
-
Previous Article
Algorithmic computation of MAP/PH/1 queue with finite system capacity and two-stage vacations
- JIMO Home
- This Issue
-
Next Article
Inverse quadratic programming problem with $ l_1 $ norm measure
Minimizing total completion time in a two-machine no-wait flowshop with uncertain and bounded setup times
1. | Department of Mathematical Sciences, Kean University, New Jersey, USA |
2. | Department of Industrial and Management Systems Engineering, Kuwait University, Kuwait |
We address a two-machine no-wait flowshop scheduling problem with respect to the performance measure of total completion time. Minimizing total completion time is important when inventory cost is of concern. Setup times are treated separately from processing times. Furthermore, setup times are uncertain with unknown distributions and are within some lower and upper bounds. We develop a dominance relation and propose eight algorithms to solve the problem. The proposed algorithms, which assign different weights to the processing and setup times on both machines, convert the two-machine problem into a single-machine one for which an optimal solution is known. We conduct computational experiments to evaluate the proposed algorithms. Computational experiments reveal that one of the proposed algorithms, which assigns the same weight to setup and processing times, is superior to the rest of the algorithms. The results are statistically verified by constructing confidence intervals and test of hypothesis.
References:
[1] |
A. Allahverdi,
The third comprehensive survey on scheduling problems with setup times/costs, European Journal of Operational Research, 246 (2015), 345-378.
doi: 10.1016/j.ejor.2015.04.004. |
[2] |
A. Allahverdi,
A survey of scheduling problems with no-wait in process, European Journal of Operational Research, 255 (2016), 665-686.
doi: 10.1016/j.ejor.2016.05.036. |
[3] |
A. Allahverdi, Two-machine flowshop scheduling problem to minimize makespan with bounded setup and processing times, Int. Journal of Agile Manufacturing, 8 (2005), 145-153. Google Scholar |
[4] |
A. Allahverdi, Two-machine flowshop scheduling problem to minimize total completion time with bounded setup and processing times, Int. Journal of Production Economics, 103 (2006a), 386-400. Google Scholar |
[5] |
A. Allahverdi, Two-machine flowshop scheduling problem to minimize maximum lateness with bounded setup and processing times, Kuwait Journal of Science and Engineering, 33 (2006), 233-251. Google Scholar |
[6] |
A. Allahverdi, T. Aldowaisan and Y. N. Sotskov,
Two-machine flowshop scheduling problem to minimize makespan or total completion time with random and bounded setup times, Int. Journal of Mathematics and Mathematical Sciences, 39 (2003), 2475-2486.
doi: 10.1155/S016117120321019X. |
[7] |
A. Allahverdi and M. Allahverdi,
Two-machine no-wait flowshop scheduling problem with uncertain setup times to minimize maximum lateness, Computational and Applied Mathematics, 37 (2018), 6774-6794.
doi: 10.1007/s40314-018-0694-3. |
[8] |
A. Allahverdi and H. Aydilek,
Heuristics for two-machine flowshop scheduling problem to minimize maximum lateness with bounded processing times, Computers and Mathematics with Applications, 60 (2010), 1374-1384.
doi: 10.1016/j.camwa.2010.06.019. |
[9] |
A. Aydilek, H. Aydilek and A. Allahverdi,
Increasing the profitability and competitiveness in a production environment with random and bounded setup times, Int. Journal of Production Research, 51 (2013), 106-117.
doi: 10.1080/00207543.2011.652263. |
[10] |
A. Aydilek, H. Aydilek and A. Allahverdi,
Production in a two-machine flowshop scheduling environment with uncertain processing and setup times to minimize makespan, Int. Journal of Production Research, 53 (2015), 2803-2819.
doi: 10.1080/00207543.2014.997403. |
[11] |
A. Aydilek, H. Aydilek and A. Allahverdi,
Algorithms for minimizing the number of tardy jobs for reducing production cost with uncertain processing times, Applied Mathematical Modelling, 45 (2017), 982-996.
doi: 10.1016/j.apm.2017.01.039. |
[12] |
O. Braun, T. C. Lai, G. Schmidt and Y. N. Sotskov, Stability of Johnson's schedule with respect to limited machine availability, Int. Journal of Production Research, 40 (2002), 4381-4400. Google Scholar |
[13] |
A. A. Cunningham and S. K. Dutta,
Scheduling jobs with exponentially distributed processing times on two machines of a flow shop, Naval Research Logistics Quarterly, 20 (1973), 69-81.
doi: 10.1002/nav.3800200107. |
[14] |
O. Engin and A. Güçlü,
A new hybrid ant colony optimization algorithm for solving the no-wait flow shop scheduling problems, Applied Soft Computing Journal, 72 (2018), 166-176.
doi: 10.1016/j.asoc.2018.08.002. |
[15] |
O. Engin and C. Günaydin,
An adaptive learning approach for no-wait flowshop scheduling problems to minimize makespan, International Journal of Computational Intelligence Systems, 4 (2011), 521-529.
doi: 10.1080/18756891.2011.9727810. |
[16] |
E. M. Gonzalez-Neira, D. Ferone, S. Hatami and A. A. Juan,
A biased-randomized simheuristic for the distributed assembly permutation flowshop problem with stochastic processing times, Simulation Modelling Practice and Theory, 79 (2017), 23-36.
doi: 10.1016/j.simpat.2017.09.001. |
[17] |
N. G. Hall and C. Sriskandarajah,
A survey of machine scheduling problems with blocking and no-wait in process, Operations Research, 44 (1996), 510-525.
doi: 10.1287/opre.44.3.510. |
[18] |
P. J. Kalczynski and J. Kamburowski,
A heuristic for minimizing the expected makespan in two-machine flowshops with consistent coefficients of variation, European Journal of Operational Research, 169 (2006), 742-750.
