
-
Previous Article
Brualdi-type inequalities on the minimum eigenvalue for the Fan product of M-tensors
- JIMO Home
- This Issue
-
Next Article
Rumor propagation controlling based on finding important nodes in complex network
Optimal switching signal design with a cost on switching action
1. | School of Management, Shanghai University, Shanghai, China |
2. | Faculty of Mathematics and Computer Science, Guangdong Ocean University, Zhanjiang, Guangdong, China |
3. | College of Mathematics Science, Chongqing Normal University, Chongqing, China |
In this paper, we consider a particular class of optimal switching problem for the linear-quadratic switched system in discrete time, where an optimal switching sequence is designed to minimize the quadratic performance index of the system with a switching cost. This is a challenging issue and studied only by few papers. First, we introduce a total variation function with respect to the switching sequence to measure the volatile switching action. In order to restrain the switching magnitude, it is added to the cost functional as a penalty. Then, the particular optimal switching problem is formulated. With the positive semi-definiteness of matrices, we construct a series of exact lower bounds of the cost functional at each time and the branch and bound method is applied to search all global optimal solutions. For the comparison between different global optimization methods, some numerical examples are given to show the efficiency of our proposed method.
References:
[1] |
H. Axelsson, Y. Wardi, M. Egerstedt and E. I. Verriest,
Gradient descent approach to optiomal mode scheduling in hybrid dynamical systems, Journal of Optimization Theory and Applications, 136 (2008), 167-186.
doi: 10.1007/s10957-007-9305-y. |
[2] |
S. C. Bengea and R. A. DeCarlo,
Optimal control of switching systems, Automatica, 41 (2005), 11-27.
doi: 10.1016/j.automatica.2004.08.003. |
[3] |
T. M. Caldwell and T. D. Murphey,
Projection-based iterative mode scheduling for switched systems, Nonlinear Analysis: Hybrid Systems, 21 (2016), 59-83.
doi: 10.1016/j.nahs.2015.11.002. |
[4] |
Z. G. Feng, K. L. Teo and V. Rehbock,
Hybrid method for a general optimal sensor scheduling problem in discrete time, Automatica, 44 (2008), 1295-1303.
doi: 10.1016/j.automatica.2007.09.024. |
[5] |
Z. G. Feng, K. L. Teo and V. Rehbock,
Optimal sensor scheduling in continuous time, Dynamic Systems and Applications, 17 (2008), 331-350.
|
[6] |
Z. G. Feng, K. L. Teo and V. Rehbock,
A discrete filled function method for the optimal control of switched systems in discrete time, Optimal Control Applications and Methods, 30 (2009), 585-593.
doi: 10.1002/oca.885. |
[7] |
Z. G. Feng, K. L. Teo and Y. Zhao,
Branch and bound method for sensor scheduling in discrete time, Journal of Industrial and Management Optimization, 1 (2005), 499-512.
doi: 10.3934/jimo.2005.1.499. |
[8] |
J. Gao and D. Li,
Linear-quadratic switching control with switching cost, Automatica, 48 (2012), 1138-1143.
doi: 10.1016/j.automatica.2012.03.006. |
[9] |
Z. Gong, C. Liu and Y. Wang,
Optimal control of switched systems with multiple time-delays and a cost on changing control, Journal of Industrial and Management Optimization, 14 (2018), 183-198.
doi: 10.3934/jimo.2017042. |
[10] |
D. Görges, M. Izák and S. Liu,
Optimal control and scheduling of switched systems, IEEE Transactions on Automatic Control, 56 (2011), 135-140.
doi: 10.1109/TAC.2010.2085573. |
[11] |
J. F. He, W. Xu, Z. G. Feng and X. Yang,
On the global optimal solution for linear quadratic problems of switched system, Journal of Industrial and Management Optimization, 15 (2019), 817-832.
|
[12] |
M. Kamgarpour and C. Tomlin,
On optimal control of non-autonomous switched systems with a fixed mode sequence, Journal of Global Optimization, 48 (2012), 1177-1181.
doi: 10.1016/j.automatica.2012.03.019. |
[13] |
B. Li and Y. Rong,
Joint transceiver optimization for wireless information and energy transfer in nonregenerative MIMO relay systems, IEEE Transactions on Vehicular Technology, 67 (2018), 8348-8362.
