September  2020, 16(5): 2521-2529. doi: 10.3934/jimo.2019067

Rumor propagation controlling based on finding important nodes in complex network

1. 

School of Business Administration, Northeastern University, Shenyang 110169, China

2. 

Software College, Northeastern University, Shenyang 110169, China

3. 

School of Economics and Management, Tongji University, Shanghai 200092, China

* Corresponding author: Yixin Zhang

Received  October 2018 Revised  December 2018 Published  July 2019

The rumor propagation analysis and important nodes detection is a hot topic in complex network under crisis situation. The traditional propagation model does not consider enough states, so it cannot intact reflect the real world. In this paper, a new rumor propagation model which considers the Wiseman and the Truth Spreader is proposed based on the Graph Theory. Then, 3 new methods are proposed to find important nodes in the new model. These methods consider the differences between nodes to evaluate the importance of the nodes. Finally, 4 networks are demonstrated to show that the 3 proposed methods are useful to control rumor propagation.

Citation: Jianfeng Jia, Xuewei Liu, Yixin Zhang, Zhe Li, Yanjie Xu, Jiaqi Yan. Rumor propagation controlling based on finding important nodes in complex network. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2521-2529. doi: 10.3934/jimo.2019067
References:
[1]

K. BerahmandA. Bouyer and N. Samadi, A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks, Chaos, 110 (2018), 41-54.   Google Scholar

[2]

D. B. ChenL. Y. LvM. S. ShangC. Yi and T. Zhou, Identifying influential nodes in complex networks, Physica A, 391 (2012), 1777-1787.  doi: 10.1016/j.physa.2011.09.017.  Google Scholar

[3]

D. J. Daley and D. G. Kendall, Epidemics and rumours, Nature, 204 (1964), 1464-3634.  doi: 10.1038/2041118a0.  Google Scholar

[4]

R. GranizoF. R. BlanquezE. Rebollo and C. A. Platero, A novel ground fault non-directional selective protection method for ungrounded distribution networks, Energies, 8 (2015), 1291-1316.  doi: 10.3390/en8021291.  Google Scholar

[5]

V. L. M. HuszarJ. C. NaboutM. O. AppelJ. B. O. SantosD. S. Abe and L. H. S. Silva, Environmental and not spatial processes (directional and non-directional) shape the phytoplankton composition and functional groups in a large subtropical river basin, Journal of Plankton Research, 660 (2015), 1190-1200.  doi: 10.1093/plankt/fbv084.  Google Scholar

[6]

M. KitsakL. K. GallosS. Havlin and F. Liljeros, Identifying influential spreaders in complex networks, Nature, 6 (2010), 888-893.   Google Scholar

[7]

D. Li and J. Ma, How the government's punishment and individual's sensitivity affect the rumor spreading in online social networks, Physica A, 46 (2017), 284-292.  doi: 10.1016/j.physa.2016.11.033.  Google Scholar

[8]

Y. LiuB. WeiY. X. DuF. Y. Xiao and Y. Deng, Identifying inflential spreaders by weight degree centrality in complex networks, Chaos, 86 (2016), 1-7.  doi: 10.1016/j.chaos.2016.01.030.  Google Scholar

[9]

Y. MorenoM. Nekovee and A. F. Pacheco, Dynamics of rumor spreading in complex networks, Physical Review E, 69 (2004), 1464-3634.  doi: 10.1103/PhysRevE.69.066130.  Google Scholar

[10]

Z. F. PanX. F. Wang and X. Li, Simulation investigation on rumor spreading on scale-free network with tunable clustering, Journal of System Simulation, 18 (2006), 2346-2348.   Google Scholar

[11]

T. RenY. F. WangD. DuM. M. Liu and A. Siddiqi, The guitar chord-generating algorithm based on complex network, Physica A, 443 (2016), 1-13.  doi: 10.1016/j.physa.2015.09.041.  Google Scholar

[12]