doi: 10.1016/j.ejor.2004.08.045. |
[19] |
I. H. Karacizmeli and S. N. Ogulata, Energy consumption management in textile finishing plants: A cost effective and sequence dependent scheduling model, Textile and Apparel, 27 (2017), 145-152. Google Scholar |
[20] |
S. C. Kim and P. M. Bobrowski,
Scheduling jobs with uncertain setup times and sequence dependency, Omega Int. Journal of Management Science, 25 (1997), 437-447.
doi: 10.1016/S0305-0483(97)00013-3. |
[21] |
G. M. Kopanos, J. Miguel Lainez and L. Puigjaner,
An efficient mixed-integer linear programming scheduling framework for addressing sequence-dependent setup issues in batch plants, Industrial & Engineering Chemistry Research, 48 (2009), 6346-6357.
doi: 10.1021/ie801127t. |
[22] |
P. S. Ku and S. C. Niu,
On Johnson's two-machine flow shop with random processing times, Operations Research, 34 (1986), 130-136.
doi: 10.1287/opre.34.1.130. |
[23] |
T. C. Lai, Y. N. Sotskov, N. Y. Sotskova and F. Werner,
Optimal makespan scheduling with given bounds of processing times, Mathematical and Computer Modelling, 26 (1997), 67-86.
doi: 10.1016/S0895-7177(97)00132-5. |
[24] |
X. Li, Z. Yang, R. Ruiz, T. Chen and S. Sui, An iterated greedy heuristic for no-wait flow shops with sequence dependent setup times, learning and forgetting effects, Information Sciences, 453 (2018), 408–425.
doi: 10.1016/j.ins.2018.04.038. |
[25] |
R. Macchiaroli, S. Molè and S. Riemma,
Modelling and optimization of industrial manufacturing processes subject to no-wait constraints, Int. Journal of Production Research, 37 (1999), 2585-2607.
doi: 10.1080/002075499190671. |
[26] |
N. M. Matsveichuk, Y. N. Sotskov, N. G. Egorova and T. C. Lai,
Schedule execution for two-machine flow-shop with interval processing times, Mathematical and Computer Modelling, 49 (2009), 991-1011.
doi: 10.1016/j.mcm.2008.02.004. |
[27] |
N. M. Matsveichuk, Y. N. Sotskov and F. Werner,
Partial job order for solving the two-machine flow-shop minimum-length problem with uncertain processing times, Optimization, 60 (2011), 1493-1517.
doi: 10.1080/02331931003657691. |
[28] |
M. Pinedo,
Stochastic scheduling with release dates and due dates, Operations Research, 31 (1983), 559-572.
doi: 10.1287/opre.31.3.559. |
[29] |
M. Pinedo, Scheduling Theory, Algorithms, and Systems, Prentice Hall, Englewood Cliffs, New Jersey, Page 349, 1995. Google Scholar |
[30] |
V. Portougal and D. Trietsch,
Johnson's problem with stochastic processing times and optimal service level, European Journal of Operational Research, 169 (2006), 751-760.
doi: 10.1016/j.ejor.2004.09.056. |
[31] |
V. Riahi and M. Kazemi,
A new hybrid ant colony algorithm for scheduling of no-wait flowshop, Operational Research, 18 (2018), 55-74.
doi: 10.1007/s12351-016-0253-x. |
[32] |
D. K. Seo, C. M. Klein and W. Jang,
Single machine stochastic scheduling to minimize the expected number of tardy jobs using mathematical programming models, Computers and Industrial Engineering, 48 (2005), 153-161.
doi: 10.1016/j.cie.2005.01.002. |
[33] |
H. M. Soroush, Sequencing and due-date determination in the stochastic single machine problem with earliness and tardiness costs, European Journal of Operational Research, 113 (1999), 450-468. Google Scholar |
[34] |
H. M. Soroush,
Minimizing the weighted number of early and tardy jobs in a stochastic single machine scheduling problem., European Journal of Operational Research, 181 (2007), 266-287.
doi: 10.1016/j.ejor.2006.05.036. |
[35] |
Y. N. Sotskov and N. M. Matsveichuk,
Uncertainty measure for the Bellman-Johnson problem with interval processing times, Cybernetics and System Analysis, 48 (2012), 641-652.
doi: 10.1007/s10559-012-9445-4. |
[36] |
Y. N. Sotskov, N. G. Egorova and T. C. Lai,
Minimizing total weighted flow time of a set of jobs with interval processing times, Mathematical and Computer Modelling, 50 (2009), 556-573.
doi: 10.1016/j.mcm.2009.03.006. |
[37] |
Y. N. Sotskov and T. C. Lai,
Minimizing total weighted flow under uncertainty using dominance and a stability box, Computers and Operations Research, 39 (2012), 1271-1289.
doi: 10.1016/j.cor.2011.02.001. |
[38] |
K. Wang and S. H. Choi,
A decomposition-based approach to flexible flow shop scheduling under machine breakdown, Int. Journal of Production Research, 50 (2012), 215-234.
doi: 10.1080/00207543.2011.571456. |
[39] |
Y. Wang, X. Li, R. Ruiz and S. Sui,
An iterated greedy heuristic for mixed no-wait flowshop problems, IEEE Transactions on Cybernetics, 48 (2018), 1553-1566.
doi: 10.1109/TCYB.2017.2707067. |
[40] |
K. C. Ying and S. W. Lin,
Minimizing makespan for no-wait flowshop scheduling problems with setup times, Computers and Industrial Engineering, 121 (2018), 73-81.