doi: 10.1109/TVT.2018.2846556. |
[14] |
B. Li and Y. Rong,
AF MIMO relay systems with wireless powered relay node and direct link, IEEE Transactions on Communications, 66 (2018), 1508-1519.
doi: 10.1109/TCOMM.2017.2788006. |
[15] |
B. Li, Y. Rong, J. Sun and K. L. Teo,
A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, IEEE Transactions on Wireless Communications, 16 (2017), 464-474.
doi: 10.1109/TWC.2016.2625246. |
[16] |
R. Li, K. L. Teo, K. H. Wong and G. R. Duan,
Control parametrization enhancing transform for optimal control of switched systems, Mathematical and Computer Modelling, 43 (2006), 1393-1403.
doi: 10.1016/j.mcm.2005.08.012. |
[17] |
C. Liu, Z. Gong, K. L. Teo, J. Sun and L. Caccetta,
Robust multi-objective optimal switching control arising in 1, 3-propanediol microbial fed-batch process, Nonlinear Analysis: Hybrid Systems, 25 (2017), 1-20.
doi: 10.1016/j.nahs.2017.01.006. |
[18] |
R. Loxton, Q. Lin and K. L. Teo,
Minimizing control variation in nonlinear optimal control, Automatica, 49 (2013), 2652-2664.
doi: 10.1016/j.automatica.2013.05.027. |
[19] |
R. C. Loxton, K. L. Teo, V. Rehbock and W. K. Ling,
Optimal switching instants for a switched-capacitor DC/DC power converter, Automatica, 45 (2009), 973-980.
doi: 10.1016/j.automatica.2008.10.031. |
[20] |
W. Lu, P. Zhu and S. Ferrari,
A hybrid-adaptive dynamic programming approach for the model-free control of nonlinear switched systems, IEEE Transactions on Automatic Control, 61 (2016), 3203-3208.
doi: 10.1109/TAC.2015.2509421. |
[21] |
C. Seatzu, D. Corona, A. Giua and A. Bemporad,
Optimal control of continuous-time switched affine systems, IEEE Transactions on Automatic Control, 51 (2006), 726-741.
doi: 10.1109/TAC.2006.875053. |
[22] |
Y. Wardi, M. Egerstedt and M. Hale,
Switched-mode systems: Gradient-descent algorithms with Armijo step sizes, Discrete Event Dynamic Systems, 25 (2015), 571-599.
doi: 10.1007/s10626-014-0198-2. |
[23] |
W. Xu, Z. G. Feng, J. W. Peng and K. F. C. Yiu,
Optimal switching for linear quadratic problem of switched systems in discrete time, Automatica, 78 (2017), 185-193.
doi: 10.1016/j.automatica.2016.12.002. |
[24] |
W. Xu, Z. G. Feng, G. H. Lin and L. Yu,
Optimal scheduling of discrete-time switched linear systems, IMA Journal of Mathematical Control and Information, (2018).
doi: 10.1093/imamci/dny034. |
[25] |
H. Yan, Y. Sun and Y. Zhu,
A linear-quadratic control problem of uncertain discrete-time switched systems, Journal of Industrial and Management Optimization, 13 (2017), 267-282.
doi: 10.3934/jimo.2016016. |
[26] |
F. Yang, K. L. Teo, R. Loxton, V. Rehbock, B. Li, C. Yu and L. Jennings,
Visual miser: an efficient user-friendly visual program for solving optimal control problems, Journal of Industrial and Management Optimization, 12 (2016), 781-810.
doi: 10.3934/jimo.2016.12.781. |
[27] |
J. Zhai, T. Niu, J. Ye and E. Feng,
Optimal control of nonlinear switched system with mixed constraints and its parallel optimization algorithm, Nonlinear Analysis: Hybrid Systems, 25 (2017), 21-40.
doi: 10.1016/j.nahs.2017.02.001. |
show all references
References:
[1] |
H. Axelsson, Y. Wardi, M. Egerstedt and E. I. Verriest,
Gradient descent approach to optiomal mode scheduling in hybrid dynamical systems, Journal of Optimization Theory and Applications, 136 (2008), 167-186.
