
-
Previous Article
Pricing dynamic fund protection under a Regime-switching Jump-diffusion model with stochastic protection level
- JIMO Home
- This Issue
- Next Article
Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk
1. | School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210094, China |
2. | Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong |
3. | Jiangsu Provincial Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023, China |
A portfolio optimization model with relaxed second order stochastic dominance (SSD) constraints is presented. The proposed model uses Conditional Value at Risk (CVaR) constraints at probability level $ \beta\in(0,1) $ to relax SSD constraints. The relaxation is justified by theoretical convergence results based on sample average approximation (SAA) method when sample size $ N\to\infty $ and CVaR probability level $ \beta $ tends to 1. SAA method is used to reduce infinite number of inequalities of SSD constraints to finite ones and also to calculate the expectation value. The proposed relaxation on the SSD constraints in portfolio optimization problem is achieved when the probability level $ \beta $ of CVaR takes value less than but close to 1, and the model can then be solved by cutting plane method. The performance and characteristics of the portfolios constructed by solving the proposed model are tested empirically on three sets of market data, and the experimental results are analyzed and discussed. Furthermore, it is shown that with appropriate choices of CVaR probability level $ \beta $, the constructed portfolios are sparse and outperform the portfolios constructed by solving portfolio optimization problems with SSD constraints, with either index portfolios or mean-variance (MV) portfolios as benchmarks.
References:
[1] |
G. J. Alexander and A. M. Baptista, A comparison of VaR and CVaR constraints on portfolio selection with the mean-variance model, Manag. Sci., 50 (2004), 1261-1273. Google Scholar |
[2] |
E. Anderson, H. Xu and D. Zhang, Confidence levels for CVaR risk measures and minimax limits, manuscript, The University of Sydney, 2014. Available from: http://hdl.handle.net/2123/9943. Google Scholar |
[3] |
K. B. Athreya and S. N. Lahiri, Measure Theory and Probability Theory, Springer Texts in Statistics, Springer, New York, 2006. |
[4] |
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer Series in Operations Research, Springer-Verlag, 2000.
doi: 10.1007/978-1-4612-1394-9. |
[5] |
F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983. |
[6] |
N. A. Canakgoz and J. E. Beasley,
Mixed-integer programming approaches for index tracking and en-hanced indexation, European J. Oper. Res., 196 (2009), 384-399.
doi: 10.1016/j.ejor.2008.03.015. |
[7] |
D. Dentcheva and A. Ruszczyński,
Optimization with stochastic dominance constraints, SIAM J. Optim., 14 (2003), 548-566.
doi: 10.1137/S1052623402420528. |
[8] |
D. Dentcheva and A. Ruszczyński,
Semi-infinite probabilistic constraints: Optimality and convexification, Optimization, 53 (2004), 583-601.
doi: 10.1080/02331930412331327148. |
[9] |
D. Dentcheva and A. Ruszczyński,
Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints, Math. Program., 99 (2004), 329-350.
doi: 10.1007/s10107-003-0453-z. |
[10] |
D. Dentcheva and A. Ruszczyński,
Portfolio optimization with stochastic dominance constraints, J. Bank. Financ., 30 (2006), 433-451.
doi: 10.1137/S1052623402420528. |
[11] |
D. Dentcheva and A. Ruszczyński,
Inverse cutting plane methods for optimization problems with second-order stochastic dominance constraints, Optimization, 59 (2010), 323-338.
doi: 10.1080/02331931003696350. |
[12] |
D. Dentcheva and A. Ruszczyński, Risk-averse portfolio optimization via stochastic dominance constraints, in Handbook of Quantitative Finance and Risk Management (eds. C. Lee, A. Lee and J. Lee), Springer, New York, (2015), 2281-2302. Google Scholar |
[13] |
C. Fábián, G. Mitra and D. Roman,
Processing second-order stochastic dominance models using cutting-plane representations, Math. Program., 130 (2011), 33-57.
doi: 10.1007/s10107-009-0326-1. |
[14] |
M. Gugat,
A parametric review on the Mangasarian-Fromovitz constraint qualification, Math. Program., 85 (1999), 643-653.
doi: 10.1007/s101070050075. |
[15] |
T. Homem-de-Mello and S. Mehrota,
A cutting surface method for uncertain linear programs with polyhedral stochastic dominance constraints, SIAM J. Optim., 20 (2009), 1250-1273.