doi: 10.1016/j.cie.2018.05.030. |
show all references
References:
[1] |
A. Allahverdi,
The third comprehensive survey on scheduling problems with setup times/costs, European Journal of Operational Research, 246 (2015), 345-378.
doi: 10.1016/j.ejor.2015.04.004. |
[2] |
A. Allahverdi,
A survey of scheduling problems with no-wait in process, European Journal of Operational Research, 255 (2016), 665-686.
doi: 10.1016/j.ejor.2016.05.036. |
[3] |
A. Allahverdi, Two-machine flowshop scheduling problem to minimize makespan with bounded setup and processing times, Int. Journal of Agile Manufacturing, 8 (2005), 145-153. Google Scholar |
[4] |
A. Allahverdi, Two-machine flowshop scheduling problem to minimize total completion time with bounded setup and processing times, Int. Journal of Production Economics, 103 (2006a), 386-400. Google Scholar |
[5] |
A. Allahverdi, Two-machine flowshop scheduling problem to minimize maximum lateness with bounded setup and processing times, Kuwait Journal of Science and Engineering, 33 (2006), 233-251. Google Scholar |
[6] |
A. Allahverdi, T. Aldowaisan and Y. N. Sotskov,
Two-machine flowshop scheduling problem to minimize makespan or total completion time with random and bounded setup times, Int. Journal of Mathematics and Mathematical Sciences, 39 (2003), 2475-2486.
doi: 10.1155/S016117120321019X. |
[7] |
A. Allahverdi and M. Allahverdi,
Two-machine no-wait flowshop scheduling problem with uncertain setup times to minimize maximum lateness, Computational and Applied Mathematics, 37 (2018), 6774-6794.
doi: 10.1007/s40314-018-0694-3. |
[8] |
A. Allahverdi and H. Aydilek,
Heuristics for two-machine flowshop scheduling problem to minimize maximum lateness with bounded processing times, Computers and Mathematics with Applications, 60 (2010), 1374-1384.
doi: 10.1016/j.camwa.2010.06.019. |
[9] |
A. Aydilek, H. Aydilek and A. Allahverdi,
Increasing the profitability and competitiveness in a production environment with random and bounded setup times, Int. Journal of Production Research, 51 (2013), 106-117.
doi: 10.1080/00207543.2011.652263. |
[10] |
A. Aydilek, H. Aydilek and A. Allahverdi,
Production in a two-machine flowshop scheduling environment with uncertain processing and setup times to minimize makespan, Int. Journal of Production Research, 53 (2015), 2803-2819.
doi: 10.1080/00207543.2014.997403. |
[11] |
A. Aydilek, H. Aydilek and A. Allahverdi,
Algorithms for minimizing the number of tardy jobs for reducing production cost with uncertain processing times, Applied Mathematical Modelling, 45 (2017), 982-996.
doi: 10.1016/j.apm.2017.01.039. |
[12] |
O. Braun, T. C. Lai, G. Schmidt and Y. N. Sotskov, Stability of Johnson's schedule with respect to limited machine availability, Int. Journal of Production Research, 40 (2002), 4381-4400. Google Scholar |
[13] |
A. A. Cunningham and S. K. Dutta,
Scheduling jobs with exponentially distributed processing times on two machines of a flow shop, Naval Research Logistics Quarterly, 20 (1973), 69-81.
doi: 10.1002/nav.3800200107. |
[14] |
O. Engin and A. Güçlü,
A new hybrid ant colony optimization algorithm for solving the no-wait flow shop scheduling problems, Applied Soft Computing Journal, 72 (2018), 166-176.
doi: 10.1016/j.asoc.2018.08.002. |
[15] |
O. Engin and C. Günaydin,
An adaptive learning approach for no-wait flowshop scheduling problems to minimize makespan, International Journal of Computational Intelligence Systems, 4 (2011), 521-529.
doi: 10.1080/18756891.2011.9727810. |
[16] |
E. M. Gonzalez-Neira, D. Ferone, S. Hatami and A. A. Juan,
A biased-randomized simheuristic for the distributed assembly permutation flowshop problem with stochastic processing times, Simulation Modelling Practice and Theory, 79 (2017), 23-36.
doi: 10.1016/j.simpat.2017.09.001. |
[17] |
N. G. Hall and C. Sriskandarajah,
A survey of machine scheduling problems with blocking and no-wait in process, Operations Research, 44 (1996), 510-525.
doi: 10.1287/opre.44.3.510. |
[18] |
P. J. Kalczynski and J. Kamburowski,
A heuristic for minimizing the expected makespan in two-machine flowshops with consistent coefficients of variation, European Journal of Operational Research, 169 (2006), 742-750.
doi: 10.1016/j.ejor.2004.08.045. |
[19] |
I. H. Karacizmeli and S. N. Ogulata, Energy consumption management in textile finishing plants: A cost effective and sequence dependent scheduling model, Textile and Apparel, 27 (2017), 145-152. Google Scholar |
[20] |
S. C. Kim and P. M. Bobrowski,
Scheduling jobs with uncertain setup times and sequence dependency, Omega Int. Journal of Management Science, 25 (1997), 437-447.
doi: 10.1016/S0305-0483(97)00013-3. |
[21] |
G. M. Kopanos, J. Miguel Lainez and L. Puigjaner,
An efficient mixed-integer linear programming scheduling framework for addressing sequence-dependent setup issues in batch plants, Industrial & Engineering Chemistry Research, 48 (2009), 6346-6357.
doi: 10.1021/ie801127t. |
[22] |
P. S. Ku and S. C. Niu,
On Johnson's two-machine flow shop with random processing times, Operations Research, 34 (1986), 130-136.
doi: 10.1287/opre.34.1.130. |
[23] |
T. C. Lai, Y. N. Sotskov, N. Y. Sotskova and F. Werner,
Optimal makespan scheduling with given bounds of processing times, Mathematical and Computer Modelling, 26 (1997), 67-86.
