We introduce robust weak sharp and robust sharp solution to a convex programming with the objective and constraint functions involved uncertainty. The characterizations of the sets of all the robust weak sharp solutions are obtained by means of subdiferentials of convex functions, DC fuctions, Fermat rule and the robust-type subdifferential constraint qualification, which was introduced in X.K. Sun, Z.Y. Peng and X. Le Guo, Some characterizations of robust optimal solutions for uncertain convex optimization problems, Optim Lett. 10. (2016), 1463-1478. In addition, some applications to the multi-objective case are presented.
Citation: |
[1] |
A. Beck and A. Ben-Tal, Duality in robust optimization: primal worst equals dual best, Oper. Res. Lett., 37 (2009), 1-6.
doi: 10.1016/j.orl.2008.09.010.![]() ![]() ![]() |
[2] |
A. Ben-Tal and A. Nemirovski, Robust convex optimization, Math. Oper. Res., 23 (1998), 769-805.
doi: 10.1287/moor.23.4.769.![]() ![]() ![]() |
[3] |
A. Ben-Tal and A. Nemirovski, Robust optimization-methodology and applications,, Math. Program. Ser. B, 92 (2002), 453-480.
doi: 10.1007/s101070100286.![]() ![]() ![]() |
[4] |
A. Ben-Tal, L. E. Ghaoui and A. Nemirovski, Robust Optimization, Princeton Series in Applied Mathematics, 2009.
doi: 10.1515/9781400831050.![]() ![]() ![]() |
[5] |
D. Bertsimas, D. B. Brown and C. Caramanis, Theory and applications of robust optimization,, SIAM Rev., 53 (2011), 464-501.
doi: 10.1137/080734510.![]() ![]() ![]() |
[6] |
J. V. Burke, A. Lewis and M. Overton, Optimization matrix stability, Proc. Am. Math. Soc., 129 (2000), 1635-1642.
doi: 10.1090/S0002-9939-00-05985-2.![]() ![]() ![]() |
[7] |
J. V. Burke, A. Lewis and M. Overton, Optimization stability and eigenvalue multiplicity, Found. Comput. Math., 1 (2001), 205-225.
doi: 10.1007/PL00021726.![]() ![]() ![]() |
[8] |
J. V. Burke and M. C. Ferris, A Gauss-Newton method for convex composite optimization, Math. Program., 71 (1995), 179-194.
doi: 10.1007/BF01585997.![]() ![]() ![]() |
[9] |
J. V. Burke and M. C. Ferris, Weak sharp minima in mathematical programming,, SIAM J. Control Optim., 36 (1993), 1340-1359.
doi: 10.1137/0331063.![]() ![]() ![]() |
[10] |
J. V. Burke and S. Deng, Weak sharp minima revisited, part Ⅰ: Basic theory, Control Cybern., 31 (2002), 439-469.
![]() ![]() |
[11] |
J. V. Burke and S. Deng, Weak sharp minima revisited, part Ⅱ: Application to linear regularity and error bounds, Math. Program., Ser. B, 104 (2005), 235-261.
doi: 10.1007/s10107-005-0615-2.![]() ![]() ![]() |
[12] |
J. V. Burke and S. Deng, Weak sharp minima revisited, part Ⅲ: Error bounds for differentiable convex inclusions, Math. Program., Ser. B, 116 (2009), 37-56.
doi: 10.1007/s10107-007-0130-8.![]() ![]() ![]() |
[13] |
T. D. Chuong, Optimality and duality for proper and isolated efficiencies in multi-objective optimization, Nonlinear Anal., 76 (2013), 93-104.
doi: 10.1016/j.na.2012.08.005.![]() ![]() ![]() |
[14] |
T. D. Chuong and J. C. Yao, Isolated and proper efficiencies in semi-infinite vector optimization problems, J. Optim. Theor. Appl., 162 (2014), 447-462.
doi: 10.1007/s10957-013-0425-2.![]() ![]() ![]() |
[15] |
M. C. Ferris, Weak Sharp Minima and Penalty Functions in Mathematical Programming, Ph.D. thesis, Universiy of Cambridge, Cambridge, UK, 1988.