doi: 10.1137/08074009X. |
[16] |
J. Hu, T. Homen-De-Mello and S. Mehrotra,
Sample average approximation of stochastic dominance constrained programs, Math. Program., 133 (2012), 171-201.
doi: 10.1007/s10107-010-0428-9. |
[17] |
P. Jorion, Value at Risk: The New Benchmark for Controlling Market Risk, McGraw-Hill Inc., US, 2006. Google Scholar |
[18] |
J. E. Kelley,
The cutting-plane method for solving convex programs, SIAM J. Appl. Math., 8 (1960), 703-712.
doi: 10.1137/0108053. |
[19] |
P. Kolm, R. Tütüncü and F. Fabozzi,
60 Years of portfolio optimization: Practical challenges and current trends, European J. Oper. Res., 234 (2014), 356-371.
doi: 10.1016/j.ejor.2013.10.060. |
[20] |
H. Konno and H. Yamazaki,
Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Manag. Sci., 37 (1991), 519-531.
doi: 10.1287/mnsc.37.5.519. |
[21] |
H. Konno, H. Shirakawa and H. Yamazaki,
A mean-absolute deviation-skewness portfolio optimization model, Ann. Oper. Res., 45 (1993), 205-220.
doi: 10.1007/BF02282050. |
[22] |
Y. Liu and H. Xu,
Stability and sensitivity analysis of stochastic programs with second order dominance constraints, Math. Program., 142 (2013), 435-460.
doi: 10.1007/s10107-012-0585-0. |
[23] |
H. Markowitz, Portfolio Selection, J. Finance, (1952), 77-91. Google Scholar |
[24] |
H. Markowitz, Portfolio Selection, John Wiley & Sons, New York, 1959. Google Scholar |
[25] |
K. Mosler and M. Scarsini, (eds.), Stochastic Orders and Decision under Risk, Institute of Mathematical Statistics, Hayward, CA, 1991. |
[26] |
W. Ogryczak and A Ruszczyński,
From stochastic dominance to mean-risk models: Semideviations as risk measures, Euro. J. Oper. Res., 116 (1999), 33-50.
doi: 10.1016/S0377-2217(98)00167-2. |
[27] |
W. Ogryczak and A Ruszczyński,
Dual stochastic dominance and related mean-risk models, SIAM J. Optim., 13 (2002), 60-78.
doi: 10.1137/S1052623400375075. |
[28] |
R. T. Rockafellar and S. Uryasev,
Optimization of conditional value-at-risk, J. Risk, 2 (2000), 21-41.
doi: 10.21314/JOR.2000.038. |
[29] |
D. Roman, K. Darby-Dowman and G. Mitra,
Portfolio construction based on stochastic dominance and target return distributions, Math. Program., 108 (2000), 541-569.
doi: 10.1007/s10107-006-0722-8. |
[30] |
D. Roman, G. Mitra and V. Zverovich,
Enhanced indexation based on second-order stochastic dominance, European J. Oper. Res., 228 (2013), 273-281.
doi: 10.1016/j.ejor.2013.01.035. |
[31] |
G. Rudolf and A. Ruszczyński,
Optimization problems with second order stochastic dominance constraints: Duality, compact formulations, and cut generation methods, SIAM J. Optim., 19 (2008), 1326-1343.
doi: 10.1137/070702473. |
[32] |
H. Sun, H. Xu and Y. Wang, A smoothing penalized sample average approximation method for stochastic programs with second order stochastic dominance constraints, Asia-Pac. J. Oper. Res., 30 (2013), 1340002 (25 pages).
doi: 10.1142/S0217595913400022. |
[33] |
H. Sun, H. Xu, R. Meskarian and Y. Wang,
Exact penalization, level function method and modified cutting-plane method for stochastic programs with second order stochastic dominance constraints, SIAM J. Optim., 23 (2013), 602-631.
doi: 10.1137/110850815. |
[34] |
H. Sun and H. Xu,
Convergence analysis of stationary points in-sample average approximation of stochastic programs with second order stochastic dominance constraints, Math. Program., 143 (2014), 31-59.
doi: 10.1007/s10107-013-0711-7. |
[35] |
W. E. Sharpe,
The Sharpe Ratio, J. Portfolio Manage., 21 (1994), 49-58.
