[1]
|
C. Aggarwal, A. Hinneburg and D. Keim, On the surprising behavior of distance metrics in high dimensional space, ICDT '01 Proceedings of the 8th International Conf. on Database Theory, (2001), 420–434.
|
[2]
|
D. Arthur and S. Vassilvitskii, k-means++: The advantages of careful seeding, SODA '07 Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, (2007), 1027–1035.
|
[3]
|
K. Bache and M. Lichman, UCI Machine Learning Repository, University of California, Irvine, School of Information and Computer Sciences, 2013., Available from: http://archive.ics.uci.edu/ml.
|
[4]
|
A. M. Bagirov, Modified global k-means algorithm for minimum sum-of-squares clustering problems, Pattern Recognition, 41 (2008), 3192-3199.
|
[5]
|
A. M. Bagirov, A. Al Nuaimat and N. Sultanova, Hyperbolic smoothing function method for minimax problems, Optimization, 62 (2013), 759-782.
doi: 10.1080/02331934.2012.675335.
|
[6]
|
A. M. Bagirov, B. Karasözen and M. Sezer, Discrete gradient method: Derivative-free method for nonsmooth optimization, Journal of Optimization Theory and Applications, 137 (2008), 317-334.
doi: 10.1007/s10957-007-9335-5.
|
[7]
|
A. M. Bagirov, N. Karmitsa and M. M. Mäkelä, Introduction to Nonsmooth Optimization, Springer, Cham, 2014.
doi: 10.1007/978-3-319-08114-4.
|
[8]
|
A. M. Bagirov and E. Mohebi, An algorithm for clustering using $L_1$-norm based on hyperbolic smoothing technique, Computational Intelligence, 32 (2016), 439-457.
doi: 10.1111/coin.12062.
|
[9]
|
A. M. Bagirov and E. Mohebi, Nonsmooth optimization based algorithms in cluster analysis, Partitional Clustering Algorithms, (2015), 99–146.
|
[10]
|
A. M. Bagirov, B. Ordin, G. Ozturk and A. E. Xavier, An incremental clustering algorithm based on hyperbolic smoothing, Computational Optimization and Applications, 61 (2015), 219-241.
doi: 10.1007/s10589-014-9711-7.
|
[11]
|
A. M. Bagirov, A. M. Rubinov and J. Yearwood, A global optimization approach to classification, Optimization and Engineering, 3 (2002), 129-155.
doi: 10.1023/A:1020911318981.
|
[12]
|
A. M. Bagirov, A. M. Rubinov, N. V. Soukhoroukova and J. Yearwood, Unsupervised and supervised data classification via nonsmooth and global optimization, TOP, 11 (2003), 1-93.
doi: 10.1007/BF02578945.
|
[13]
|
A. M. Bagirov and J. Ugon, Piecewise partially separable functions and a derivative-free algorithm for large scale nonsmooth optimization, Journal of Global Optimization, 35 (2006), 163-195.
doi: 10.1007/s10898-005-3834-4.
|
[14]
|
A. M. Bagirov, J. Ugon and D. Webb, Fast modified global k-means algorithm for incremental cluster construction, Pattern Recognition, 44 (2011), 866-876.
|
[15]
|
A. M. Bagirov and J. Yearwood, A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems, European Journal of Operational Research, 170 (2006), 578-596.
doi: 10.1016/j.ejor.2004.06.014.
|
[16]
|
L. Bobrowski and J. C. Bezdek, c-means clustering with the $l_1$ and $l_\infty$ norms, IEEE Trans. on Systems, Man and Cybernetics, 21 (1991), 545-554.
doi: 10.1109/21.97475.
|
[17]
|
H.-H. Bock, Clustering and neural networks, in Advances in Data Science and Classification (eds. A. Rizzi, M. Vichi and H.-H. Bock), Springer, Berlin, (1998), 265–277.
|
[18]
|
J. Carmichael and P. Sneath, Taxometric maps, Systematic Zoology, 18 (1969), 402-415.
|
[19]
|
M. E. Celebi, H. A. Kingravi and P. A. Vela, A comparative study of efficient initialization methods for the k-means clustering algorithm, Expert Systems with Applications, 40 (2013), 200-210.
|
[20]
|
F. H. Clarke, Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, Wiley, 1983.
|
[21]
|
K. A. J. Doherty, R. G. Adams and N. Davey, Non-Euclidean norms and data normalisation, Proceedings of ESANN, (2004), 181–186.
|
[22]
|
M. Ghorbani, Maximum entropy-based fuzzy clustering by using $L_1$-norm space, Turk. J. Math., 29 (2005), 431-438.
|
[23]
|
C. Hanilci and F. Ertas, Comparison of the impact of some Minkowski metrics on VQ/GMM based speaker recognition, Computers and Electrical Engineering, 37 (2011), 41-56.
