The present paper studies a new class of problems of optimal control theory with linear second order self-adjoint Sturm-Liouville type differential operators and with functional and non-functional endpoint constraints. Sufficient conditions of optimality, containing both the second order Euler-Lagrange and Hamiltonian type inclusions are derived. The presence of functional constraints generates a special second order transversality inclusions and complementary slackness conditions peculiar to inequality constraints; this approach and results make a bridge between optimal control problem with Sturm-Liouville type differential differential inclusions and constrained mathematical programming problems in finite-dimensional spaces.The idea for obtaining optimality conditions is based on applying locally-adjoint mappings to Sturm-Liouville type set-valued mappings. The result generalizes to the problem with a second order non-self-adjoint differential operator. Furthermore, practical applications of these results are demonstrated by optimization of some semilinear optimal control problems for which the Pontryagin maximum condition is obtained. A numerical example is given to illustrate the feasibility and effectiveness of the theoretic results obtained.
Citation: |
[1] |
S. Adly, A. Hantoute and M. Th'era, Nonsmooth Lyapunov pairs for differential inclusions governed by operators with nonempty interior domain, Mathem. Program., 157 (2016), 349-374.
doi: 10.1007/s10107-015-0938-6.![]() ![]() ![]() |
[2] |
N. U. Ahmed, Differential inclusions operator valued measures and optimal control, Dynamic Syst. Appl., 16 (2007), 13-35.
![]() ![]() |
[3] |
D. Azzam-Laouir and L. Sabrina, Existence solutions for a class of second order differential inclusions, Pacific Journ. of Optim., 6 (2005), 339-346.
![]() ![]() |
[4] |
A. Bagirov, N. Karmitsa and M. Makela, Introduction to Nonsmooth Optimization, Springer, 2014.
doi: 10.1007/978-3-319-08114-4.![]() ![]() ![]() |
[5] |
A. Cernea, Continuous version of Filippov's theorem for a Sturm-Liouville type differential inclusion, E.J. Differ. Equat., 2008 (2008), 1-7.
![]() ![]() |
[6] |
F. H. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Graduate Texts in Mathematics, 264, Springer, 2013.
doi: 10.1007/978-1-4471-4820-3.![]() ![]() ![]() |
[7] |
Y. Gao, X. Yang, J. Yang and H. Yan, Scalarizations and Lagrange multipliers for approximat solutions in the vector optimization problems with set-valued maps, J. Industrial Manag. Optim., 11 (2014), 673-683.
doi: 10.3934/jimo.2015.11.673.![]() ![]() ![]() |
[8] |
S. J. Li, S. K. Zhu and K. Lay Teo, New generalized second-order contingent epiderivatives and set-valued optimization problems, J. Optim. Theory Appl., 152 (2012), 587-604.
doi: 10.1007/s10957-011-9915-2.![]() ![]() ![]() |
[9] |
Q. Liqun, K. Lay Teo and X. Yang, Optimization and Control with Applications, Springer, 2005.
doi: 10.1007/b104943.![]() ![]() ![]() |
[10] |
Y. Liu, J. Wu and Z. Li, Impulsive boundary value problems for Sturm-Liouville type differential inclusions, J. Syst. Sci. Complexity, 20 (2007), 370-380.
doi: 10.1007/s11424-007-9032-3.![]() ![]() ![]() |
[11] |
P. D. Loewen and R. T. Rockafellar, Optimal control of unbounded differential inclusions, SIAM J Contr Optim., 32 (1994), 442-470.
doi: 10.1137/S0363012991217494.![]() ![]() ![]() |
[12] |
E. N. Mahmudov, Approximation and Optimization of Discrete and Differential Inclusions, Elsevier: Boston, USA, 2011.
doi: 10.1016/B978-0-12-388428-2.00001-1.![]() ![]() ![]() |
[13] |
E. N. Mahmudov, Approximation and Optimization of Higher order discrete and differential inclusions, Nonlin. Diff. Equat. Appl. (NoDEA), 21 (2014), 1-26.
doi: 10.1007/s00030-013-0234-1.![]() ![]() ![]() |
[14] |
E. N. Mahmudov, Optimal control of second order delay-discrete and delay differential inclusions with state constraints, Evol. Equat. Cont. Theory (EECT), 7 (2018), 501-529.
doi: 10.3934/eect.2018024.![]() ![]() ![]() |
[15] |
E. N. Mahmudov, Optimization of Fourth-Order Differential Inclusions, Proceed. Institute Mathem. Mechanics, 44 (2018), 90-106.
![]() ![]() |
[16] |
E. N. Mahmudov, Optimization of second-order discrete approximation inclusions, Numeric. Funct. Anal. Optim., 36 (2015), 624-643.
doi: 10.1080/01630563.2015.1014048.![]() ![]() ![]() |
[17] |
E. N. Mahmudov, Optimization of Mayer problem with Sturm-Liouville-type differential inclusions, J. Optim, Theory Appl., 177 (2018), 345-375.
doi: 10.1007/s10957-018-1260-2.![]() ![]() ![]() |
[18] |
E. N. Mahmudov, Optimization of fourth order Sturm-Liouville type differential inclusions with initial point constraints, J. Industrial Manag. Optim., (2018).
doi: 10.3934/jimo.2018145.![]() ![]() |
[19] |
B. S. Mordukhovich, Optimal control of semilinear unbounded evolution inclusions with functional constraints, J. Optim. Theory Appl., 167 (2015), 821-841.
doi: 10.1007/s10957-013-0301-0.![]() ![]() ![]() |
[20] |
Y. Xu and Z. Peng, Higher-order sensitivity analysis in set-valued optimization under Henig efficiency, J. Industrial Manag. Optim., 13 (2017), 313-327.
doi: 10.3934/jimo.2016019.![]() ![]() ![]() |