doi: 10.1007/s10957-007-9305-y. |
[2] |
S. C. Bengea and R. A. DeCarlo,
Optimal control of switching systems, Automatica, 41 (2005), 11-27.
doi: 10.1016/j.automatica.2004.08.003. |
[3] |
T. M. Caldwell and T. D. Murphey,
Projection-based iterative mode scheduling for switched systems, Nonlinear Analysis: Hybrid Systems, 21 (2016), 59-83.
doi: 10.1016/j.nahs.2015.11.002. |
[4] |
Z. G. Feng, K. L. Teo and V. Rehbock,
Hybrid method for a general optimal sensor scheduling problem in discrete time, Automatica, 44 (2008), 1295-1303.
doi: 10.1016/j.automatica.2007.09.024. |
[5] |
Z. G. Feng, K. L. Teo and V. Rehbock,
Optimal sensor scheduling in continuous time, Dynamic Systems and Applications, 17 (2008), 331-350.
|
[6] |
Z. G. Feng, K. L. Teo and V. Rehbock,
A discrete filled function method for the optimal control of switched systems in discrete time, Optimal Control Applications and Methods, 30 (2009), 585-593.
doi: 10.1002/oca.885. |
[7] |
Z. G. Feng, K. L. Teo and Y. Zhao,
Branch and bound method for sensor scheduling in discrete time, Journal of Industrial and Management Optimization, 1 (2005), 499-512.
doi: 10.3934/jimo.2005.1.499. |
[8] |
J. Gao and D. Li,
Linear-quadratic switching control with switching cost, Automatica, 48 (2012), 1138-1143.
doi: 10.1016/j.automatica.2012.03.006. |
[9] |
Z. Gong, C. Liu and Y. Wang,
Optimal control of switched systems with multiple time-delays and a cost on changing control, Journal of Industrial and Management Optimization, 14 (2018), 183-198.
doi: 10.3934/jimo.2017042. |
[10] |
D. Görges, M. Izák and S. Liu,
Optimal control and scheduling of switched systems, IEEE Transactions on Automatic Control, 56 (2011), 135-140.
doi: 10.1109/TAC.2010.2085573. |
[11] |
J. F. He, W. Xu, Z. G. Feng and X. Yang,
On the global optimal solution for linear quadratic problems of switched system, Journal of Industrial and Management Optimization, 15 (2019), 817-832.
|
[12] |
M. Kamgarpour and C. Tomlin,
On optimal control of non-autonomous switched systems with a fixed mode sequence, Journal of Global Optimization, 48 (2012), 1177-1181.
doi: 10.1016/j.automatica.2012.03.019. |
[13] |
B. Li and Y. Rong,
Joint transceiver optimization for wireless information and energy transfer in nonregenerative MIMO relay systems, IEEE Transactions on Vehicular Technology, 67 (2018), 8348-8362.
doi: 10.1109/TVT.2018.2846556. |
[14] |
B. Li and Y. Rong,
AF MIMO relay systems with wireless powered relay node and direct link, IEEE Transactions on Communications, 66 (2018), 1508-1519.
doi: 10.1109/TCOMM.2017.2788006. |
[15] |
B. Li, Y. Rong, J. Sun and K. L. Teo,
A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, IEEE Transactions on Wireless Communications, 16 (2017), 464-474.
doi: 10.1109/TWC.2016.2625246. |
[16] |
R. Li, K. L. Teo, K. H. Wong and G. R. Duan,
Control parametrization enhancing transform for optimal control of switched systems, Mathematical and Computer Modelling, 43 (2006), 1393-1403.
doi: 10.1016/j.mcm.2005.08.012. |
[17] |
C. Liu, Z. Gong, K. L. Teo, J. Sun and L. Caccetta,
Robust multi-objective optimal switching control arising in 1, 3-propanediol microbial fed-batch process, Nonlinear Analysis: Hybrid Systems, 25 (2017), 1-20.
doi: 10.1016/j.nahs.2017.01.006. |
[18] |
R. Loxton, Q. Lin and K. L. Teo,
Minimizing control variation in nonlinear optimal control, Automatica, 49 (2013), 2652-2664.
