
-
Previous Article
Admission control for finite capacity queueing model with general retrial times and state-dependent rates
- JIMO Home
- This Issue
-
Next Article
Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk
Pricing dynamic fund protection under a Regime-switching Jump-diffusion model with stochastic protection level
1. | Department of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, China |
2. | College of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan 030006, China |
3. | Department of Mathematics and Center for Financial Engineering, Soochow University, Suzhou 215006, China |
In this paper, we investigate the valuation of dynamic fund protections under the assumption that the market value of the basic fund and the protection level follow regime-switching processes with jumps. The price of the dynamic fund protection (DFP) is associated with the Laplace transform of the first passage time. We derive the explicit formula for the Laplace transform of the DFP under the regime-switching, hyper-exponential jump-diffusion process. By using the Gaver-Stehfest algorithm, we present some numerical results for the price of the DFP.
References:
[1] |
J. Buffington and R. J. Elliott,
American options with regime switching, International Journal of Theoretical and Applied Finance, 5 (2002), 497-514.
doi: 10.1142/S0219024902001523. |
[2] |
C. C. Chang, Y. H. Lian and M. H. Tsay,
Pricing dynamic guaranteed funds under a double exponential jump diffusion model, Academia Economic Papers, 40 (2012), 269-306.
|
[3] |
Y. H. Dong,
Pricing dynamic guaranteed funds with stochastic barrier under Vasicek interest rate model, hinese Journal of Applied Probability and Statistics, 29 (2013), 237-245.
|
[4] |
Y. H. Dong, G. J. Wang and R. Wu,
Pricing the zero-coupon bond and its fair premium under a structural credit risk model with jumps, Journal of Applied Probability, 48 (2011), 404-419.
doi: 10.1239/jap/1308662635. |
[5] |
R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models: Estimation and Control, Springer-Verlag, Berlin-Heidelberg-New York, 1994. |
[6] |
R. J. Elliott, C. Leunglung and T. K. Siu,
Option pricing and Esscher transform under regime switching, Annals of Finance, 1 (2005), 423-432.
doi: 10.1007/s10436-005-0013-z. |
[7] |
H. K. Fung and L. K. Li,
Pricing discrete dynamic fund protections, North American Actuarial Journal, 7 (2003), 23-31.
doi: 10.1080/10920277.2003.10596115. |
[8] |
H. U. Gerber and G. Pafumi,
Pricing dynamic investment fund protection, North American Actuarial Journal, 4 (2000), 28-37.
doi: 10.1080/10920277.2000.10595894. |
[9] |
H. U. Gerber and E. S. Shiu,
From ruin theory to pricing reset guarantees and perpetual put options, Insurance: Mathematics and Economics, 24 (1999), 3-14.
doi: 10.1016/S0167-6687(98)00033-X. |
[10] |
H. U. Gerber and E. S. Shiu,
Pricing perpetual fund protection with withdrawal option, North American Actuarial Journal, 7 (2003), 60-77.
doi: 10.1080/10920277.2003.10596087. |
[11] |
H. U. Gerber and E. S. W. Shiu,
The time value of ruin in a Sparre Andersen model, North American Actuarial Journal, 9 (2005), 49-84.
doi: 10.1080/10920277.2005.10596197. |
[12] |
X. Guo,
Information and option pricings, Quantitative Finance, 1 (2001), 38-44.
doi: 10.1080/713665550. |
[13] |
J. D. Hamilton,
Rational-expectations econometric analysis of changes in regime: An investigation of the terms tructure of interest rates, Journal of Economic Dynamics and Control, 12 (1998), 385-423.
doi: 10.1016/0165-1889(88)90047-4. |
[14] |
M. R. Hardy,
A regime-switching model of long-term stock returns, North American Actuarial Journal, 5 (2001), 41-53.
doi: 10.1080/10920277.2001.10595984. |
[15] |
J. Imai and P. P. Boyle,
Dynamic fund protection, North American Actuarial Journal, 5 (2001), 31-47.
doi: 10.1080/10920277.2001.10595996. |
[16] |
Z. Jin, L. Y. Qian, W. Wang and R. M. Wang,
Pricing dynamic fund protections with regime switching, Journal of Computational and Applied Mathematics, 297 (2016), 13-25.
doi: 10.1016/j.cam.2015.11.012. |
[17] |
S. G. Kou, A jump-diffusion model for option pricing, Management Science, 48 (2002), 1086-1101. Google Scholar |
[18] |
S. G. Kou and H. Wang,
First passage times of a jump diffusion process, Advance in Applied Probability, 35 (2003), 504-531.
doi: 10.1239/aap/1051201658. |
[19] |
S. G. Kou and H. Wang, Option pricing under a double exponential jump diffusion model., Management Science, 50 (2004), 1178-1192. Google Scholar |
[20] |
V. Naik,
Option valuation and hedging strategies with jumps in the volatility of asset returns, Journal of Finance, 48 (1993), 1969-1984.
doi: 10.1111/j.1540-6261.1993.tb05137.x. |
[21] |
C. C. Siu, S. C. P. Yam and H. Yang,
Valuing equity-linked death benefits in a regime-switching framework, ASTIN Bulletin, 45 (2015), 355-395.
doi: 10.1017/asb.2014.32. |
[22] |
H. Y. Wong and C. M. Chan,
Lookback options and dynamic fund protection under multiscale stochastic volatility, Insurance: Mathematics and Economics, 40 (2007), 357-385.
doi: 10.1016/j.insmatheco.2006.05.006. |
[23] |
H. Y. Wong and K. W. Lam,
Valuation of discrete dynamic fund protection under Lévy processes, North American Actuarial Journal, 13 (2009), 202-216.