T. RenY. F. WangM. M. Liu and Y. J. Xu, Analysis of robustness of urban bus network, Chinese Physics B, 25 (2016).  doi: 10.1088/1674-1056/25/2/020101.  Google Scholar

[13]

Y. SunY. MaF. ZhangY. Ma and W. Shen, Key nodes discovery in large-scale logistics network based on MapReduce, IEEE International Conference on Systems, (2016), 1309-1314.  doi: 10.1109/SMC.2015.233.  Google Scholar

[14]

Z. H. TanJ. Y. NingY. LiuX. W. WangG. M. Yang and W. Yang, ECR Model: An elastic collision-based rumor-propagation model in online social networks, IEEE Access, 4 (2016), 6105-6120.   Google Scholar

[15]

B. X. WangY. F. WenP. F. Ma and P. Hu, A Dynamic-TDMA MAC mechanism for directional networks with a central node, Radio Engineering, (2015), 24-29.   Google Scholar

[16]

J. WeiB. Bu and L. Liang, Estimating the diffusion models of crisis information in micro blog, Journal of Informatics, 6 (2012), 600-610.  doi: 10.1016/j.joi.2012.06.005.  Google Scholar

[17]

H. XieY. Yan and Y. Hou, Dynamical behavior of rumor in online social networks, International Journal of Multimedia and Ubiquitous Engineering, 11 (2016), 125-132.  doi: 10.14257/ijmue.2016.11.3.12.  Google Scholar

[18]

D. H. Zanette, Dynamics of rumor propagation on small-world networks, Physical Review E, 65 (2002), 1464-3634.  doi: 10.1103/PhysRevE.65.041908.  Google Scholar

[19]

J. Zeng, C. H. Chan and K. W. Fu, How social media construct "truth" around crisis events: Weibo's rumor management strategies after the 2015 Tianjin blasts, Policy & Internet, in press, (2017). doi: 10.1002/poi3.155.  Google Scholar

[20]

Z. Zhu and Y. Liu, Simulation study of propagation of rumor in online social network based on scale-free network with tunable clustering, Complex Systems & Complexity Science, 13 (2016), 74-82.   Google Scholar

show all references

References:
[1]

K. BerahmandA. Bouyer and N. Samadi, A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks, Chaos, 110 (2018), 41-54.   Google Scholar

[2]

D. B. ChenL. Y. LvM. S. ShangC. Yi and T. Zhou, Identifying influential nodes in complex networks, Physica A, 391 (2012), 1777-1787.  doi: 10.1016/j.physa.2011.09.017.  Google Scholar

[3]

D. J. Daley and D. G. Kendall, Epidemics and rumours, Nature, 204 (1964), 1464-3634.  doi: 10.1038/2041118a0.  Google Scholar

[4]

R. GranizoF. R. BlanquezE. Rebollo and C. A. Platero, A novel ground fault non-directional selective protection method for ungrounded distribution networks, Energies, 8 (2015), 1291-1316.  doi: 10.3390/en8021291.  Google Scholar

[5]

V. L. M. HuszarJ. C. NaboutM. O. AppelJ. B. O. SantosD. S. Abe and L. H. S. Silva, Environmental and not spatial processes (directional and non-directional) shape the phytoplankton composition and functional groups in a large subtropical river basin, Journal of Plankton Research, 660 (2015), 1190-1200.  doi: 10.1093/plankt/fbv084.  Google Scholar

[6]

M. KitsakL. K. GallosS. Havlin and F. Liljeros, Identifying influential spreaders in complex networks, Nature, 6 (2010), 888-893.   Google Scholar

[7]

D. Li and J. Ma, How the government's punishment and individual's sensitivity affect the rumor spreading in online social networks, Physica A, 46 (2017), 284-292.  doi: 10.1016/j.physa.2016.11.033.  Google Scholar

[8]

Y. LiuB. WeiY. X. DuF. Y. Xiao and Y. Deng, Identifying inflential spreaders by weight degree centrality in complex networks, Chaos, 86 (2016), 1-7.  doi: 10.1016/j.chaos.2016.01.030.  Google Scholar

