
-
Previous Article
Optimal switching signal design with a cost on switching action
- JIMO Home
- This Issue
-
Next Article
Optimal control of Sturm-Liouville type evolution differential inclusions with endpoint constraints
Rumor propagation controlling based on finding important nodes in complex network
1. | School of Business Administration, Northeastern University, Shenyang 110169, China |
2. | Software College, Northeastern University, Shenyang 110169, China |
3. | School of Economics and Management, Tongji University, Shanghai 200092, China |
The rumor propagation analysis and important nodes detection is a hot topic in complex network under crisis situation. The traditional propagation model does not consider enough states, so it cannot intact reflect the real world. In this paper, a new rumor propagation model which considers the Wiseman and the Truth Spreader is proposed based on the Graph Theory. Then, 3 new methods are proposed to find important nodes in the new model. These methods consider the differences between nodes to evaluate the importance of the nodes. Finally, 4 networks are demonstrated to show that the 3 proposed methods are useful to control rumor propagation.
References:
[1] |
K. Berahmand, A. Bouyer and N. Samadi, A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks, Chaos, 110 (2018), 41-54. Google Scholar |
[2] |
D. B. Chen, L. Y. Lv, M. S. Shang, C. Yi and T. Zhou,
Identifying influential nodes in complex networks, Physica A, 391 (2012), 1777-1787.
doi: 10.1016/j.physa.2011.09.017. |
[3] |
D. J. Daley and D. G. Kendall,
Epidemics and rumours, Nature, 204 (1964), 1464-3634.
doi: 10.1038/2041118a0. |
[4] |
R. Granizo, F. R. Blanquez, E. Rebollo and C. A. Platero,
A novel ground fault non-directional selective protection method for ungrounded distribution networks, Energies, 8 (2015), 1291-1316.
doi: 10.3390/en8021291. |
[5] |
V. L. M. Huszar, J. C. Nabout, M. O. Appel, J. B. O. Santos, D. S. Abe and L. H. S. Silva,
Environmental and not spatial processes (directional and non-directional) shape the phytoplankton composition and functional groups in a large subtropical river basin, Journal of Plankton Research, 660 (2015), 1190-1200.
doi: 10.1093/plankt/fbv084. |
[6] |
M. Kitsak, L. K. Gallos, S. Havlin and F. Liljeros, Identifying influential spreaders in complex networks, Nature, 6 (2010), 888-893. Google Scholar |
[7] |
D. Li and J. Ma,
How the government's punishment and individual's sensitivity affect the rumor spreading in online social networks, Physica A, 46 (2017), 284-292.
doi: 10.1016/j.physa.2016.11.033. |
[8] |
Y. Liu, B. Wei, Y. X. Du, F. Y. Xiao and Y. Deng,
Identifying inflential spreaders by weight degree centrality in complex networks, Chaos, 86 (2016), 1-7.
doi: 10.1016/j.chaos.2016.01.030. |
[9] |
Y. Moreno, M. Nekovee and A. F. Pacheco,
Dynamics of rumor spreading in complex networks, Physical Review E, 69 (2004), 1464-3634.
doi: 10.1103/PhysRevE.69.066130. |
[10] |
Z. F. Pan, X. F. Wang and X. Li, Simulation investigation on rumor spreading on scale-free network with tunable clustering, Journal of System Simulation, 18 (2006), 2346-2348. Google Scholar |
[11] |
T. Ren, Y. F. Wang, D. Du, M. M. Liu and A. Siddiqi,
The guitar chord-generating algorithm based on complex network, Physica A, 443 (2016), 1-13.
doi: 10.1016/j.physa.2015.09.041. |
[12] |
T. Ren, Y. F. Wang, M. M. Liu and Y. J. Xu,
Analysis of robustness of urban bus network, Chinese Physics B, 25 (2016).
doi: 10.1088/1674-1056/25/2/020101. |
[13] |
Y. Sun, Y. Ma, F. Zhang, Y. Ma and W. Shen,
Key nodes discovery in large-scale logistics network based on MapReduce, IEEE International Conference on Systems, (2016), 1309-1314.
doi: 10.1109/SMC.2015.233. |
[14] |
Z. H. Tan, J. Y. Ning, Y. Liu, X. W. Wang, G. M. Yang and W. Yang, ECR Model: An elastic collision-based rumor-propagation model in online social networks, IEEE Access, 4 (2016), 6105-6120. Google Scholar |
[15] |
B. X. Wang, Y. F. Wen, P. F. Ma and P. Hu, A Dynamic-TDMA MAC mechanism for directional networks with a central node, Radio Engineering, (2015), 24-29. Google Scholar |
[16] |
J. Wei, B. Bu and L. Liang,
Estimating the diffusion models of crisis information in micro blog, Journal of Informatics, 6 (2012), 600-610.
doi: 10.1016/j.joi.2012.06.005. |
[17] |
H. Xie, Y. Yan and Y. Hou,
Dynamical behavior of rumor in online social networks, International Journal of Multimedia and Ubiquitous Engineering, 11 (2016), 125-132.
doi: 10.14257/ijmue.2016.11.3.12. |
[18] |
D. H. Zanette,
Dynamics of rumor propagation on small-world networks, Physical Review E, 65 (2002), 1464-3634.
doi: 10.1103/PhysRevE.65.041908. |
[19] |
J. Zeng, C. H. Chan and K. W. Fu, How social media construct "truth" around crisis events: Weibo's rumor management strategies after the 2015 Tianjin blasts, Policy & Internet, in press, (2017).
