• Previous Article
    Admission control for finite capacity queueing model with general retrial times and state-dependent rates
  • JIMO Home
  • This Issue
  • Next Article
    Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk
November  2020, 16(6): 2603-2623. doi: 10.3934/jimo.2019072

Pricing dynamic fund protection under a Regime-switching Jump-diffusion model with stochastic protection level

1. 

Department of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, China

2. 

College of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan 030006, China

3. 

Department of Mathematics and Center for Financial Engineering, Soochow University, Suzhou 215006, China

* Corresponding author: Yinghui Dong

Received  February 2018 Revised  March 2019 Published  July 2019

Fund Project: The authors thank the anonymous referees for valuable comments to improve the earlier version of the paper. This work is supported by the NSF of Jiangsu Province (Grant No. BK20170064), the NNSF of China (Grant No. 11771320), QingLan Project, the scholarship of Jiangsu Overseas Visiting Scholar Program, Suzhou Key Laboratory for Big Data and Information Service (SZS201813) and the Graduate Innovation Program (Grant No. KYCX17-2059) of Jiangsu Province of China

In this paper, we investigate the valuation of dynamic fund protections under the assumption that the market value of the basic fund and the protection level follow regime-switching processes with jumps. The price of the dynamic fund protection (DFP) is associated with the Laplace transform of the first passage time. We derive the explicit formula for the Laplace transform of the DFP under the regime-switching, hyper-exponential jump-diffusion process. By using the Gaver-Stehfest algorithm, we present some numerical results for the price of the DFP.

Citation: Chao Xu, Yinghui Dong, Zhaolu Tian, Guojing Wang. Pricing dynamic fund protection under a Regime-switching Jump-diffusion model with stochastic protection level. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2603-2623. doi: 10.3934/jimo.2019072
References:
[1]

J. Buffington and R. J. Elliott, American options with regime switching, International Journal of Theoretical and Applied Finance, 5 (2002), 497-514.  doi: 10.1142/S0219024902001523.  Google Scholar

[2]

C. C. ChangY. H. Lian and M. H. Tsay, Pricing dynamic guaranteed funds under a double exponential jump diffusion model, Academia Economic Papers, 40 (2012), 269-306.   Google Scholar

[3]

Y. H. Dong, Pricing dynamic guaranteed funds with stochastic barrier under Vasicek interest rate model, hinese Journal of Applied Probability and Statistics, 29 (2013), 237-245.   Google Scholar

[4]

Y. H. DongG. J. Wang and R. Wu, Pricing the zero-coupon bond and its fair premium under a structural credit risk model with jumps, Journal of Applied Probability, 48 (2011), 404-419.  doi: 10.1239/jap/1308662635.  Google Scholar

[5]

R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models: Estimation and Control, Springer-Verlag, Berlin-Heidelberg-New York, 1994.  Google Scholar

[6]

R. J. ElliottC. Leunglung and T. K. Siu, Option pricing and Esscher transform under regime switching, Annals of Finance, 1 (2005), 423-432.  doi: 10.1007/s10436-005-0013-z.  Google Scholar

[7]

H. K. Fung and L. K. Li, Pricing discrete dynamic fund protections, North American Actuarial Journal, 7 (2003), 23-31.  doi: 10.1080/10920277.2003.10596115.  Google Scholar

[8]

H. U. Gerber and G. Pafumi, Pricing dynamic investment fund protection, North American Actuarial Journal, 4 (2000), 28-37.  doi: 10.1080/10920277.2000.10595894.  Google Scholar

[9]

H. U. Gerber and E. S. Shiu, From ruin theory to pricing reset guarantees and perpetual put options, Insurance: Mathematics and Economics, 24 (1999), 3-14.  doi: 10.1016/S0167-6687(98)00033-X.  Google Scholar

[10]

H. U. Gerber and E. S. Shiu, Pricing perpetual fund protection with withdrawal option, North American Actuarial Journal, 7 (2003), 60-77.  doi: 10.1080/10920277.2003.10596087.  Google Scholar

[11]

H. U. Gerber and E. S. W. Shiu, The time value of ruin in a Sparre Andersen model, North American Actuarial Journal, 9 (2005), 49-84.  doi: 10.1080/10920277.2005.10596197.  Google Scholar

[12]

X. Guo, Information and option pricings, Quantitative Finance, 1 (2001), 38-44.  doi: 10.1080/713665550.  Google Scholar

[13]

J. D. Hamilton, Rational-expectations econometric analysis of changes in regime: An investigation of the terms tructure of interest rates, Journal of Economic Dynamics and Control, 12 (1998), 385-423.  doi: 10.1016/0165-1889(88)90047-4.  Google Scholar