doi: 10.1016/j.automatica.2013.05.027. |
[19] |
R. C. Loxton, K. L. Teo, V. Rehbock and W. K. Ling,
Optimal switching instants for a switched-capacitor DC/DC power converter, Automatica, 45 (2009), 973-980.
doi: 10.1016/j.automatica.2008.10.031. |
[20] |
W. Lu, P. Zhu and S. Ferrari,
A hybrid-adaptive dynamic programming approach for the model-free control of nonlinear switched systems, IEEE Transactions on Automatic Control, 61 (2016), 3203-3208.
doi: 10.1109/TAC.2015.2509421. |
[21] |
C. Seatzu, D. Corona, A. Giua and A. Bemporad,
Optimal control of continuous-time switched affine systems, IEEE Transactions on Automatic Control, 51 (2006), 726-741.
doi: 10.1109/TAC.2006.875053. |
[22] |
Y. Wardi, M. Egerstedt and M. Hale,
Switched-mode systems: Gradient-descent algorithms with Armijo step sizes, Discrete Event Dynamic Systems, 25 (2015), 571-599.
doi: 10.1007/s10626-014-0198-2. |
[23] |
W. Xu, Z. G. Feng, J. W. Peng and K. F. C. Yiu,
Optimal switching for linear quadratic problem of switched systems in discrete time, Automatica, 78 (2017), 185-193.
doi: 10.1016/j.automatica.2016.12.002. |
[24] |
W. Xu, Z. G. Feng, G. H. Lin and L. Yu,
Optimal scheduling of discrete-time switched linear systems, IMA Journal of Mathematical Control and Information, (2018).
doi: 10.1093/imamci/dny034. |
[25] |
H. Yan, Y. Sun and Y. Zhu,
A linear-quadratic control problem of uncertain discrete-time switched systems, Journal of Industrial and Management Optimization, 13 (2017), 267-282.
doi: 10.3934/jimo.2016016. |
[26] |
F. Yang, K. L. Teo, R. Loxton, V. Rehbock, B. Li, C. Yu and L. Jennings,
Visual miser: an efficient user-friendly visual program for solving optimal control problems, Journal of Industrial and Management Optimization, 12 (2016), 781-810.
doi: 10.3934/jimo.2016.12.781. |
[27] |
J. Zhai, T. Niu, J. Ye and E. Feng,
Optimal control of nonlinear switched system with mixed constraints and its parallel optimization algorithm, Nonlinear Analysis: Hybrid Systems, 25 (2017), 21-40.
doi: 10.1016/j.nahs.2017.02.001. |


Global optimal solution |
Switching times | Performance index | Switching cost | Optimal functional value |
|
(1 4 2 1 3 1 4 2 3 2) | 9 | 40 | 0 | 40 | |
(1 4 2 1 3 1 4 2 1 1) | 8 | 40 | 0 | 40 | |
(1 4 2 1 3 1 4 2 1 1) | 8 | 40 | 8 | 48 | |
(1 1 3 4 4 4 2 1 1 1) | 4 | 45 | 3 | 48 | |
(1 1 3 4 4 4 2 1 1 1) | 4 | 45 | 6 | 51 | |
(2 3 2 2 2 2 1 1 1 1) | 3 | 50 | 6 | 56 | |
(1 1 1 2 2 2 2 2 2 2) | 1 | 59 | 5 | 64 |
Global optimal solution |
Switching times | Performance index | Switching cost | Optimal functional value |
|
(1 4 2 1 3 1 4 2 3 2) | 9 | 40 | 0 | 40 | |
(1 4 2 1 3 1 4 2 1 1) | 8 | 40 | 0 | 40 | |