doi: 10.1080/10920277.2009.10597548. |
[24] |
C. Xu and Y. H. Dong, Pricing dynamic fund protections under a stochastic boundary, Journal of Suzhou University of Science and Technology, 2 (2018), 21-25. Google Scholar |
show all references
References:
[1] |
J. Buffington and R. J. Elliott,
American options with regime switching, International Journal of Theoretical and Applied Finance, 5 (2002), 497-514.
doi: 10.1142/S0219024902001523. |
[2] |
C. C. Chang, Y. H. Lian and M. H. Tsay,
Pricing dynamic guaranteed funds under a double exponential jump diffusion model, Academia Economic Papers, 40 (2012), 269-306.
|
[3] |
Y. H. Dong,
Pricing dynamic guaranteed funds with stochastic barrier under Vasicek interest rate model, hinese Journal of Applied Probability and Statistics, 29 (2013), 237-245.
|
[4] |
Y. H. Dong, G. J. Wang and R. Wu,
Pricing the zero-coupon bond and its fair premium under a structural credit risk model with jumps, Journal of Applied Probability, 48 (2011), 404-419.
doi: 10.1239/jap/1308662635. |
[5] |
R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models: Estimation and Control, Springer-Verlag, Berlin-Heidelberg-New York, 1994. |
[6] |
R. J. Elliott, C. Leunglung and T. K. Siu,
Option pricing and Esscher transform under regime switching, Annals of Finance, 1 (2005), 423-432.
doi: 10.1007/s10436-005-0013-z. |
[7] |
H. K. Fung and L. K. Li,
Pricing discrete dynamic fund protections, North American Actuarial Journal, 7 (2003), 23-31.
doi: 10.1080/10920277.2003.10596115. |
[8] |
H. U. Gerber and G. Pafumi,
Pricing dynamic investment fund protection, North American Actuarial Journal, 4 (2000), 28-37.
doi: 10.1080/10920277.2000.10595894. |
[9] |
H. U. Gerber and E. S. Shiu,
From ruin theory to pricing reset guarantees and perpetual put options, Insurance: Mathematics and Economics, 24 (1999), 3-14.
doi: 10.1016/S0167-6687(98)00033-X. |
[10] |
H. U. Gerber and E. S. Shiu,
Pricing perpetual fund protection with withdrawal option, North American Actuarial Journal, 7 (2003), 60-77.
doi: 10.1080/10920277.2003.10596087. |
[11] |
H. U. Gerber and E. S. W. Shiu,
The time value of ruin in a Sparre Andersen model, North American Actuarial Journal, 9 (2005), 49-84.
doi: 10.1080/10920277.2005.10596197. |
[12] |
X. Guo,
Information and option pricings, Quantitative Finance, 1 (2001), 38-44.
doi: 10.1080/713665550. |
[13] |
J. D. Hamilton,
Rational-expectations econometric analysis of changes in regime: An investigation of the terms tructure of interest rates, Journal of Economic Dynamics and Control, 12 (1998), 385-423.
doi: 10.1016/0165-1889(88)90047-4. |
[14] |
M. R. Hardy,
A regime-switching model of long-term stock returns, North American Actuarial Journal, 5 (2001), 41-53.
doi: 10.1080/10920277.2001.10595984. |
[15] |
J. Imai and P. P. Boyle,
Dynamic fund protection, North American Actuarial Journal, 5 (2001), 31-47.
doi: 10.1080/10920277.2001.10595996. |
[16] |
Z. Jin, L. Y. Qian, W. Wang and R. M. Wang,
Pricing dynamic fund protections with regime switching, Journal of Computational and Applied Mathematics, 297 (2016), 13-25.
doi: 10.1016/j.cam.2015.11.012. |
[17] |
S. G. Kou, A jump-diffusion model for option pricing, Management Science, 48 (2002), 1086-1101. Google Scholar |
[18] |
S. G. Kou and H. Wang,
First passage times of a jump diffusion process, Advance in Applied Probability, 35 (2003), 504-531.
doi: 10.1239/aap/1051201658. |
[19] |
S. G. Kou and H. Wang, Option pricing under a double exponential jump diffusion model., Management Science, 50 (2004), 1178-1192. Google Scholar |
[20] |
V. Naik,
Option valuation and hedging strategies with jumps in the volatility of asset returns, Journal of Finance, 48 (1993), 1969-1984.
doi: 10.1111/j.1540-6261.1993.tb05137.x. |
[21] |
C. C. Siu, S. C. P. Yam and H. Yang,
Valuing equity-linked death benefits in a regime-switching framework, ASTIN Bulletin, 45 (2015), 355-395.
doi: 10.1017/asb.2014.32. |
[22] |
H. Y. Wong and C. M. Chan,
Lookback options and dynamic fund protection under multiscale stochastic volatility, Insurance: Mathematics and Economics, 40 (2007), 357-385.
doi: 10.1016/j.insmatheco.2006.05.006. |
[23] |
H. Y. Wong and K. W. Lam,
Valuation of discrete dynamic fund protection under Lévy processes, North American Actuarial Journal, 13 (2009), 202-216.
doi: 10.1080/10920277.2009.10597548. |
[24] |
C. Xu and Y. H. Dong, Pricing dynamic fund protections under a stochastic boundary, Journal of Suzhou University of Science and Technology, 2 (2018), 21-25. Google Scholar |

[1] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[2] |
Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103 |
[3] |
Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118 |
[4] |
Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040 |
[5] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[6] |
Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021002 |
[7] |
Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020 |
[8] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[9] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[10] |
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138 |
[11] |
Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134 |
[12] |
P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178 |
[13] |
Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177 |
[14] |
Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020108 |
[15] |
Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306 |
[16] |
Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020105 |
[17] |
Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020443 |
[18] |
Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021003 |
[19] |
Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353 |
[20] |
Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]