doi: 10.3905/jpm.1994.409501. |
[36] |
F. A. Sortino and L. N. Price,
Performance measurement in a downside risk framework, J. Invest., 3 (2009), 59-64.
doi: 10.3905/joi.3.3.59. |
[37] |
G. A. Whitmore and M. C. Findlay, (eds.), Stochastic Dominance: An Approach to Decision-Making Under Risk, D.C.Heath, Lexington, MA., 1978. Google Scholar |
[38] |
F. Xu, M. Wang, Y. H. Dai and D. Xu,
A sparse enhanced indexation model with chance and cardinality constraints, J. Glob. Optim., 70 (2018), 5-25.
doi: 10.1007/s10898-017-0513-1. |
show all references
References:
[1] |
G. J. Alexander and A. M. Baptista, A comparison of VaR and CVaR constraints on portfolio selection with the mean-variance model, Manag. Sci., 50 (2004), 1261-1273. Google Scholar |
[2] |
E. Anderson, H. Xu and D. Zhang, Confidence levels for CVaR risk measures and minimax limits, manuscript, The University of Sydney, 2014. Available from: http://hdl.handle.net/2123/9943. Google Scholar |
[3] |
K. B. Athreya and S. N. Lahiri, Measure Theory and Probability Theory, Springer Texts in Statistics, Springer, New York, 2006. |
[4] |
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer Series in Operations Research, Springer-Verlag, 2000.
doi: 10.1007/978-1-4612-1394-9. |
[5] |
F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983. |
[6] |
N. A. Canakgoz and J. E. Beasley,
Mixed-integer programming approaches for index tracking and en-hanced indexation, European J. Oper. Res., 196 (2009), 384-399.
doi: 10.1016/j.ejor.2008.03.015. |
[7] |
D. Dentcheva and A. Ruszczyński,
Optimization with stochastic dominance constraints, SIAM J. Optim., 14 (2003), 548-566.
doi: 10.1137/S1052623402420528. |
[8] |
D. Dentcheva and A. Ruszczyński,
Semi-infinite probabilistic constraints: Optimality and convexification, Optimization, 53 (2004), 583-601.
doi: 10.1080/02331930412331327148. |
[9] |
D. Dentcheva and A. Ruszczyński,
Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints, Math. Program., 99 (2004), 329-350.
doi: 10.1007/s10107-003-0453-z. |
[10] |
D. Dentcheva and A. Ruszczyński,
Portfolio optimization with stochastic dominance constraints, J. Bank. Financ., 30 (2006), 433-451.
doi: 10.1137/S1052623402420528. |
[11] |
D. Dentcheva and A. Ruszczyński,
Inverse cutting plane methods for optimization problems with second-order stochastic dominance constraints, Optimization, 59 (2010), 323-338.
doi: 10.1080/02331931003696350. |
[12] |
D. Dentcheva and A. Ruszczyński, Risk-averse portfolio optimization via stochastic dominance constraints, in Handbook of Quantitative Finance and Risk Management (eds. C. Lee, A. Lee and J. Lee), Springer, New York, (2015), 2281-2302. Google Scholar |
[13] |
C. Fábián, G. Mitra and D. Roman,
Processing second-order stochastic dominance models using cutting-plane representations, Math. Program., 130 (2011), 33-57.
doi: 10.1007/s10107-009-0326-1. |
[14] |
M. Gugat,
A parametric review on the Mangasarian-Fromovitz constraint qualification, Math. Program., 85 (1999), 643-653.
doi: 10.1007/s101070050075. |
[15] |
T. Homem-de-Mello and S. Mehrota,
A cutting surface method for uncertain linear programs with polyhedral stochastic dominance constraints, SIAM J. Optim., 20 (2009), 1250-1273.
doi: 10.1137/08074009X. |
[16] |
J. Hu, T. Homen-De-Mello and S. Mehrotra,
Sample average approximation of stochastic dominance constrained programs, Math. Program., 133 (2012), 171-201.
doi: 10.1007/s10107-010-0428-9. |
[17] |
P. Jorion, Value at Risk: The New Benchmark for Controlling Market Risk, McGraw-Hill Inc., US, 2006. Google Scholar |
[18] |
J. E. Kelley,
The cutting-plane method for solving convex programs, SIAM J. Appl. Math., 8 (1960), 703-712.