(1 4 2 1 3 1 4 2 1 1) | 8 | 40 | 8 | 48 | |
(1 1 3 4 4 4 2 1 1 1) | 4 | 45 | 3 | 48 | |
(1 1 3 4 4 4 2 1 1 1) | 4 | 45 | 6 | 51 | |
(2 3 2 2 2 2 1 1 1 1) | 3 | 50 | 6 | 56 | |
(1 1 1 2 2 2 2 2 2 2) | 1 | 59 | 5 | 64 |
Approximate B&B method | Exact B&B method | |||||||
Searching times | Time | Searching times | Time | |||||
(1 4 2 1 3 1 4 2 3 2) | 40 | 116 | 0.0826s | (1 4 2 1 3 1 4 2 3 2) | 40 | 128 | 0.1055s | |
(1 4 2 1 3 1 4 2 1 1) | (1 4 2 1 3 1 4 2 1 1) | |||||||
(1 4 2 1 3 1 4 2 1 1) | 48 | 144 | 0.1275s | (1 4 2 1 3 1 4 2 1 1) | 48 | 152 | 0.1310s | |
(1 1 3 4 4 4 2 1 1 1) | (1 1 3 4 4 4 2 1 1 1) | |||||||
(1 1 3 4 4 4 2 1 1 1) | 51 | 376 | 0.2371s | (1 1 3 4 4 4 2 1 1 1) | 51 | 392 | 0.2481s | |
(2 3 2 2 2 2 1 1 1 1) | 56 | 440 | 0.2799s | (2 3 2 2 2 2 1 1 1 1) | 56 | 444 | 0.2806s | |
(1 1 1 2 2 2 2 2 2 2) | 64 | 360 | 0.2280s | (1 1 1 2 2 2 2 2 2 2) | 64 | 372 | 0.2346s |
Approximate B&B method | Exact B&B method | |||||||
Searching times | Time | Searching times | Time | |||||
(1 4 2 1 3 1 4 2 3 2) | 40 | 116 | 0.0826s | (1 4 2 1 3 1 4 2 3 2) | 40 | 128 | 0.1055s | |
(1 4 2 1 3 1 4 2 1 1) | (1 4 2 1 3 1 4 2 1 1) | |||||||
(1 4 2 1 3 1 4 2 1 1) | 48 | 144 | 0.1275s | (1 4 2 1 3 1 4 2 1 1) | 48 | 152 | 0.1310s | |
(1 1 3 4 4 4 2 1 1 1) | (1 1 3 4 4 4 2 1 1 1) | |||||||
(1 1 3 4 4 4 2 1 1 1) | 51 | 376 | 0.2371s | (1 1 3 4 4 4 2 1 1 1) | 51 | 392 | 0.2481s | |
(2 3 2 2 2 2 1 1 1 1) | 56 | 440 | 0.2799s | (2 3 2 2 2 2 1 1 1 1) | 56 | 444 | 0.2806s | |
(1 1 1 2 2 2 2 2 2 2) | 64 | 360 | 0.2280s | (1 1 1 2 2 2 2 2 2 2) | 64 | 372 | 0.2346s |
Approximate B&B method | Exact B&B method | |||||||
Searching times | Time | Searching times | Time | |||||
0 | (1 4 2 1 1 1 1 1 3 1) | 55 | 8 | 0.0115s | (1 4 2 1 3 1 4 2 3 2) | 40 | 2796 | 10.4855s |
(1 4 2 1 3 1 4 2 1 1) | ||||||||
(1 4 2 1 1 1 1 1 3 1) | 60 | 8 | 0.0115s | (1 4 2 1 3 1 4 2 1 1) | 48 | 2948 | 10.7044s | |
(1 1 3 4 4 4 2 1 1 1) | ||||||||
(1 1 3 4 4 4 2 1 1 1) | 51 | 4 | 0.0091s | (1 1 3 4 4 4 2 1 1 1) | 51 | 2768 | 10.4657s | |
(1 1 3 4 4 4 2 1 1 1) | 57 | 12 | 0.1379s | (2 3 2 2 2 2 1 1 1 1) | 56 | 2504 | 10.3680s | |
(1 1 3 4 4 4 2 2 2 2) | ||||||||
(1 1 3 4 4 4 4 3 3 3) | 70 | 4 | 0.0091s | (1 1 1 2 2 2 2 2 2 2) | 64 | 2028 | 9.6311s |
Approximate B&B method | Exact B&B method | |||||||
Searching times | Time | Searching times | Time | |||||
0 | (1 4 2 1 1 1 1 1 3 1) | 55 | 8 | 0.0115s | (1 4 2 1 3 1 4 2 3 2) | 40 | 2796 | 10.4855s |
(1 4 2 1 3 1 4 2 1 1) | ||||||||
(1 4 2 1 1 1 1 1 3 1) | 60 | 8 | 0.0115s | (1 4 2 1 3 1 4 2 1 1) | 48 | 2948 | 10.7044s | |
(1 1 3 4 4 4 2 1 1 1) | ||||||||