doi: 10.1016/S0895-7177(97)00132-5. |
[24] |
X. Li, Z. Yang, R. Ruiz, T. Chen and S. Sui, An iterated greedy heuristic for no-wait flow shops with sequence dependent setup times, learning and forgetting effects, Information Sciences, 453 (2018), 408–425.
doi: 10.1016/j.ins.2018.04.038. |
[25] |
R. Macchiaroli, S. Molè and S. Riemma,
Modelling and optimization of industrial manufacturing processes subject to no-wait constraints, Int. Journal of Production Research, 37 (1999), 2585-2607.
doi: 10.1080/002075499190671. |
[26] |
N. M. Matsveichuk, Y. N. Sotskov, N. G. Egorova and T. C. Lai,
Schedule execution for two-machine flow-shop with interval processing times, Mathematical and Computer Modelling, 49 (2009), 991-1011.
doi: 10.1016/j.mcm.2008.02.004. |
[27] |
N. M. Matsveichuk, Y. N. Sotskov and F. Werner,
Partial job order for solving the two-machine flow-shop minimum-length problem with uncertain processing times, Optimization, 60 (2011), 1493-1517.
doi: 10.1080/02331931003657691. |
[28] |
M. Pinedo,
Stochastic scheduling with release dates and due dates, Operations Research, 31 (1983), 559-572.
doi: 10.1287/opre.31.3.559. |
[29] |
M. Pinedo, Scheduling Theory, Algorithms, and Systems, Prentice Hall, Englewood Cliffs, New Jersey, Page 349, 1995. Google Scholar |
[30] |
V. Portougal and D. Trietsch,
Johnson's problem with stochastic processing times and optimal service level, European Journal of Operational Research, 169 (2006), 751-760.
doi: 10.1016/j.ejor.2004.09.056. |
[31] |
V. Riahi and M. Kazemi,
A new hybrid ant colony algorithm for scheduling of no-wait flowshop, Operational Research, 18 (2018), 55-74.
doi: 10.1007/s12351-016-0253-x. |
[32] |
D. K. Seo, C. M. Klein and W. Jang,
Single machine stochastic scheduling to minimize the expected number of tardy jobs using mathematical programming models, Computers and Industrial Engineering, 48 (2005), 153-161.
doi: 10.1016/j.cie.2005.01.002. |
[33] |
H. M. Soroush, Sequencing and due-date determination in the stochastic single machine problem with earliness and tardiness costs, European Journal of Operational Research, 113 (1999), 450-468. Google Scholar |
[34] |
H. M. Soroush,
Minimizing the weighted number of early and tardy jobs in a stochastic single machine scheduling problem., European Journal of Operational Research, 181 (2007), 266-287.
doi: 10.1016/j.ejor.2006.05.036. |
[35] |
Y. N. Sotskov and N. M. Matsveichuk,
Uncertainty measure for the Bellman-Johnson problem with interval processing times, Cybernetics and System Analysis, 48 (2012), 641-652.
doi: 10.1007/s10559-012-9445-4. |
[36] |
Y. N. Sotskov, N. G. Egorova and T. C. Lai,
Minimizing total weighted flow time of a set of jobs with interval processing times, Mathematical and Computer Modelling, 50 (2009), 556-573.
doi: 10.1016/j.mcm.2009.03.006. |
[37] |
Y. N. Sotskov and T. C. Lai,
Minimizing total weighted flow under uncertainty using dominance and a stability box, Computers and Operations Research, 39 (2012), 1271-1289.
doi: 10.1016/j.cor.2011.02.001. |
[38] |
K. Wang and S. H. Choi,
A decomposition-based approach to flexible flow shop scheduling under machine breakdown, Int. Journal of Production Research, 50 (2012), 215-234.
doi: 10.1080/00207543.2011.571456. |
[39] |
Y. Wang, X. Li, R. Ruiz and S. Sui,
An iterated greedy heuristic for mixed no-wait flowshop problems, IEEE Transactions on Cybernetics, 48 (2018), 1553-1566.
doi: 10.1109/TCYB.2017.2707067. |
[40] |
K. C. Ying and S. W. Lin,
Minimizing makespan for no-wait flowshop scheduling problems with setup times, Computers and Industrial Engineering, 121 (2018), 73-81.
