November  2020, 16(6): 2799-2812. doi: 10.3934/jimo.2019081

A robust reduced-order observers design approach for linear discrete periodic systems

1. 

Institute of Electric Power, North China University of Water Resources and Electric Power, Zhengzhou 450011, China

2. 

Key Laboratory of Big Data Analysis and Processing of Henan Province, Henan University, Zhengzhou 450011, China

*Corresponding author: Lei Zhang

Received  October 2018 Revised  March 2019 Published  July 2019

Fund Project: This work is supported by the Programs of National Natural Science Foundation of China (Nos. U1604148, 11501200, 61402149), Innovative Talents of Higher Learning Institutions of Henan (No. 17HASTIT023), Central China thousand talents program(No.ZYQR201810138)

This paper investigates the problem of designing reduced-order observers for linear discrete-time periodic (LDP) systems. In case that the linear discrete-time periodic system is observable, an algebraic equivalent system is obtained by non-singular linear transformation, and the partial states to be observed are separated simultaneously. Then the considered problem is transformed into the problem of solving a class of periodic Sylvester matrix equation and an iterative algorithm for periodic reduced-order state observers design is derived. In addition, robust consideration based on periodic reduced-order state observers for LDP systems is also conducted. At last, one numerical example is worked out to illustrate the effectiveness of the proposed approaches.

Citation: Lingling Lv, Wei He, Xianxing Liu, Lei Zhang. A robust reduced-order observers design approach for linear discrete periodic systems. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2799-2812. doi: 10.3934/jimo.2019081
References:
[1]

H. Bourles and U. Oberst, Robust stabilization of discrete-time periodic linear systems for tracking and disturbance rejection, Mathematics of Control Signals & Systems, 28 (2016), 1-34.  doi: 10.1007/s00498-016-0171-8.  Google Scholar

[2]

Y. Chen and J. Lam, Estimation and synthesis of reachable set for discrete-time periodic systems, Optimal Control Applications & Methods, 37 (2016), 885-901.  doi: 10.1002/oca.2211.  Google Scholar

[3]

O. M. Grasselli and S. Longhi, Finite zero structure of linear periodic discrete-time systems, International Journal of Systems Science, 22 (1991), 1785-1806.  doi: 10.1080/00207729108910751.  Google Scholar

[4]

R. Kalman, A new approach to linear filtering and prediction problems, J. Basic Eng., 82 (1960), 35-45.  doi: 10.1115/1.3662552.  Google Scholar

[5]

B. Li, Y. Rong and J. Sun, et al., A distributionally robust minimum variance beamformer design, IEEE Signal Processing Letters, 25 (2018), 105-109. Google Scholar

[6]

B. Li, J. Sun and H. Xu, et al., A class of two-stage distributionally robust games, Journal of Industrial & Management Optimization, 15 (2019), 387-400.  Google Scholar

[7]

B. Li, X. Qian and J. Sun, et al., A model of distributionally robust two-stage stochastic convex programming with linear recourse, Applied Mathematical Modelling, 58 (2018), 86-97. doi: 10.1016/j.apm.2017.11.039.  Google Scholar

[8]

W. LinL. Zhao and K. Dong, Performance analysis of re-adhesion optimization control based on full-dimension state observer, Procedia Engineering, 23 (2011), 531-536.   Google Scholar

[9]

Y. Liu, Y. Yin and K. L. Teo, et al., Probabilistic control of Markov jump systems by scenario optimization approach, Journal of Industrial & Management Optimization, (2018), 742–753. Google Scholar

[10]

L. Lv and Z. Zhang, Finite iterative solutions to periodic Sylvester matrix equations, Journal of the Franklin Institute, 354 (2017), 2358-2370.  doi: 10.1016/j.jfranklin.2017.01.004.  Google Scholar

[11]

L. LvZ. Zhang and L. Zhang, A parametric poles assignment algorithm for second-order linear periodic systems, Journal of the Franklin Institute, 354 (2017), 8057-8071.  doi: 10.1016/j.jfranklin.2017.09.029.  Google Scholar

[12]

R. Sanz, P. Garcia, E. Fridman and P. Albertos, A predictive extended state observer for a class of nonlinear systems with input delay subject to external disturbances, in 2017 IEEE 56th Annual Conference on Decision and Control (CDC), IEEE, 2017, 4345–4350. doi: 10.1109/CDC.2017.8264300.  Google Scholar

[13]

H. A. Tehrani and J. Esmaeili, Stability of fractional-order periodic discrete-time linear systems, IMA Journal of Mathematical Control and Information, 34 (2017), 271-281.  doi: 10.1093/imamci/dnv043.  Google Scholar