![]() |
[16] |
J. B. Hiriart-Urruty, $\varepsilon$-Subdifferential calculus, in Convex Analysis and Optimization (eds. J. P. Aubin and R. Vinter), Boston, Mass.-London, 1982, 43–92.
![]() ![]() |
[17] |
V. Jeyakumar, Constraint qualifications characterizing lagrangian duality in convex optimization,, J. Optim. Theo. Appl., 136 (2008), 31-41.
doi: 10.1007/s10957-007-9294-x.![]() ![]() ![]() |
[18] |
V. Jeyakumar, G. M. Lee and G. Y. Li, Characterizing robust solution sets of convex programs under data uncertainty, J. Optim. Theory Appl., 164 (2015), 407-435.
doi: 10.1007/s10957-014-0564-0.![]() ![]() ![]() |
[19] |
A. Jourani, Hoffman's error bounds, local controbility and sensitivity analysis, SIAM J. Control Optim., 38 (2000), 947-970.
doi: 10.1137/S0363012998339216.![]() ![]() ![]() |
[20] |
D. Kuroiwa and G. M. Lee, On robust multiobjective optimization, Vietnam Journal of Mathematics, 40 (2012), 305-317.
![]() ![]() |
[21] |
A. S. Lewis and J. S. Pang, Error bounds for convex inequality systems, in Proceedings of the Fifth Symposium on Generalized Convexity (ed. J. P. Crouzeix), Luminy-Marseille, 1996.
doi: 10.1007/978-1-4613-3341-8_3.![]() ![]() |
[22] |
B. T. Polyak, Sharp Minima, Institute of Control Sciences Lecture Notes, Moscow, USSR, 1979; Presented at the IIASA Workshop on Generalized Lagrangians and Their Applications, IIASA, Laxenburg, Austria, 1979.
![]() |
[23] |
X. K. Sun, Regularity conditions characterizing Fenchel-Lagrange duality and Farkas-type results in DC infinite programming,, J. Math. Anal. Appl., 414 (2014), 590-611.
doi: 10.1016/j.jmaa.2014.01.033.![]() ![]() ![]() |
[24] |
X. K. Sun, Z. Y. Peng and X. Le Guo, Some characterizations of robust optimal solutions for uncertain convex optimization problems, Optim Lett., 10 (2016), 1463-1478.
doi: 10.1007/s11590-015-0946-8.![]() ![]() ![]() |
[25] |
X. K. Sun, X. J. Long, H. Y. Fu and X. B. Li, Some Characterizations of robust optimal solutions for uncertain fractional optimization and applications, J. Ind. Manag. Optim., 13 (2017), 803-824.
doi: 10.3934/jimo.2016047.![]() ![]() ![]() |
[26] |
W. Y. Zhang, S. Xu and S. J. Li, Necessary conditions for weak sharp minima in cone-constrained optimization problems, Abstract and Applied Analysis, 11 (2012), 1-11.
doi: 10.1155/2012/909520.![]() ![]() ![]() |
[27] |
X. Y. Zheng and K. F. Ng, Strong KKT conditions and weak sharp minima in convex-composite optimization, Math. Program., 126 (2009), 259-279.
doi: 10.1007/s10107-009-0277-6.![]() ![]() ![]() |
[28] |
X. Y. Zheng and X. Q. Yang, Weak sharp minima for semi-infinite optimization problems with applications, SIAM J. Optim., 18 (2004), 573-588.
doi: 10.1137/060670213.![]() ![]() ![]() |
[29] |
J. C. Zhou, B. S. Mordukhovich and N. H. Xiu, Complete characterizations of local weak sharp minima with applications to semi-infinite optimization and complementarity, Nonlinear Anal., 75 (2012), 1700-1718.
doi: 10.1016/j.na.2011.05.084.![]() ![]() ![]() |
[30] |
S. K. Zhu, Weak sharp efficiency in multi-objective optimization, Optim Lett., 10 (2016), 1287-1301.
doi: 10.1007/s11590-015-0925-0.![]() ![]() ![]() |