(1 1 3 4 4 4 2 1 1 1) | 51 | 4 | 0.0091s | (1 1 3 4 4 4 2 1 1 1) | 51 | 2768 | 10.4657s | |
(1 1 3 4 4 4 2 1 1 1) | 57 | 12 | 0.1379s | (2 3 2 2 2 2 1 1 1 1) | 56 | 2504 | 10.3680s | |
(1 1 3 4 4 4 2 2 2 2) | ||||||||
(1 1 3 4 4 4 4 3 3 3) | 70 | 4 | 0.0091s | (1 1 1 2 2 2 2 2 2 2) | 64 | 2028 | 9.6311s |
Global optimal solution |
Switching times | Performance index | Switching cost | Optimal functional value |
|
0 | (3 4 2 3 4 1 1 3 3 4) | 7 | 5.1452 | 0 | 5.1452 |
0.1 | (3 4 2 4 1 4 4 4 4 4) | 5 | 5.2376 | 0.5 | 5.7376 |
0.5 | (2 3 3 2 4 4 4 4 4 4) | 3 | 5.6759 | 1.5 | 7.1759 |
2 | (2 3 3 2 4 4 4 4 4 4) | 3 | 5.6759 | 6 | 11.6759 |
5 | (2 3 3 3 4 4 4 4 4 4) | 2 | 7.7973 | 10 | 17.7973 |
10 | (4 4 4 4 4 4 4 4 4 4) | 0 | 18.5961 | 0 | 18.5961 |
Global optimal solution |
Switching times | Performance index | Switching cost | Optimal functional value |
|
0 | (3 4 2 3 4 1 1 3 3 4) | 7 | 5.1452 | 0 | 5.1452 |
0.1 | (3 4 2 4 1 4 4 4 4 4) | 5 | 5.2376 | 0.5 | 5.7376 |
0.5 | (2 3 3 2 4 4 4 4 4 4) | 3 | 5.6759 | 1.5 | 7.1759 |
2 | (2 3 3 2 4 4 4 4 4 4) | 3 | 5.6759 | 6 | 11.6759 |
5 | (2 3 3 3 4 4 4 4 4 4) | 2 | 7.7973 | 10 | 17.7973 |
10 | (4 4 4 4 4 4 4 4 4 4) | 0 | 18.5961 | 0 | 18.5961 |
Approximate B&B method | Exact B&B method | |||||||
Searching times | Time | Searching times | Time | |||||
0 | (3 4 2 3 4 1 1 3 3 4) | 5.1452 | 164 | 0.5458s | (3 4 2 3 4 1 1 3 3 4) | 5.1452 | 168 | 0.6742s |
0.1 | (3 4 2 4 1 4 4 4 4 4) | 5.7376 | 108 | 0.6379s | (3 4 2 4 1 4 4 4 4 4) | 5.7376 | 64 | 0.7968s |
0.5 | (2 3 3 2 4 4 4 4 4 4) | 7.1759 | 96 | 0.7146s | (2 3 3 2 4 4 4 4 4 4) | 7.1759 | 120 | 0.9573s |
2 | (2 3 3 2 4 4 4 4 4 4) | 11.6759 | 132 | 1.5675s | (2 3 3 2 4 4 4 4 4 4) | 11.6759 | 172 | 1.7968s |
5 | (2 3 3 3 4 4 4 4 4 4) | 17.7973 | 36 | 1.2749s | (2 3 3 3 4 4 4 4 4 4) | 17.7973 | 36 | 1.6238s |
10 | (4 4 4 4 4 4 4 4 4 4) | 18.5961 | 24 | 0.8772s | (4 4 4 4 4 4 4 4 4 4) | 18.5961 | 68 | 1.2210s |
Approximate B&B method | Exact B&B method | |||||||
Searching times | Time | Searching times | Time | |||||
0 | (3 4 2 3 4 1 1 3 3 4) | 5.1452 | 164 | 0.5458s | (3 4 2 3 4 1 1 3 3 4) | 5.1452 | 168 | 0.6742s |
0.1 | (3 4 2 4 1 4 4 4 4 4) | 5.7376 | 108 | 0.6379s | (3 4 2 4 1 4 4 4 4 4) | 5.7376 | 64 | 0.7968s |
0.5 | (2 3 3 2 4 4 4 4 4 4) | 7.1759 | 96 | 0.7146s | (2 3 3 2 4 4 4 4 4 4) | 7.1759 | 120 | 0.9573s |
2 | (2 3 3 2 4 4 4 4 4 4) | 11.6759 | 132 | 1.5675s | (2 3 3 2 4 4 4 4 4 4) | 11.6759 | 172 | 1.7968s |
5 | (2 3 3 3 4 4 4 4 4 4) | 17.7973 | 36 | 1.2749s | (2 3 3 3 4 4 4 4 4 4) | 17.7973 | 36 | 1.6238s |
10 | (4 4 4 4 4 4 4 4 4 4) | 18.5961 | 24 | 0.8772s | (4 4 4 4 4 4 4 4 4 4) | 18.5961 | 68 | 1.2210s |
