[1]
|
C. A and Z. Li, Optimal investment and excess-of-loss reinsurance problem with delay for an insurer under Heston's SV model, Insurance: Mathematics and Economics, 61 (2011), 181-196.
doi: 10.1016/j.insmatheco.2015.01.005.
|
[2]
|
T. Bielecki and M. Rutkowski, Credit Risk: Modelling, Valuation and Hedging, 2nd edition, Springer-Verlag, New York, 2002.
|
[3]
|
T. Bielecki and I. Jang, Portfolio optimization with a defaultable security, Asia-Pacific Financial Markets, 13 (2006), 113-127.
|
[4]
|
C. Blanchet-Scalliet and M. Jeanblanc, Hazard rate for credit risk and hedging defaultable contingent claims, Finance and Stochastics, 8 (2004), 145-159.
doi: 10.1007/s00780-003-0108-1.
|
[5]
|
S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Mathematics of Operations Research, 20 (1995), 937-958.
doi: 10.1287/moor.20.4.937.
|
[6]
|
L. Bo, Y. Wang and X. Yang, Stochastic portfolio optimization with default risk, Journal of Mathematical Analysis and Applications, 397 (2013), 467-480.
doi: 10.1016/j.jmaa.2012.07.058.
|
[7]
|
L. Chen and H. Yang, Optimal reinsurance and investment strategy with two piece utility function, Journal of Industrial and Management Optimization, 13 (2017), 737-755.
doi: 10.3934/jimo.2016044.
|
[8]
|
M. Chang, T. Pang and Y. Yang, A stochastic portfolio optimization model with bounded memory, Mathematics of Operations Research, 36 (2011), 604-619.
doi: 10.1287/moor.1110.0508.
|
[9]
|
C. Deng, X. Zeng and H. Zhu, Non-zero-sum stochastic differential reinsurance and investment games with default risk, European Journal of Operational Research, 264 (2018), 1144-1158.
doi: 10.1016/j.ejor.2017.06.065.
|
[10]
|
D. Duffie and K. Singleton, Modeling term structures of defaultable bonds, Review of Financial Studies, 12 (1999), 687-720.
|
[11]
|
Y. Huang, X. Yang and J. Zhou, Optimal investment and proportional reinsurance for a jump-diffusion risk model with constrained control variables, Journal of Computational and Applied Mathematics, 296 (2016), 443-461.
doi: 10.1016/j.cam.2015.09.032.
|
[12]
|
M. Jeanblanc and M. Rutkowski, Default risk and hazard process, in Mathematical Finance–Bachelier Congress 2000, Springer Finance, Springer, Berlin, 2002, 281–312.
|
[13]
|
X. Liang and L. Bai, Minimizing expected time to reach a given capital level before ruin, Journal of Industrial and Management Optimization, 13 (2017), 1771-1791.
doi: 10.3934/jimo.2017018.
|
[14]
|
Z. Liang, L. Bai and J. Guo, Optimal investment and proportional reinsurance with constrained control variables, Optimal Control Applications and Methods, 32 (2011), 587-608.
doi: 10.1002/oca.965.
|
[15]
|
Z. Liang, K. Yuen and K. Cheung, Optimal reinsurance-investment problem in a constant elasticity of variance stock market for jump-diffusion risk model, Applied Stochastic Models in Business and Industry, 28 (2012), 585-597.
doi: 10.1002/asmb.934.
|
[16]
|
S. Luo, M. Taksar and A. Tsoi, On reinsurance and investment for large insurance portfolios, Insurance: Mathematics and Economics, 42 (2008), 434-444.
doi: 10.1016/j.insmatheco.2007.04.002.
|
[17]
|
D. Landriault, B. Li, D. Li and D. Li, A pair of optimal reinsurance-investment strategies in the two-sided exit framework, Insurance: Mathematics and Economics, 71 (2016), 284-294.
doi: 10.1016/j.insmatheco.2016.09.002.
|
[18]
|
D. Li, X. Rong and H. Zhao, Time-consistent reinsurance-investment strategy for a mean-variance insurer under stochastic interest rate model and inflation risk, Insurance Mathematics and Economics, 64 (2015), 28-44.
doi: 10.1016/j.insmatheco.2015.05.003.
|
[19]
|
S. Li, Z. Jin, P. Chen and N. Zhang, Markowitz's mean-variance optimization with investment and constrained reinsurance, Journal of Industrial Management Optimization, 13 (2017), 375-397.
doi: 10.3934/jimo.2016022.
|
[20]
|
T. Pang and A. Hussain, A stochastic portfolio optimization model with complete memory, Stochastic Analysis and Applications, 35 (2017), 742-766.
doi: 10.1080/07362994.2017.1299629.
|
[21]
|
Y. Shen and Y. Zeng, Optimal investment-reinsurance with delay for mean-variance insurers: A maximum principle approach, Insurance: Mathematics and Economics, 57 (2014), 1-12.
doi: 10.1016/j.insmatheco.2014.04.004.
|
[22]
|
Y. Shen, Q. Meng and P. Shi, Maximum principle for mean-field jump-diffusion stochastic delay differential equations and its application to finance, Automatica, 50 (2014), 1565-1579.
doi: 10.1016/j.automatica.2014.03.021.
|
[23]
|
H. Schmidli, On minimizing the ruin probability by investment and reinsurance, Annals of Applied Probability, 12 (2002), 890-907.
doi: 10.1214/aoap/1031863173.
|
[24]
|
L. Xu, R. Wang and D. Yao, On maximizing the expected terminal utility by investment and reinsurance, Journal of Industrial and Management Optimization, 4 (2008), 801-815.
doi: 10.3934/jimo.2008.4.801.
|
[25]
|
H. Yang and L. Zhang, Optimal investment for insurer with jump-diffusion risk process, Insurance: Mathematics and Economics, 37 (2005), 615-634.
doi: 10.1016/j.insmatheco.2005.06.009.
|
[26]
|
Y. Zeng and Z. Li, Optimal time-consistent investment and reinsurance policies for mean-variance insurers, Insurance: Mathematics and Economics, 49 (2011), 145-154.
doi: 10.1016/j.insmatheco.2011.01.001.
|
[27]
|
H. Zhao, Y. Shen and Y. Zeng, Time-consistent investment-reinsurance strategy for mean-variance insurers with a defaultable security, Journal of Mathematical Analysis and Applications, 437 (2016), 1036-1057.
doi: 10.1016/j.jmaa.2016.01.035.
|
[28]
|
H. Zhu, C. Deng, S. Yue and Y. Deng, Optimal reinsurance and investment problem for an insurer with counterparty risk, Insurance: Mathematics and Economics, 61 (2015), 242-254.
doi: 10.1016/j.insmatheco.2015.01.013.
|
[29]
|
B. Zou and A. Cadenillas, Optimal investment and risk control policies for an insurer: Expected utility maximization, Insurance: Mathematics and Economics, 58 (2014), 57-67.
doi: 10.1016/j.insmatheco.2014.06.006.
|