doi: 10.1016/j.cie.2018.05.030. |






Algorithm | 100 | 200 | 300 | 400 | 500 | Avg. | |
20 | 9.08 | 9.11 | 9.17 | 9.17 | 9.27 | 9.16 | |
9.38 | 9.37 | 9.28 | 9.34 | 9.3 | 9.33 | ||
3.05 | 2.98 | 2.95 | 2.96 | 2.97 | 2.98 | ||
4.99 | 4.93 | 4.88 | 4.9 | 4.9 | 4.92 | ||
4.85 | 4.81 | 4.76 | 4.81 | 4.83 | 4.79 | ||
0.1 | 0.02 | 0 | 0 | 0 | 0.02 | ||
4.23 | 4.1 | 4.02 | 4 | 3.95 | 4.06 | ||
2.44 | 2.35 | 2.44 | 2.44 | 2.44 | 2.42 | ||
30 | 9.17 | 9.33 | 9.42 | 9.4 | 9.4 | 9.34 | |
9.5 | 9.56 | 9.48 | 9.47 | 9.47 | 9.50 | ||
3.04 | 3.1 | 3.03 | 3.03 | 3 | 3.04 | ||
5.04 | 5.07 | 4.97 | 4.98 | 4.98 | 5.01 | ||
4.81 | 4.93 | 4.95 | 4.95 | 4.95 | 4.92 | ||
0.08 | 0.01 | 0 | 0 | 0 | 0.02 | ||
4.2 | 4.12 | 4.02 | 4.04 | 3.96 | 4.07 | ||
2.48 | 2.45 | 2.46 | 2.49 | 2.49 | 2.47 | ||
40 | 9.37 | 9.47 | 9.49 | 9.54 | 9.56 | 9.49 | |
9.65 | 9.69 | 9.64 | 9.63 | 9.67 | 9.66 | ||
3.01 | 3.07 | 3.06 | 3.05 | 3.08 | 3.05 | ||
5.06 | 5.06 | 5.06 | 5.05 | 5.06 | 5.06 | ||
4.93 | 5.01 | 4.96 | 5 | 5.05 | 4.99 | ||
0.09 | 0.02 | 0 | 0 | 0 | 0.02 | ||
4.24 | 4.17 | 4.03 | 4.1 | 4.12 | 4.13 | ||
2.47 | 2.51 | 2.53 | 2.51 | 2.57 | 2.52 | ||
Avg. | 4.80 | 4.80 | 4.78 | 4.79 | 4.79 |
Algorithm | 100 | 200 | 300 | 400 | 500 | Avg. | |
20 | 9.08 | 9.11 | 9.17 | 9.17 | 9.27 | 9.16 | |
9.38 | 9.37 | 9.28 | 9.34 | 9.3 | 9.33 | ||
3.05 | 2.98 | 2.95 | 2.96 | 2.97 | 2.98 | ||
4.99 | 4.93 | 4.88 | 4.9 | 4.9 | 4.92 | ||
4.85 | 4.81 | 4.76 | 4.81 | 4.83 | 4.79 | ||
0.1 | 0.02 | 0 | 0 | 0 | 0.02 | ||
4.23 | 4.1 | 4.02 | 4 | 3.95 | 4.06 | ||
2.44 | 2.35 | 2.44 | 2.44 | 2.44 | 2.42 | ||
30 | 9.17 | 9.33 | 9.42 | 9.4 | 9.4 | 9.34 | |
9.5 | 9.56 | 9.48 | 9.47 | 9.47 | 9.50 | ||
3.04 | 3.1 | 3.03 | 3.03 | 3 | 3.04 | ||
5.04 | 5.07 | 4.97 | 4.98 | 4.98 | 5.01 | ||
4.81 | 4.93 | 4.95 | 4.95 | 4.95 | 4.92 | ||
0.08 | 0.01 | 0 | 0 | 0 | 0.02 | ||
4.2 | 4.12 | 4.02 | 4.04 | 3.96 | 4.07 | ||
2.48 | 2.45 | 2.46 | 2.49 | 2.49 | 2.47 | ||
40 | 9.37 | 9.47 | 9.49 | 9.54 | 9.56 | 9.49 | |
9.65 | 9.69 | 9.64 | 9.63 | 9.67 | 9.66 | ||
3.01 | 3.07 | 3.06 | 3.05 | 3.08 | 3.05 | ||
5.06 | 5.06 | 5.06 | 5.05 | 5.06 | 5.06 | ||
4.93 | 5.01 | 4.96 | 5 | 5.05 | 4.99 | ||
0.09 | 0.02 | 0 | 0 | 0 | 0.02 | ||
4.24 | 4.17 | 4.03 | 4.1 | 4.12 | 4.13 | ||
2.47 | 2.51 | 2.53 | 2.51 | 2.57 | 2.52 | ||
Avg. | 4.80 | 4.80 | 4.78 | 4.79 | 4.79 |
Algorithm | 100 | 200 | 300 | 400 | 500 | Avg. | |
20 | 9.08 | 9.13 | 9.22 | 9.26 | 9.27 | 9.19 | |
9.38 | 9.26 | 9.33 | 9.35 | 9.27 | 9.32 | ||
3.05 | 2.97 | 3.04 | 3.02 | 2.99 | 3.01 | ||
4.99 | 4.85 | 4.92 | 4.9 | 4.87 | 4.91 | ||
4.75 | 4.73 | 4.89 | 4.92 | 4.86 | 4.83 | ||
0.1 | 0.02 | 0 | 0 | 0 | 0.02 | ||
4.23 | 4.1 | 4.06 | 4.07 | 3.95 | 4.08 | ||
2.44 | 2.41 | 2.44 | 2.5 | 2.43 | 2.44 | ||
30 | 9.17 | 9.37 | 9.37 | 9.37 | 9.41 | 9.34 | |
9.5 | 9.51 | 9.53 | 9.5 | 9.51 | 9.51 | ||
3.04 | 3.05 | 3.04 | 3.04 | 3.05 | 3.04 | ||
5.04 | 5 | 5.03 | 5 | 4.99 | 5.01 | ||
4.81 | 4.92 | 4.9 | 4.94 | 4.93 | 4.90 | ||
0.08 | 0.01 | 0 | 0 | 0 | 0.02 | ||
4.2 | 4.15 | 4.1 | 4.05 | 4.01 | 4.10 | ||
2.48 | 2.54 | 2.46 | 2.55 | 2.53 | 2.51 | ||
40 | 9.37 | 9.37 | 9.5 | 9.51 | 9.55 | 9.46 | |
9.65 | 9.54 | 9.59 | 9.64 | 9.62 | 9.61 | ||
3.01 | 2.96 | 3.04 | 3.09 | 3.07 | 3.03 | ||