[14]

H. Trinh and M. Aldeen, A reduced-order state observer for large-scale discrete-time systems, Computers & Electrical Engineering, 23 (1997), 301-309.  doi: 10.1109/9.649721.  Google Scholar

[15]

L. Y. Wang, C. Li and G. G. Yin, et al., State observability and observers of linear-timeinvariant systems under irregular sampling and sensor limitations, IEEE Transactions on Automatic Control, 56 (2011), 2639-2654. doi: 10.1109/TAC.2011.2122570.  Google Scholar

[16]

A. Wu and G. Duan, Robust fault detection in linear systems based on full-order state observers, Journal of Control Theory and Applications, 5 (2007), 325-330.  doi: 10.1007/s11768-006-6073-4.  Google Scholar

[17]

L. Yan, H. Qiao and Z. Jiao, et al., Linear motor tracking control based on adaptive robust control and extended state observer, in IEEE International Conference on Cybernetics and Intelligent Systems, IEEE, 2017,704–709.  Google Scholar

[18]

Y. Yang, An efficient LQR design for discrete-time linear periodic system based on a novel lifting method, Automatica, 87 (2018), 383-388.  doi: 10.1016/j.automatica.2017.10.019.  Google Scholar

[19]

Y. Yin, Y. Liu and K. L. Teo, et al. Event-triggered probabilistic robust control of linear systems with input constrains: By scenario optimization approach, International Journal of Robust and Nonlinear Control, 28 (2018), 144-153. doi: 10.1002/rnc.3858.  Google Scholar

[20]

B. ZhouD. Li and Z. Lin, Control of discrete-time periodic linear systems with input saturation via multi-step periodic invariant sets, International Journal of Robust & Nonlinear Control, 25 (2015), 103-124.   Google Scholar

[21]

B. Zhou, Truncated Predictor Feedback for Time-Delay Systems, Springer, Berlin Heidelberg, 2014. doi: 10.1007/978-3-642-54206-0.  Google Scholar

[22]

B. ZhouZ. Y. Li and Z. Lin, Observer based output feedback control of linear systems with input and output delays, Automatica, 49 (2013), 2039-2052.  doi: 10.1016/j.automatica.2013.03.031.  Google Scholar

[23]

B. ZhouC. Xu and G. Duan, Distributed and truncated reduced-order observer based output feedback consensus of multi-agent systems, IEEE Transactions on Automatic Control, 59 (2014), 2264-2270.  doi: 10.1109/TAC.2014.2301573.  Google Scholar

[24]

F. Zhu and F. Cen, Full-order observer-based actuator fault detection and reduced-order observer-based fault reconstruction for a class of uncertain nonlinear systems, Journal of Process Control, 20 (2010), 1141-1149.   Google Scholar

show all references

References:
[1]

H. Bourles and U. Oberst, Robust stabilization of discrete-time periodic linear systems for tracking and disturbance rejection, Mathematics of Control Signals & Systems, 28 (2016), 1-34.  doi: 10.1007/s00498-016-0171-8.  Google Scholar

[2]

Y. Chen and J. Lam, Estimation and synthesis of reachable set for discrete-time periodic systems, Optimal Control Applications & Methods, 37 (2016), 885-901.  doi: 10.1002/oca.2211.  Google Scholar

[3]

O. M. Grasselli and S. Longhi, Finite zero structure of linear periodic discrete-time systems, International Journal of Systems Science, 22 (1991), 1785-1806.  doi: 10.1080/00207729108910751.  Google Scholar

[4]

R. Kalman, A new approach to linear filtering and prediction problems, J. Basic Eng., 82 (1960), 35-45.  doi: 10.1115/1.3662552.  Google Scholar

[5]

B. Li, Y. Rong and J. Sun, et al., A distributionally robust minimum variance beamformer design, IEEE Signal Processing Letters, 25 (2018), 105-109. Google Scholar

[6]

B. Li, J. Sun and H. Xu, et al., A class of two-stage distributionally robust games, Journal of Industrial & Management Optimization, 15 (2019), 387-400.  Google Scholar

[7]

B. Li, X. Qian and J. Sun, et al., A model of distributionally robust two-stage stochastic convex programming with linear recourse, Applied Mathematical Modelling, 58 (2018), 86-97. doi: 10.1016/j.apm.2017.11.039.  Google Scholar

[8]

W. LinL. Zhao and K. Dong, Performance analysis of re-adhesion optimization control based on full-dimension state observer, Procedia Engineering, 23 (2011), 531-536.   Google Scholar