doi: 10.1002/poi3.155. |
[20] |
Z. Zhu and Y. Liu, Simulation study of propagation of rumor in online social network based on scale-free network with tunable clustering, Complex Systems & Complexity Science, 13 (2016), 74-82. Google Scholar |
show all references
References:
[1] |
K. Berahmand, A. Bouyer and N. Samadi, A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks, Chaos, 110 (2018), 41-54. Google Scholar |
[2] |
D. B. Chen, L. Y. Lv, M. S. Shang, C. Yi and T. Zhou,
Identifying influential nodes in complex networks, Physica A, 391 (2012), 1777-1787.
doi: 10.1016/j.physa.2011.09.017. |
[3] |
D. J. Daley and D. G. Kendall,
Epidemics and rumours, Nature, 204 (1964), 1464-3634.
doi: 10.1038/2041118a0. |
[4] |
R. Granizo, F. R. Blanquez, E. Rebollo and C. A. Platero,
A novel ground fault non-directional selective protection method for ungrounded distribution networks, Energies, 8 (2015), 1291-1316.
doi: 10.3390/en8021291. |
[5] |
V. L. M. Huszar, J. C. Nabout, M. O. Appel, J. B. O. Santos, D. S. Abe and L. H. S. Silva,
Environmental and not spatial processes (directional and non-directional) shape the phytoplankton composition and functional groups in a large subtropical river basin, Journal of Plankton Research, 660 (2015), 1190-1200.
doi: 10.1093/plankt/fbv084. |
[6] |
M. Kitsak, L. K. Gallos, S. Havlin and F. Liljeros, Identifying influential spreaders in complex networks, Nature, 6 (2010), 888-893. Google Scholar |
[7] |
D. Li and J. Ma,
How the government's punishment and individual's sensitivity affect the rumor spreading in online social networks, Physica A, 46 (2017), 284-292.
doi: 10.1016/j.physa.2016.11.033. |
[8] |
Y. Liu, B. Wei, Y. X. Du, F. Y. Xiao and Y. Deng,
Identifying inflential spreaders by weight degree centrality in complex networks, Chaos, 86 (2016), 1-7.
doi: 10.1016/j.chaos.2016.01.030. |
[9] |
Y. Moreno, M. Nekovee and A. F. Pacheco,
Dynamics of rumor spreading in complex networks, Physical Review E, 69 (2004), 1464-3634.
doi: 10.1103/PhysRevE.69.066130. |
[10] |
Z. F. Pan, X. F. Wang and X. Li, Simulation investigation on rumor spreading on scale-free network with tunable clustering, Journal of System Simulation, 18 (2006), 2346-2348. Google Scholar |
[11] |
T. Ren, Y. F. Wang, D. Du, M. M. Liu and A. Siddiqi,
The guitar chord-generating algorithm based on complex network, Physica A, 443 (2016), 1-13.
doi: 10.1016/j.physa.2015.09.041. |
[12] |
T. Ren, Y. F. Wang, M. M. Liu and Y. J. Xu,
Analysis of robustness of urban bus network, Chinese Physics B, 25 (2016).
doi: 10.1088/1674-1056/25/2/020101. |
[13] |
Y. Sun, Y. Ma, F. Zhang, Y. Ma and W. Shen,
Key nodes discovery in large-scale logistics network based on MapReduce, IEEE International Conference on Systems, (2016), 1309-1314.
doi: 10.1109/SMC.2015.233. |
[14] |
Z. H. Tan, J. Y. Ning, Y. Liu, X. W. Wang, G. M. Yang and W. Yang, ECR Model: An elastic collision-based rumor-propagation model in online social networks, IEEE Access, 4 (2016), 6105-6120. Google Scholar |
[15] |
B. X. Wang, Y. F. Wen, P. F. Ma and P. Hu, A Dynamic-TDMA MAC mechanism for directional networks with a central node, Radio Engineering, (2015), 24-29. Google Scholar |
[16] |
J. Wei, B. Bu and L. Liang,
Estimating the diffusion models of crisis information in micro blog, Journal of Informatics, 6 (2012), 600-610.
doi: 10.1016/j.joi.2012.06.005. |
[17] |
H. Xie, Y. Yan and Y. Hou,
Dynamical behavior of rumor in online social networks, International Journal of Multimedia and Ubiquitous Engineering, 11 (2016), 125-132.
doi: 10.14257/ijmue.2016.11.3.12. |
[18] |
D. H. Zanette,
Dynamics of rumor propagation on small-world networks, Physical Review E, 65 (2002), 1464-3634.
doi: 10.1103/PhysRevE.65.041908. |
[19] |
J. Zeng, C. H. Chan and K. W. Fu, How social media construct "truth" around crisis events: Weibo's rumor management strategies after the 2015 Tianjin blasts, Policy & Internet, in press, (2017).
doi: 10.1002/poi3.155. |
[20] |
Z. Zhu and Y. Liu, Simulation study of propagation of rumor in online social network based on scale-free network with tunable clustering, Complex Systems & Complexity Science, 13 (2016), 74-82. Google Scholar |








[1] |
Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020401 |
[2] |
Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012 |
[3] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[4] |
Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023 |
[5] |
Jingni Guo, Junxiang Xu, Zhenggang He, Wei Liao. Research on cascading failure modes and attack strategies of multimodal transport network. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2020159 |
[6] |
Andrey Kovtanyuk, Alexander Chebotarev, Nikolai Botkin, Varvara Turova, Irina Sidorenko, Renée Lampe. Modeling the pressure distribution in a spatially averaged cerebral capillary network. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021016 |
[7] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[8] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[9] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[10] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
[11] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[12] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[13] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[14] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[15] |
Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209 |
[16] |
Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021018 |
[17] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011 |
[18] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[19] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[20] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]