5.06 | 4.97 | 5.01 | 5.06 | 5.05 | 5.03 | ||
4.93 | 4.85 | 4.95 | 4.97 | 5.01 | 4.94 | ||
0.09 | 0.01 | 0 | 0 | 0 | 0.02 | ||
4.24 | 4.12 | 4.08 | 4.07 | 4.08 | 4.12 | ||
2.47 | 2.44 | 2.58 | 2.54 | 2.57 | 2.52 | ||
Avg. | 4.80 | 4.76 | 4.80 | 4.81 | 4.79 |
Algorithm | 100 | 200 | 300 | 400 | 500 | Avg. | |
20 | 9.08 | 9.13 | 9.22 | 9.26 | 9.27 | 9.19 | |
9.38 | 9.26 | 9.33 | 9.35 | 9.27 | 9.32 | ||
3.05 | 2.97 | 3.04 | 3.02 | 2.99 | 3.01 | ||
4.99 | 4.85 | 4.92 | 4.9 | 4.87 | 4.91 | ||
4.75 | 4.73 | 4.89 | 4.92 | 4.86 | 4.83 | ||
0.1 | 0.02 | 0 | 0 | 0 | 0.02 | ||
4.23 | 4.1 | 4.06 | 4.07 | 3.95 | 4.08 | ||
2.44 | 2.41 | 2.44 | 2.5 | 2.43 | 2.44 | ||
30 | 9.17 | 9.37 | 9.37 | 9.37 | 9.41 | 9.34 | |
9.5 | 9.51 | 9.53 | 9.5 | 9.51 | 9.51 | ||
3.04 | 3.05 | 3.04 | 3.04 | 3.05 | 3.04 | ||
5.04 | 5 | 5.03 | 5 | 4.99 | 5.01 | ||
4.81 | 4.92 | 4.9 | 4.94 | 4.93 | 4.90 | ||
0.08 | 0.01 | 0 | 0 | 0 | 0.02 | ||
4.2 | 4.15 | 4.1 | 4.05 | 4.01 | 4.10 | ||
2.48 | 2.54 | 2.46 | 2.55 | 2.53 | 2.51 | ||
40 | 9.37 | 9.37 | 9.5 | 9.51 | 9.55 | 9.46 | |
9.65 | 9.54 | 9.59 | 9.64 | 9.62 | 9.61 | ||
3.01 | 2.96 | 3.04 | 3.09 | 3.07 | 3.03 | ||
5.06 | 4.97 | 5.01 | 5.06 | 5.05 | 5.03 | ||
4.93 | 4.85 | 4.95 | 4.97 | 5.01 | 4.94 | ||
0.09 | 0.01 | 0 | 0 | 0 | 0.02 | ||
4.24 | 4.12 | 4.08 | 4.07 | 4.08 | 4.12 | ||
2.47 | 2.44 | 2.58 | 2.54 | 2.57 | 2.52 | ||
Avg. | 4.80 | 4.76 | 4.80 | 4.81 | 4.79 |
Algorithm | 100 | 200 | 300 | 400 | 500 | Avg. | |
20 | 9.05 | 9.32 | 9.34 | 9.37 | 9.41 | 9.30 | |
9.39 | 9.45 | 9.43 | 9.49 | 9.43 | 9.44 | ||
3.09 | 3.02 | 2.97 | 3.04 | 3.04 | 3.03 | ||
4.98 | 4.96 | 4.92 | 4.98 | 4.96 | 4.96 | ||
4.86 | 4.88 | 4.87 | 4.94 | 4.95 | 4.90 | ||
0.1 | 0.02 | 0 | 0 | 0 | 0.02 | ||
4.24 | 4.08 | 4.09 | 4.09 | 4.05 | 4.11 | ||
2.42 | 4.08 | 4.09 | 4.09 | 4.05 | 4.11 | ||
30 | 9.09 | 9.47 | 9.52 | 9.64 | 9.56 | 9.46 | |
9.59 | 9.61 | 9.63 | 9.67 | 9.59 | 9.63 | ||
3.1 | 3.04 | 3.04 | 3.09 | 3.03 | 3.06 | ||
5.13 | 5.03 | 5.02 | 5.06 | 5 | 5.05 | ||
4.86 | 4.94 | 4.96 | 5.05 | 5.02 | 4.97 | ||
0.1 | 0.02 | 0 | 0 | 0 | 0.02 | ||
4.17 | 4.17 | 4.08 | 4.13 | 4.06 | 4.12 | ||
2.44 | 2.49 | 2.53 | 2.59 | 2.56 | 2.52 | ||
40 | 9.32 | 9.68 | 9.68 | 9.7 | 9.79 | 9.63 | |
9.67 | 9.89 | 9.85 | 9.87 | 9.89 | 9.83 | ||
3.05 | 3.06 | 3.06 | 3.08 | 3.1 | 3.07 | ||
5.07 | 5.14 | 5.13 | 5.13 | 5.13 | 5.12 | ||
4.86 | 5.09 | 5.04 | 5.07 | 5.09 | 5.03 | ||
0.09 | 0.01 | 0 | 0 | 0 | 0.02 | ||
4.31 | 4.28 | 4.23 | 4.19 | 4.21 | 4.24 | ||
2.43 | 2.61 | 2.64 | 2.68 | 2.68 | 2.61 | ||
Avg. | 4.81 | 4.86 | 4.86 | 4.89 | 4.88 |
Algorithm | 100 | 200 | 300 | 400 | 500 | Avg. | |
20 | 9.05 | 9.32 | 9.34 | 9.37 | 9.41 | 9.30 | |
9.39 | 9.45 | 9.43 | 9.49 | 9.43 | 9.44 | ||
3.09 | 3.02 | 2.97 | 3.04 | 3.04 | 3.03 | ||
4.98 | 4.96 | 4.92 | 4.98 | 4.96 | 4.96 | ||
4.86 | 4.88 | 4.87 | 4.94 | 4.95 | 4.90 | ||
0.1 | 0.02 | 0 | 0 | 0 | 0.02 | ||
4.24 | 4.08 | 4.09 | 4.09 | 4.05 | 4.11 | ||
2.42 | 4.08 | 4.09 | 4.09 | 4.05 | 4.11 | ||
30 | 9.09 | 9.47 | 9.52 | 9.64 | 9.56 | 9.46 | |
9.59 | 9.61 | 9.63 | 9.67 | 9.59 | 9.63 | ||
3.1 | 3.04 | 3.04 | 3.09 | 3.03 | 3.06 | ||
5.13 | 5.03 | 5.02 | 5.06 | 5 | 5.05 | ||
4.86 | 4.94 | 4.96 | 5.05 | 5.02 | 4.97 | ||
0.1 | 0.02 | 0 | 0 | 0 | 0.02 | ||