doi: 10.1137/0108053. |
[19] |
P. Kolm, R. Tütüncü and F. Fabozzi,
60 Years of portfolio optimization: Practical challenges and current trends, European J. Oper. Res., 234 (2014), 356-371.
doi: 10.1016/j.ejor.2013.10.060. |
[20] |
H. Konno and H. Yamazaki,
Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Manag. Sci., 37 (1991), 519-531.
doi: 10.1287/mnsc.37.5.519. |
[21] |
H. Konno, H. Shirakawa and H. Yamazaki,
A mean-absolute deviation-skewness portfolio optimization model, Ann. Oper. Res., 45 (1993), 205-220.
doi: 10.1007/BF02282050. |
[22] |
Y. Liu and H. Xu,
Stability and sensitivity analysis of stochastic programs with second order dominance constraints, Math. Program., 142 (2013), 435-460.
doi: 10.1007/s10107-012-0585-0. |
[23] |
H. Markowitz, Portfolio Selection, J. Finance, (1952), 77-91. Google Scholar |
[24] |
H. Markowitz, Portfolio Selection, John Wiley & Sons, New York, 1959. Google Scholar |
[25] |
K. Mosler and M. Scarsini, (eds.), Stochastic Orders and Decision under Risk, Institute of Mathematical Statistics, Hayward, CA, 1991. |
[26] |
W. Ogryczak and A Ruszczyński,
From stochastic dominance to mean-risk models: Semideviations as risk measures, Euro. J. Oper. Res., 116 (1999), 33-50.
doi: 10.1016/S0377-2217(98)00167-2. |
[27] |
W. Ogryczak and A Ruszczyński,
Dual stochastic dominance and related mean-risk models, SIAM J. Optim., 13 (2002), 60-78.
doi: 10.1137/S1052623400375075. |
[28] |
R. T. Rockafellar and S. Uryasev,
Optimization of conditional value-at-risk, J. Risk, 2 (2000), 21-41.
doi: 10.21314/JOR.2000.038. |
[29] |
D. Roman, K. Darby-Dowman and G. Mitra,
Portfolio construction based on stochastic dominance and target return distributions, Math. Program., 108 (2000), 541-569.
doi: 10.1007/s10107-006-0722-8. |
[30] |
D. Roman, G. Mitra and V. Zverovich,
Enhanced indexation based on second-order stochastic dominance, European J. Oper. Res., 228 (2013), 273-281.
doi: 10.1016/j.ejor.2013.01.035. |
[31] |
G. Rudolf and A. Ruszczyński,
Optimization problems with second order stochastic dominance constraints: Duality, compact formulations, and cut generation methods, SIAM J. Optim., 19 (2008), 1326-1343.
doi: 10.1137/070702473. |
[32] |
H. Sun, H. Xu and Y. Wang, A smoothing penalized sample average approximation method for stochastic programs with second order stochastic dominance constraints, Asia-Pac. J. Oper. Res., 30 (2013), 1340002 (25 pages).
doi: 10.1142/S0217595913400022. |
[33] |
H. Sun, H. Xu, R. Meskarian and Y. Wang,
Exact penalization, level function method and modified cutting-plane method for stochastic programs with second order stochastic dominance constraints, SIAM J. Optim., 23 (2013), 602-631.
doi: 10.1137/110850815. |
[34] |
H. Sun and H. Xu,
Convergence analysis of stationary points in-sample average approximation of stochastic programs with second order stochastic dominance constraints, Math. Program., 143 (2014), 31-59.
doi: 10.1007/s10107-013-0711-7. |
[35] |
W. E. Sharpe,
The Sharpe Ratio, J. Portfolio Manage., 21 (1994), 49-58.
doi: 10.3905/jpm.1994.409501. |
[36] |
F. A. Sortino and L. N. Price,
Performance measurement in a downside risk framework, J. Invest., 3 (2009), 59-64.
doi: 10.3905/joi.3.3.59. |
[37] |
G. A. Whitmore and M. C. Findlay, (eds.), Stochastic Dominance: An Approach to Decision-Making Under Risk, D.C.Heath, Lexington, MA., 1978. Google Scholar |
[38] |
F. Xu, M. Wang, Y. H. Dai and D. Xu,
A sparse enhanced indexation model with chance and cardinality constraints, J. Glob. Optim., 70 (2018), 5-25.