[9]

Y. Liu, Y. Yin and K. L. Teo, et al., Probabilistic control of Markov jump systems by scenario optimization approach, Journal of Industrial & Management Optimization, (2018), 742–753. Google Scholar

[10]

L. Lv and Z. Zhang, Finite iterative solutions to periodic Sylvester matrix equations, Journal of the Franklin Institute, 354 (2017), 2358-2370.  doi: 10.1016/j.jfranklin.2017.01.004.  Google Scholar

[11]

L. LvZ. Zhang and L. Zhang, A parametric poles assignment algorithm for second-order linear periodic systems, Journal of the Franklin Institute, 354 (2017), 8057-8071.  doi: 10.1016/j.jfranklin.2017.09.029.  Google Scholar

[12]

R. Sanz, P. Garcia, E. Fridman and P. Albertos, A predictive extended state observer for a class of nonlinear systems with input delay subject to external disturbances, in 2017 IEEE 56th Annual Conference on Decision and Control (CDC), IEEE, 2017, 4345–4350. doi: 10.1109/CDC.2017.8264300.  Google Scholar

[13]

H. A. Tehrani and J. Esmaeili, Stability of fractional-order periodic discrete-time linear systems, IMA Journal of Mathematical Control and Information, 34 (2017), 271-281.  doi: 10.1093/imamci/dnv043.  Google Scholar

[14]

H. Trinh and M. Aldeen, A reduced-order state observer for large-scale discrete-time systems, Computers & Electrical Engineering, 23 (1997), 301-309.  doi: 10.1109/9.649721.  Google Scholar

[15]

L. Y. Wang, C. Li and G. G. Yin, et al., State observability and observers of linear-timeinvariant systems under irregular sampling and sensor limitations, IEEE Transactions on Automatic Control, 56 (2011), 2639-2654. doi: 10.1109/TAC.2011.2122570.  Google Scholar

[16]

A. Wu and G. Duan, Robust fault detection in linear systems based on full-order state observers, Journal of Control Theory and Applications, 5 (2007), 325-330.  doi: 10.1007/s11768-006-6073-4.  Google Scholar

[17]

L. Yan, H. Qiao and Z. Jiao, et al., Linear motor tracking control based on adaptive robust control and extended state observer, in IEEE International Conference on Cybernetics and Intelligent Systems, IEEE, 2017,704–709.  Google Scholar

[18]

Y. Yang, An efficient LQR design for discrete-time linear periodic system based on a novel lifting method, Automatica, 87 (2018), 383-388.  doi: 10.1016/j.automatica.2017.10.019.  Google Scholar

[19]

Y. Yin, Y. Liu and K. L. Teo, et al. Event-triggered probabilistic robust control of linear systems with input constrains: By scenario optimization approach, International Journal of Robust and Nonlinear Control, 28 (2018), 144-153. doi: 10.1002/rnc.3858.  Google Scholar

[20]

B. ZhouD. Li and Z. Lin, Control of discrete-time periodic linear systems with input saturation via multi-step periodic invariant sets, International Journal of Robust & Nonlinear Control, 25 (2015), 103-124.   Google Scholar

[21]

B. Zhou, Truncated Predictor Feedback for Time-Delay Systems, Springer, Berlin Heidelberg, 2014. doi: 10.1007/978-3-642-54206-0.  Google Scholar

[22]

B. ZhouZ. Y. Li and Z. Lin, Observer based output feedback control of linear systems with input and output delays, Automatica, 49 (2013), 2039-2052.  doi: 10.1016/j.automatica.2013.03.031.  Google Scholar

[23]

B. ZhouC. Xu and G. Duan, Distributed and truncated reduced-order observer based output feedback consensus of multi-agent systems, IEEE Transactions on Automatic Control, 59 (2014), 2264-2270.  doi: 10.1109/TAC.2014.2301573.  Google Scholar

[24]

F. Zhu and F. Cen, Full-order observer-based actuator fault detection and reduced-order observer-based fault reconstruction for a class of uncertain nonlinear systems, Journal of Process Control, 20 (2010), 1141-1149.   Google Scholar

Figure 1.  The trajectories of observed state errors by $ L_{t}^{\mathrm{rand}} $ and $ L_{t}^{\mathrm{robu}} $
[1]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[2]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[3]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[4]

Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264

[5]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[6]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[7]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[8]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[9]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[10]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[11]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[12]

Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160

[13]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[14]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[15]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[16]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[17]

Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151

[18]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[19]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[20]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (104)
  • HTML views (595)
  • Cited by (0)

Other articles
by authors

[Back to Top]