4.17 | 4.17 | 4.08 | 4.13 | 4.06 | 4.12 | ||
2.44 | 2.49 | 2.53 | 2.59 | 2.56 | 2.52 | ||
40 | 9.32 | 9.68 | 9.68 | 9.7 | 9.79 | 9.63 | |
9.67 | 9.89 | 9.85 | 9.87 | 9.89 | 9.83 | ||
3.05 | 3.06 | 3.06 | 3.08 | 3.1 | 3.07 | ||
5.07 | 5.14 | 5.13 | 5.13 | 5.13 | 5.12 | ||
4.86 | 5.09 | 5.04 | 5.07 | 5.09 | 5.03 | ||
0.09 | 0.01 | 0 | 0 | 0 | 0.02 | ||
4.31 | 4.28 | 4.23 | 4.19 | 4.21 | 4.24 | ||
2.43 | 2.61 | 2.64 | 2.68 | 2.68 | 2.61 | ||
Avg. | 4.81 | 4.86 | 4.86 | 4.89 | 4.88 |
Algorithm | 100 | 200 | 300 | 400 | 500 | Avg. | |
20 | 9.04 | 9.3 | 9.32 | 9.35 | 9.38 | 9.28 | |
9.5 | 9.46 | 9.45 | 9.46 | 9.5 | 9.47 | ||
3.03 | 3 | 3 | 3.03 | 3.06 | 3.02 | ||
5.01 | 4.97 | 4.92 | 4.96 | 4.95 | 4.90 | ||
4.81 | 4.88 | 4.9 | 4.94 | 4.95 | 4.90 | ||
0.08 | 0.01 | 0 | 0 | 0 | 0.02 | ||
4.27 | 4.09 | 4.13 | 4.08 | 4.06 | 4.13 | ||
2.47 | 2.46 | 2.45 | 2.5 | 2.55 | 2.49 | ||
30 | 9.43 | 9.43 | 9.54 | 9.57 | 9.71 | 9.54 | |
9.8 | 9.71 | 9.66 | 9.7 | 9.72 | 9.72 | ||
3.11 | 3 | 3.09 | 3.08 | 3.12 | 3.08 | ||
5.16 | 5.06 | 5.06 | 5.05 | 5.11 | 5.09 | ||
4.99 | 4.92 | 5 | 4.99 | 5.08 | 5.00 | ||
0.1 | 0.02 | 0 | 0 | 0 | 0.02 | ||
4.38 | 4.15 | 4.17 | 4.17 | 4.17 | 4.21 | ||
2.52 | 2.52 | 2.59 | 2.57 | 2.62 | 2.56 | ||
40 | 9.57 | 9.7 | 9.77 | 9.78 | 9.86 | 9.74 | |
10.04 | 9.96 | 9.9 | 9.86 | 9.86 | 9.92 | ||
3.12 | 3.03 | 3.05 | 3.07 | 3.05 | 3.06 | ||
5.25 | 5.17 | 5.14 | 5.11 | 5.12 | 5.16 | ||
5.01 | 5.03 | 5.05 | 5.11 | 5.1 | 5.06 | ||
0.08 | 0.01 | 0 | 0 | 0 | 0.02 | ||
4.47 | 4.2 | 4.21 | 4.24 | 4.19 | 4.26 | ||
2.69 | 2.6 | 2.73 | 2.71 | 2.7 | 2.69 | ||
Avg. | 4.91 | 4.86 | 4.88 | 4.89 | 4.91 |
Algorithm | 100 | 200 | 300 | 400 | 500 | Avg. | |
20 | 9.04 | 9.3 | 9.32 | 9.35 | 9.38 | 9.28 | |
9.5 | 9.46 | 9.45 | 9.46 | 9.5 | 9.47 | ||
3.03 | 3 | 3 | 3.03 | 3.06 | 3.02 | ||
5.01 | 4.97 | 4.92 | 4.96 | 4.95 | 4.90 | ||
4.81 | 4.88 | 4.9 | 4.94 | 4.95 | 4.90 | ||
0.08 | 0.01 | 0 | 0 | 0 | 0.02 | ||
4.27 | 4.09 | 4.13 | 4.08 | 4.06 | 4.13 | ||
2.47 | 2.46 | 2.45 | 2.5 | 2.55 | 2.49 | ||
30 | 9.43 | 9.43 | 9.54 | 9.57 | 9.71 | 9.54 | |
9.8 | 9.71 | 9.66 | 9.7 | 9.72 | 9.72 | ||
3.11 | 3 | 3.09 | 3.08 | 3.12 | 3.08 | ||
5.16 | 5.06 | 5.06 | 5.05 | 5.11 | 5.09 | ||
4.99 | 4.92 | 5 | 4.99 | 5.08 | 5.00 | ||
0.1 | 0.02 | 0 | 0 | 0 | 0.02 | ||
4.38 | 4.15 | 4.17 | 4.17 | 4.17 | 4.21 | ||
2.52 | 2.52 | 2.59 | 2.57 | 2.62 | 2.56 | ||
40 | 9.57 | 9.7 | 9.77 | 9.78 | 9.86 | 9.74 | |
10.04 | 9.96 | 9.9 | 9.86 | 9.86 | 9.92 | ||
3.12 | 3.03 | 3.05 | 3.07 | 3.05 | 3.06 | ||
5.25 | 5.17 | 5.14 | 5.11 | 5.12 | 5.16 | ||
5.01 | 5.03 | 5.05 | 5.11 | 5.1 | 5.06 | ||
0.08 | 0.01 | 0 | 0 | 0 | 0.02 | ||
4.47 | 4.2 | 4.21 | 4.24 | 4.19 | 4.26 | ||
2.69 | 2.6 | 2.73 | 2.71 | 2.7 | 2.69 | ||
Avg. | 4.91 | 4.86 | 4.88 | 4.89 | 4.91 |
n | ||||||
Algorithm | 100 | 200 | 300 | 400 | 500 | Avg. |
9.27 | 9.39 | 9.45 | 9.47 | 9.51 | 9.42 | |
9.64 | 9.58 | 9.56 | 9.58 | 9.57 | 9.59 | |
3.07 | 3.02 | 3.03 | 3.05 | 3.05 | 3.04 | |
5.09 | 5.02 | 5.01 | 5.02 | 5.01 | 5.03 | |
4.88 | 4.92 | 4.94 | 4.97 | 4.99 | 4.94 | |
0.09 | 0.02 | 0.00 | 0.00 | 0.00 | 0.02 | |
4.28 | 4.14 | 4.10 | 4.10 | 4.07 | 4.14 | |
2.49 | 2.49 | 2.53 | 2.55 | 2.56 | 2.52 |
n | ||||||
Algorithm | 100 | 200 | 300 | 400 | 500 | Avg. |