doi: 10.1007/s10898-017-0513-1. |







mean | std | Sharpe Ratio | Sortino Ratio | |
Benchmark: index | 0.0009 | 0.0088 | 0.1030 | 0.1389 |
SSD | 0.0032 | 0.0118 | 0.2717 | 0.4501 |
0.0033 | 0.0118 | 0.2784 | 0.4670 | |
0.0032 | 0.0117 | 0.2724 | 0.4486 | |
0.0033 | 0.0119 | 0.2810 | 0.4652 | |
Benchmark: MV | 0.0005 | 0.0078 | 0.0658 | 0.0841 |
SSD | 0.0026 | 0.0102 | 0.2545 | 0.4129 |
0.0027 | 0.0118 | 0.2696 | 0.4442 | |
0.0030 | 0.0117 | 0.2931 | 0.4916 | |
0.0030 | 0.0102 | 0.2943 | 0.5004 |
mean | std | Sharpe Ratio | Sortino Ratio | |
Benchmark: index | 0.0009 | 0.0088 | 0.1030 | 0.1389 |
SSD | 0.0032 | 0.0118 | 0.2717 | 0.4501 |
0.0033 | 0.0118 | 0.2784 | 0.4670 | |
0.0032 | 0.0117 | 0.2724 | 0.4486 | |
0.0033 | 0.0119 | 0.2810 | 0.4652 | |
Benchmark: MV | 0.0005 | 0.0078 | 0.0658 | 0.0841 |
SSD | 0.0026 | 0.0102 | 0.2545 | 0.4129 |
0.0027 | 0.0118 | 0.2696 | 0.4442 | |
0.0030 | 0.0117 | 0.2931 | 0.4916 | |
0.0030 | 0.0102 | 0.2943 | 0.5004 |
mean | std | Sharpe Ratio | Sortino Ratio | |
Benchmark: index | 0.0004 | 0.0079 | 0.0534 | 0.0705 |
SSD | 0.0017 | 0.0112 | 0.1490 | 0.2264 |
0.0018 | 0.0111 | 0.1606 | 0.2444 | |
0.0016 | 0.0114 | 0.1442 | 0.2171 | |
0.0017 | 0.0115 | 0.1477 | 0.2241 | |
Benchmark: MV | 0.0003 | 0.0060 | 0.0421 | 0.0573 |
SSD | 0.0009 | 0.0110 | 0.0802 | 0.1103 |
0.0012 | 0.0110 | 0.1086 | 0.1517 | |
0.0013 | 0.0107 | 0.1196 | 0.1702 | |
0.0015 | 0.0110 | 0.1383 | 0.2001 |
mean | std | Sharpe Ratio | Sortino Ratio | |
Benchmark: index | 0.0004 | 0.0079 | 0.0534 | 0.0705 |
SSD | 0.0017 | 0.0112 | 0.1490 | 0.2264 |
0.0018 | 0.0111 | 0.1606 | 0.2444 | |
0.0016 | 0.0114 | 0.1442 | 0.2171 | |
0.0017 | 0.0115 | 0.1477 | 0.2241 | |
Benchmark: MV | 0.0003 | 0.0060 | 0.0421 | 0.0573 |
SSD | 0.0009 | 0.0110 | 0.0802 | 0.1103 |
0.0012 | 0.0110 | 0.1086 | 0.1517 | |
0.0013 | 0.0107 | 0.1196 | 0.1702 | |
0.0015 | 0.0110 | 0.1383 | 0.2001 |
mean | std | Sharpe Ratio | Sortino Ratio | |
Benchmark: index | 0.0012 | 0.0112 | 0.1080 | 0.1685 |
SSD | 0.0017 | 0.0158 | 0.1094 | 0.1848 |
0.0017 | 0.0155 | 0.1099 | 0.1836 | |
0.0020 | 0.0157 | 0.1254 | 0.2131 | |
0.0021 | 0.0164 | 0.1269 | 0.2185 | |
Benchmark: MV | 0.0018 | 0.0095 | 0.1901 | 0.3418 |
SSD | 0.0023 | 0.0141 | 0.1606 | 0.2925 |
0.0021 | 0.0134 | 0.1568 | 0.2747 | |
0.0021 | 0.0136 | 0.1578 | 0.2755 | |
0.0024 | 0.0141 | 0.1703 | 0.3058 |
mean | std | Sharpe Ratio | Sortino Ratio | |
Benchmark: index | 0.0012 | 0.0112 | 0.1080 | 0.1685 |
SSD | 0.0017 | 0.0158 | 0.1094 | 0.1848 |
0.0017 | 0.0155 | 0.1099 | 0.1836 | |
0.0020 | 0.0157 | 0.1254 | 0.2131 | |
0.0021 | 0.0164 | 0.1269 | 0.2185 | |
Benchmark: MV | 0.0018 | 0.0095 | 0.1901 | 0.3418 |
SSD | 0.0023 | 0.0141 | 0.1606 | 0.2925 |
0.0021 | 0.0134 | 0.1568 | 0.2747 | |
0.0021 | 0.0136 | 0.1578 | 0.2755 | |
0.0024 | 0.0141 | 0.1703 | 0.3058 |
NDX (100) | Index | MV | ||||
avg. | min. | max. | avg. | min. | max. | |
SSD | 4.60 | 3 | 9 | 5.55 | 3 | 9 |
4.65 | 3 | 10 | 5.53 | 2 | 9 | |