Approximate B&B method | Exact B&B method | |||||||
Searching times | Time | Searching times | Time | |||||
0 | (2 3 3 2 4 1 4 3 4 4) | 5.5347 | 12 | 0.0679s | (3 4 2 3 4 1 1 3 3 4) | 5.1452 | 660 | 85.3819s |
0.1 | (2 3 3 2 4 1 4 4 4 4) | 6.1436 | 4 | 0.0615s | (3 4 2 4 1 4 4 4 4 4) | 5.7376 | 568 | 86.7247s |
0.5 | (2 3 3 2 4 4 4 4 4 4) | 7.1759 | 4 | 0.0618s | (2 3 3 2 4 4 4 4 4 4) | 7.1759 | 508 | 87.3288s |
2 | (2 3 3 2 4 4 4 4 4 4) | 11.6759 | 24 | 0.1131s | (2 3 3 2 4 4 4 4 4 4) | 11.6759 | 408 | 86.0455s |
5 | (2 3 3 3 4 4 4 4 4 4) | 17.7973 | 4 | 0.0797s | (2 3 3 3 4 4 4 4 4 4) | 17.7973 | 372 | 84.8442s |
10 | (2 3 3 3 4 4 4 4 4 4) | 27.7973 | 4 | 0.2317s | (4 4 4 4 4 4 4 4 4 4) | 18.5961 | 332 | 83.2846s |
Approximate B&B method | Exact B&B method | |||||||
Searching times | Time | Searching times | Time | |||||
0 | (2 3 3 2 4 1 4 3 4 4) | 5.5347 | 12 | 0.0679s | (3 4 2 3 4 1 1 3 3 4) | 5.1452 | 660 | 85.3819s |
0.1 | (2 3 3 2 4 1 4 4 4 4) | 6.1436 | 4 | 0.0615s | (3 4 2 4 1 4 4 4 4 4) | 5.7376 | 568 | 86.7247s |
0.5 | (2 3 3 2 4 4 4 4 4 4) | 7.1759 | 4 | 0.0618s | (2 3 3 2 4 4 4 4 4 4) | 7.1759 | 508 | 87.3288s |
2 | (2 3 3 2 4 4 4 4 4 4) | 11.6759 | 24 | 0.1131s | (2 3 3 2 4 4 4 4 4 4) | 11.6759 | 408 | 86.0455s |
5 | (2 3 3 3 4 4 4 4 4 4) | 17.7973 | 4 | 0.0797s | (2 3 3 3 4 4 4 4 4 4) | 17.7973 | 372 | 84.8442s |
10 | (2 3 3 3 4 4 4 4 4 4) | 27.7973 | 4 | 0.2317s | (4 4 4 4 4 4 4 4 4 4) | 18.5961 | 332 | 83.2846s |
[1] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[2] |
Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021037 |
[3] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[4] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[5] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[6] |
Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207 |
[7] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[8] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[9] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[10] |
Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021040 |
[11] |
John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026 |
[12] |
Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020127 |
[13] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[14] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[15] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[16] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[17] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[18] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[19] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[20] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]