[14]

M. R. Hardy, A regime-switching model of long-term stock returns, North American Actuarial Journal, 5 (2001), 41-53.  doi: 10.1080/10920277.2001.10595984.  Google Scholar

[15]

J. Imai and P. P. Boyle, Dynamic fund protection, North American Actuarial Journal, 5 (2001), 31-47.  doi: 10.1080/10920277.2001.10595996.  Google Scholar

[16]

Z. JinL. Y. QianW. Wang and R. M. Wang, Pricing dynamic fund protections with regime switching, Journal of Computational and Applied Mathematics, 297 (2016), 13-25.  doi: 10.1016/j.cam.2015.11.012.  Google Scholar

[17]

S. G. Kou, A jump-diffusion model for option pricing, Management Science, 48 (2002), 1086-1101.   Google Scholar

[18]

S. G. Kou and H. Wang, First passage times of a jump diffusion process, Advance in Applied Probability, 35 (2003), 504-531.  doi: 10.1239/aap/1051201658.  Google Scholar

[19]

S. G. Kou and H. Wang, Option pricing under a double exponential jump diffusion model., Management Science, 50 (2004), 1178-1192.   Google Scholar

[20]

V. Naik, Option valuation and hedging strategies with jumps in the volatility of asset returns, Journal of Finance, 48 (1993), 1969-1984.  doi: 10.1111/j.1540-6261.1993.tb05137.x.  Google Scholar

[21]

C. C. SiuS. C. P. Yam and H. Yang, Valuing equity-linked death benefits in a regime-switching framework, ASTIN Bulletin, 45 (2015), 355-395.  doi: 10.1017/asb.2014.32.  Google Scholar

[22]

H. Y. Wong and C. M. Chan, Lookback options and dynamic fund protection under multiscale stochastic volatility, Insurance: Mathematics and Economics, 40 (2007), 357-385.  doi: 10.1016/j.insmatheco.2006.05.006.  Google Scholar

[23]

H. Y. Wong and K. W. Lam, Valuation of discrete dynamic fund protection under Lévy processes, North American Actuarial Journal, 13 (2009), 202-216.  doi: 10.1080/10920277.2009.10597548.  Google Scholar

[24]

C. Xu and Y. H. Dong, Pricing dynamic fund protections under a stochastic boundary, Journal of Suzhou University of Science and Technology, 2 (2018), 21-25.   Google Scholar

show all references

References:
[1]

J. Buffington and R. J. Elliott, American options with regime switching, International Journal of Theoretical and Applied Finance, 5 (2002), 497-514.  doi: 10.1142/S0219024902001523.  Google Scholar

[2]

C. C. ChangY. H. Lian and M. H. Tsay, Pricing dynamic guaranteed funds under a double exponential jump diffusion model, Academia Economic Papers, 40 (2012), 269-306.   Google Scholar

[3]

Y. H. Dong, Pricing dynamic guaranteed funds with stochastic barrier under Vasicek interest rate model, hinese Journal of Applied Probability and Statistics, 29 (2013), 237-245.   Google Scholar

[4]

Y. H. DongG. J. Wang and R. Wu, Pricing the zero-coupon bond and its fair premium under a structural credit risk model with jumps, Journal of Applied Probability, 48 (2011), 404-419.  doi: 10.1239/jap/1308662635.  Google Scholar

[5]

R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models: Estimation and Control, Springer-Verlag, Berlin-Heidelberg-New York, 1994.  Google Scholar

[6]

R. J. ElliottC. Leunglung and T. K. Siu, Option pricing and Esscher transform under regime switching, Annals of Finance, 1 (2005), 423-432.  doi: 10.1007/s10436-005-0013-z.  Google Scholar

[7]

H. K. Fung and L. K. Li, Pricing discrete dynamic fund protections, North American Actuarial Journal, 7 (2003), 23-31.  doi: 10.1080/10920277.2003.10596115.  Google Scholar

[8]

H. U. Gerber and G. Pafumi, Pricing dynamic investment fund protection, North American Actuarial Journal, 4 (2000), 28-37.  doi: 10.1080/10920277.2000.10595894.  Google Scholar

[9]

H. U. Gerber and E. S. Shiu, From ruin theory to pricing reset guarantees and perpetual put options, Insurance: Mathematics and Economics, 24 (1999), 3-14.  doi: 10.1016/S0167-6687(98)00033-X.  Google Scholar

[10]

H. U. Gerber and E. S. Shiu, Pricing perpetual fund protection with withdrawal option, North American Actuarial Journal, 7 (2003), 60-77.  doi: 10.1080/10920277.2003.10596087.  Google Scholar