4.65 | 3 | 10 | 5.51 | 2 | 8 | |
4.64 | 3 | 9 | 5.50 | 3 | 8 | |
FTSE (100) | Index | MV | ||||
avg. | min. | max. | avg. | min. | max. | |
SSD | 4.05 | 2 | 9 | 5.16 | 2 | 9 |
3.98 | 2 | 9 | 5.11 | 2 | 9 | |
3.90 | 2 | 8 | 5.01 | 2 | 8 | |
3.91 | 3 | 9 | 5.17 | 2 | 9 | |
S&P (500) | Index | MV | ||||
avg. | min. | max. | avg. | min. | max. | |
SSD | 5.87 | 3 | 10 | 6.62 | 4 | 11 |
6.07 | 3 | 11 | 6.49 | 3 | 12 | |
6.07 | 3 | 12 | 6.70 | 4 | 12 | |
6.30 | 3 | 11 | 6.74 | 4 | 12 |
NDX (100) | Index | MV | ||||
avg. | min. | max. | avg. | min. | max. | |
SSD | 4.60 | 3 | 9 | 5.55 | 3 | 9 |
4.65 | 3 | 10 | 5.53 | 2 | 9 | |
4.65 | 3 | 10 | 5.51 | 2 | 8 | |
4.64 | 3 | 9 | 5.50 | 3 | 8 | |
FTSE (100) | Index | MV | ||||
avg. | min. | max. | avg. | min. | max. | |
SSD | 4.05 | 2 | 9 | 5.16 | 2 | 9 |
3.98 | 2 | 9 | 5.11 | 2 | 9 | |
3.90 | 2 | 8 | 5.01 | 2 | 8 | |
3.91 | 3 | 9 | 5.17 | 2 | 9 | |
S&P (500) | Index | MV | ||||
avg. | min. | max. | avg. | min. | max. | |
SSD | 5.87 | 3 | 10 | 6.62 | 4 | 11 |
6.07 | 3 | 11 | 6.49 | 3 | 12 | |
6.07 | 3 | 12 | 6.70 | 4 | 12 | |
6.30 | 3 | 11 | 6.74 | 4 | 12 |
[1] |
Junkee Jeon. Finite horizon portfolio selection problems with stochastic borrowing constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 733-763. doi: 10.3934/jimo.2019132 |
[2] |
Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168 |
[3] |
Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020, 2 (4) : 351-390. doi: 10.3934/fods.2020017 |
[4] |
Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020389 |
[5] |
Bing Liu, Ming Zhou. Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin. Journal of Industrial & Management Optimization, 2021, 17 (2) : 937-952. doi: 10.3934/jimo.2020005 |
[6] |
Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130 |
[7] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[8] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020463 |
[9] |
Bilal Al Taki, Khawla Msheik, Jacques Sainte-Marie. On the rigid-lid approximation of shallow water Bingham. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 875-905. doi: 10.3934/dcdsb.2020146 |
[10] |
P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178 |
[11] |
Simone Fagioli, Emanuela Radici. Opinion formation systems via deterministic particles approximation. Kinetic & Related Models, 2021, 14 (1) : 45-76. doi: 10.3934/krm.2020048 |
[12] |
Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322 |
[13] |
Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020166 |
[14] |
Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133 |
[15] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020377 |
[16] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 |
[17] |
Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002 |
[18] |
Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350 |
[19] |
Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020164 |
[20] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]