9.27 | 9.39 | 9.45 | 9.47 | 9.51 | 9.42 | |
9.64 | 9.58 | 9.56 | 9.58 | 9.57 | 9.59 | |
3.07 | 3.02 | 3.03 | 3.05 | 3.05 | 3.04 | |
5.09 | 5.02 | 5.01 | 5.02 | 5.01 | 5.03 | |
4.88 | 4.92 | 4.94 | 4.97 | 4.99 | 4.94 | |
0.09 | 0.02 | 0.00 | 0.00 | 0.00 | 0.02 | |
4.28 | 4.14 | 4.10 | 4.10 | 4.07 | 4.14 | |
2.49 | 2.49 | 2.53 | 2.55 | 2.56 | 2.52 |
Algorithm | 20 | 30 | 40 | Avg. |
9.24 | 9.42 | 9.59 | 9.42 | |
9.40 | 9.60 | 9.77 | 9.59 | |
3.01 | 3.06 | 3.06 | 3.04 | |
4.94 | 5.04 | 5.10 | 5.03 | |
4.86 | 4.94 | 5.01 | 4.94 | |
0.02 | 0.02 | 0.02 | 0.02 | |
4.10 | 4.13 | 4.19 | 4.14 | |
2.46 | 2.52 | 2.59 | 2.52 |
Algorithm | 20 | 30 | 40 | Avg. |
9.24 | 9.42 | 9.59 | 9.42 | |
9.40 | 9.60 | 9.77 | 9.59 | |
3.01 | 3.06 | 3.06 | 3.04 | |
4.94 | 5.04 | 5.10 | 5.03 | |
4.86 | 4.94 | 5.01 | 4.94 | |
0.02 | 0.02 | 0.02 | 0.02 | |
4.10 | 4.13 | 4.19 | 4.14 | |
2.46 | 2.52 | 2.59 | 2.52 |
Algorithm | 95 |
(09.33-9.51) | |
(9.50-9.68) | |
(2.98-3.11) | |
(4.95-5.10) | |
(4.86-5.01) | |
(0.02-0.03) | |
(4.07-4.21) | |
(2.45-2.59) |
Algorithm | 95 |
(09.33-9.51) | |
(9.50-9.68) | |
(2.98-3.11) | |
(4.95-5.10) | |
(4.86-5.01) | |
(0.02-0.03) | |
(4.07-4.21) | |
(2.45-2.59) |
[1] |
Min Ji, Xinna Ye, Fangyao Qian, T.C.E. Cheng, Yiwei Jiang. Parallel-machine scheduling in shared manufacturing. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020174 |
[2] |
Onur Şimşek, O. Erhun Kundakcioglu. Cost of fairness in agent scheduling for contact centers. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021001 |
[3] |
Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021001 |
[4] |
Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043 |
[5] |
Bao Wang, Alex Lin, Penghang Yin, Wei Zhu, Andrea L. Bertozzi, Stanley J. Osher. Adversarial defense via the data-dependent activation, total variation minimization, and adversarial training. Inverse Problems & Imaging, 2021, 15 (1) : 129-145. doi: 10.3934/ipi.2020046 |
[6] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[7] |
Saadoun Mahmoudi, Karim Samei. Codes over $ \frak m $-adic completion rings. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020122 |
[8] |
Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122 |
[9] |
Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041 |
[10] |
Yueh-Cheng Kuo, Huan-Chang Cheng, Jhih-You Syu, Shih-Feng Shieh. On the nearest stable $ 2\times 2 $ matrix, dedicated to Prof. Sze-Bi Hsu in appreciation of his inspiring ideas. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020358 |
[11] |
Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323 |
[12] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[13] |
Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299 |
[14] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[15] |
Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170 |
[16] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003 |
[17] |
Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021007 |
[18] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[19] |
Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137 |
[20] |
Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020336 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]