|
[24]
|
P. Hansen, N. Mladenovic and D. Perez-Britos, Variable neighborhood decomposition search, Journal of Heuristics, 7 (2001), 335-350.
doi: 10.1007/0-306-48056-5_6.
|
[25]
|
A. K. Jain, Data clustering: 50 years beyond $k$-means, Pattern Recognition Letters, 31 (2010), 651-666.
|
[26]
|
A. K. Jain, M. N. Murty and P. J. Flynn, Data clustering: A review, ACM Comput. Surv., 31 (1999), 264-323.
|
[27]
|
K. Jajuga, A clustering method based on the $L_1$-norm, Computational Statistics & Data Analysis, 5 (1987), 357-371.
doi: 10.1016/0167-9473(87)90058-2.
|
[28]
|
D. R. Jones, C. D. Perttunen and B. E. Stuckman, Lipschitzian optimization without the Lipschitz constant, Journal of Optimization Theory and Applications, 79 (1993), 157-181.
doi: 10.1007/BF00941892.
|
[29]
|
L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis, Wiley Series in Probability and Statistics, Wiley, 1990.
doi: 10.1002/9780470316801.
|
[30]
|
J. Kogan, Introduction to Clustering Large and High-Dimensional Data, Cambridge University Press, 2007.
|
[31]
|
A. Likas, N. Vlassis and J. Verbeek, The global $k$-means clustering algorithm, Pattern Recognition, 36 (2003), 451-461.
|
[32]
|
B. Ordin and A. M. Bagirov, A heuristic algorithm for solving the minimum sum-of-squares clustering problems, Journal of Global Optimization, 61 (2015), 341-361.
doi: 10.1007/s10898-014-0171-5.
|
[33]
|
D. Pelleg and A. W. Moore, X-means: Extending $k$-means with efficient estimation of the number of clusters, ICML'00 Proceedings of the 17-th International Conference on Machine Learning, (2000), 727–734.
|
[34]
|
J. D. Pinter, Global Optimization in Action. Continous and Lipschitz Optimization: Algorithms, Implementations ans Applications, Kluwer Academic Publishers, Boston, 1996.
doi: 10.1007/978-1-4757-2502-5.
|
[35]
|
G. N. Ramos, Y. Hatakeyama, F. Dong and K. Hirota, Hyperbox clustering with Ant Colony Optimization method and its application to medical risk profile recognition, Applied Soft Computing, 9 (2009), 632-640.
|
[36]
|
G. Reinelt, TSPLIB - a traveling salesman problem library, ORSA Journal of Computing, 3 (1991), 376-384.
|
[37]
|
K. Sabo, R. Scitovski and I. Vazler, One-dimensional center-based $l_1$-clustering method, Optimization Letters, 7 (2013), 5-22.
doi: 10.1007/s11590-011-0389-9.
|
[38]
|
R. Sedgewick and K. Wayne, Introduction to Programming in Java, Addison-Wesley, 2007.
|
[39]
|
R. de Souza and F. de Carvalho, Clustering of interval data based on city-block distances, Pattern Recognition Letters, 25 (2004), 353-365.
doi: 10.1016/j.patrec.2003.10.016.
|
[40]
|
H. Späth, Algorithm 30: $L_1$ cluster analysis, Computing, 16 (1976), 379-387.
doi: 10.1007/BF02243486.
|
[41]
|
N. Venkateswarlu and P. Raju, Fast isodata clustering algorithms, Pattern Recognition, 25 (1992), 335-342.
|
[42]
|
A. E. Xavier and A. A. F. D. Oliveira, Optimal covering of plane domains by circles via hyperbolic smoothing, J. of Glob. Opt., 31 (2005), 493-504.
doi: 10.1007/s10898-004-0737-8.
|
[43]
|
S. Xu, Smoothing method for minimax problems, Computational Optimization and Applications, 20 (2001), 267-279.
doi: 10.1023/A:1011211101714.
|
[44]
|
R. Xu and D. Wunsch, Survey of clustering algorithms, IEEE Transactions on Neural Networks, 16 (2005), 645-678.
|
[45]
|
M. S. Yang and W. L. Hung, Alternative fuzzy clustering algorithms with $L_1$-norm and covariance matrix, Advanced Concepts for Intelligent Vision, 4179 (2006), 654-665.
|
[46]
|
J. Zhang, L. Peng, X. Zhao and E. E. Kuruoglu, Robust data clustering by learning multi-metric $L_q$-norm distances, Expert Systems with Applications, 39 (2012), 335-349.
|