two-Machine No-Wait Flowshops with Maximum Lateness Performance Measure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1973-1991. doi: 10.3934/jimo.2020054

[3]

Omer Gursoy, Kamal Adli Mehr, Nail Akar. Steady-state and first passage time distributions for waiting times in the $ MAP/M/s+G $ queueing model with generally distributed patience times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021078

[4]

Karl-Peter Hadeler, Frithjof Lutscher. Quiescent phases with distributed exit times. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 849-869. doi: 10.3934/dcdsb.2012.17.849

[5]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[6]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001

[7]

Shan-Shan Lin. Due-window assignment scheduling with learning and deterioration effects. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021081

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[10]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003

[11]

Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021010

[12]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3555-3577. doi: 10.3934/dcds.2021007

[13]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[14]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[15]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[16]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[17]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[18]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[19]

Horst R. Thieme. Discrete-time dynamics of structured populations via Feller kernels. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021082

[20]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (294)
  • HTML views (602)
  • Cited by (0)

Other articles
by authors

[Back to Top]