[9]

Y. MorenoM. Nekovee and A. F. Pacheco, Dynamics of rumor spreading in complex networks, Physical Review E, 69 (2004), 1464-3634.  doi: 10.1103/PhysRevE.69.066130.  Google Scholar

[10]

Z. F. PanX. F. Wang and X. Li, Simulation investigation on rumor spreading on scale-free network with tunable clustering, Journal of System Simulation, 18 (2006), 2346-2348.   Google Scholar

[11]

T. RenY. F. WangD. DuM. M. Liu and A. Siddiqi, The guitar chord-generating algorithm based on complex network, Physica A, 443 (2016), 1-13.  doi: 10.1016/j.physa.2015.09.041.  Google Scholar

[12]

T. RenY. F. WangM. M. Liu and Y. J. Xu, Analysis of robustness of urban bus network, Chinese Physics B, 25 (2016).  doi: 10.1088/1674-1056/25/2/020101.  Google Scholar

[13]

Y. SunY. MaF. ZhangY. Ma and W. Shen, Key nodes discovery in large-scale logistics network based on MapReduce, IEEE International Conference on Systems, (2016), 1309-1314.  doi: 10.1109/SMC.2015.233.  Google Scholar

[14]

Z. H. TanJ. Y. NingY. LiuX. W. WangG. M. Yang and W. Yang, ECR Model: An elastic collision-based rumor-propagation model in online social networks, IEEE Access, 4 (2016), 6105-6120.   Google Scholar

[15]

B. X. WangY. F. WenP. F. Ma and P. Hu, A Dynamic-TDMA MAC mechanism for directional networks with a central node, Radio Engineering, (2015), 24-29.   Google Scholar

[16]

J. WeiB. Bu and L. Liang, Estimating the diffusion models of crisis information in micro blog, Journal of Informatics, 6 (2012), 600-610.  doi: 10.1016/j.joi.2012.06.005.  Google Scholar

[17]

H. XieY. Yan and Y. Hou, Dynamical behavior of rumor in online social networks, International Journal of Multimedia and Ubiquitous Engineering, 11 (2016), 125-132.  doi: 10.14257/ijmue.2016.11.3.12.  Google Scholar

[18]

D. H. Zanette, Dynamics of rumor propagation on small-world networks, Physical Review E, 65 (2002), 1464-3634.  doi: 10.1103/PhysRevE.65.041908.  Google Scholar

[19]

J. Zeng, C. H. Chan and K. W. Fu, How social media construct "truth" around crisis events: Weibo's rumor management strategies after the 2015 Tianjin blasts, Policy & Internet, in press, (2017). doi: 10.1002/poi3.155.  Google Scholar

[20]

Z. Zhu and Y. Liu, Simulation study of propagation of rumor in online social network based on scale-free network with tunable clustering, Complex Systems & Complexity Science, 13 (2016), 74-82.   Google Scholar

Figure 1.  The proposed rumor propagation model
Figure 2.  The number of Gullible, Spreaders and Truth Spreaders in BA network
Figure 3.  Comparison of node importance
Figure 4.  An example of IPA
Figure 5.  The number of spreaders in BA scale-free network
Figure 6.  The number of spreaders in ER network
Figure 7.  The number of spreaders in Facebook network
Figure 8.  The number of spreaders in E-mail communication network
[1]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[2]

Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012

[3]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[4]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[5]

Jingni Guo, Junxiang Xu, Zhenggang He, Wei Liao. Research on cascading failure modes and attack strategies of multimodal transport network. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2020159

[6]

Andrey Kovtanyuk, Alexander Chebotarev, Nikolai Botkin, Varvara Turova, Irina Sidorenko, Renée Lampe. Modeling the pressure distribution in a spatially averaged cerebral capillary network. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021016

[7]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[8]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[9]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[10]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[11]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[12]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[13]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[14]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[15]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[16]

Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021018

[17]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[18]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[19]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[20]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (167)
  • HTML views (510)
  • Cited by (0)

[Back to Top]