[11]

H. U. Gerber and E. S. W. Shiu, The time value of ruin in a Sparre Andersen model, North American Actuarial Journal, 9 (2005), 49-84.  doi: 10.1080/10920277.2005.10596197.  Google Scholar

[12]

X. Guo, Information and option pricings, Quantitative Finance, 1 (2001), 38-44.  doi: 10.1080/713665550.  Google Scholar

[13]

J. D. Hamilton, Rational-expectations econometric analysis of changes in regime: An investigation of the terms tructure of interest rates, Journal of Economic Dynamics and Control, 12 (1998), 385-423.  doi: 10.1016/0165-1889(88)90047-4.  Google Scholar

[14]

M. R. Hardy, A regime-switching model of long-term stock returns, North American Actuarial Journal, 5 (2001), 41-53.  doi: 10.1080/10920277.2001.10595984.  Google Scholar

[15]

J. Imai and P. P. Boyle, Dynamic fund protection, North American Actuarial Journal, 5 (2001), 31-47.  doi: 10.1080/10920277.2001.10595996.  Google Scholar

[16]

Z. JinL. Y. QianW. Wang and R. M. Wang, Pricing dynamic fund protections with regime switching, Journal of Computational and Applied Mathematics, 297 (2016), 13-25.  doi: 10.1016/j.cam.2015.11.012.  Google Scholar

[17]

S. G. Kou, A jump-diffusion model for option pricing, Management Science, 48 (2002), 1086-1101.   Google Scholar

[18]

S. G. Kou and H. Wang, First passage times of a jump diffusion process, Advance in Applied Probability, 35 (2003), 504-531.  doi: 10.1239/aap/1051201658.  Google Scholar

[19]

S. G. Kou and H. Wang, Option pricing under a double exponential jump diffusion model., Management Science, 50 (2004), 1178-1192.   Google Scholar

[20]

V. Naik, Option valuation and hedging strategies with jumps in the volatility of asset returns, Journal of Finance, 48 (1993), 1969-1984.  doi: 10.1111/j.1540-6261.1993.tb05137.x.  Google Scholar

[21]

C. C. SiuS. C. P. Yam and H. Yang, Valuing equity-linked death benefits in a regime-switching framework, ASTIN Bulletin, 45 (2015), 355-395.  doi: 10.1017/asb.2014.32.  Google Scholar

[22]

H. Y. Wong and C. M. Chan, Lookback options and dynamic fund protection under multiscale stochastic volatility, Insurance: Mathematics and Economics, 40 (2007), 357-385.  doi: 10.1016/j.insmatheco.2006.05.006.  Google Scholar

[23]

H. Y. Wong and K. W. Lam, Valuation of discrete dynamic fund protection under Lévy processes, North American Actuarial Journal, 13 (2009), 202-216.  doi: 10.1080/10920277.2009.10597548.  Google Scholar

[24]

C. Xu and Y. H. Dong, Pricing dynamic fund protections under a stochastic boundary, Journal of Suzhou University of Science and Technology, 2 (2018), 21-25.   Google Scholar

Figure 1.  $ DFP_0 $ versus $ T $
Figure 2.  $ DFP_0 $ versus $ F_0 $
Figure 3.  $ DFP_0 $ versus $ K_0 $
Figure 4.  $ DFP_0 $ versus $ a_{12} $
Figure 5.  $ DFP_0 $ versus $ \lambda_{11} $
Figure 6.  $ DFP_0 $ versus $ \sigma_1 $
Figure 7.  For example, if $ k_{i1} = 1,i = 1,\cdots,m, $ $ k_{i2} = 1,i = 0,1,\cdots,m-1, k_{m2} = 2, $ then we have $ h(\tilde{\alpha}_{ij}-) = -\infty, h(\tilde{\alpha}_{ij}+) = +\infty. $ Therefore, there exists at least one root at each of the $ 2m $ intervals, $ (0,\tilde{\alpha}_{11}),(\tilde{\alpha}_{11},\tilde{\alpha}_{12}),(\tilde{\alpha}_{12},\tilde{\alpha}_{21}),\cdots,(\tilde{\alpha}_{m1},\tilde{\alpha}_{m2}) $ and there exists at least two roots at the interval $ (\tilde{\alpha}_{m2},+\infty). $
[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[3]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[4]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[5]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[6]

Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021002

[7]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[8]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[9]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[10]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[11]

Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134

[12]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[13]

Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177

[14]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[15]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[16]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[17]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[18]

Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021003

[19]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[20]

Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (143)
  • HTML views (575)
  • Cited by (0)

Other articles
by authors

[Back to Top]