• Previous Article
    Multi-period optimal investment choice post-retirement with inter-temporal restrictions in a defined contribution pension plan
  • JIMO Home
  • This Issue
  • Next Article
    Analysis of the queue lengths in a priority retrial queue with constant retrial policy
November  2020, 16(6): 2843-2856. doi: 10.3934/jimo.2019083

Transient analysis of N-policy queue with system disaster repair preventive maintenance re-service balking closedown and setup times

1. 

Department of Mathematics, St. Anne's College of Engineering and Technology, Anna University, Panruti, Tamilnadu - 607 110, India

2. 

Department of Mathematics, Idhaya College of Arts and Science for Women, Pondicherry University, Pakkamudayanpet, Puducherry - 605 008, India

* Corresponding author: T. Deepa, deepatmaths@gmail.com

Received  October 2018 Revised  March 2019 Published  November 2020 Early access  July 2019

This paper investigates the transient behavior of a $ M/M/1 $ queueing model with N-policy, system disaster, repair, preventive maintenance, balking, re-service, closedown and setup times. The server stays dormant (off state) until N customers accumulate in the queue and then starts an exhaustive service (on state). After the service, each customer may either leave the system or get immediate re-service. When the system becomes empty, the server resumes closedown work and then undergoes preventive maintenance. After that, it comes to the idle state and waits N accumulate for service. When the $ N^{th} $ one enters the queue, the server commences the setup work and then starts the service. Meanwhile, the system suffers disastrous breakdown during busy period. It forced the system to the failure state and all the customers get eliminated. After that, the server gets repaired and moves to the idle state. The customers may either join the queue or balk when the size of the system is less than N. The probabilities of the proposed model are derived by the method of generating function for the transient case. Some system performance indices and numerical simulations are also presented.

Citation: A. Azhagappan, T. Deepa. Transient analysis of N-policy queue with system disaster repair preventive maintenance re-service balking closedown and setup times. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2843-2856. doi: 10.3934/jimo.2019083
References:
[1]

S. I. Ammar, Transient analysis of an $M/M/1$ queue with impatient behavior and multiple vacations, Applied Mathematics and Computation, 260 (2015), 97-105.  doi: 10.1016/j.amc.2015.03.066.

[2]

R. Arumuganathan and S. Jeyakumar, Steady state analysis of a bulk queue with multiple vacations, setup times with N-policy and closedown times, Applied Mathematical Modeling, 29 (2005), 972-986.  doi: 10.1016/j.apm.2005.02.013.

[3]

S. R. Chakravarthy, A catastrophic queueing model with delayed action, Applied Mathematical Modeling, 46 (2017), 631-649.  doi: 10.1016/j.apm.2017.01.089.

[4]

F. ChangT. Liu and J. Ke, On an unreliable-server retrial queue with customer feedback and impatience, Applied Mathematical Modeling, 55 (2018), 171-182.  doi: 10.1016/j.apm.2017.10.025.

[5]

D. I. Choi and T. S. Kim, Analysis of a two-phase queueing system with vacations and Bernoulli feedback, Stochastic Analysis and Applications, 21 (2003), 1009-1019.  doi: 10.1081/SAP-120024702.

[6]

F. A. Haight, Queueing with balking, Biometrika, 44 (1957), 360-369.  doi: 10.1093/biomet/44.3-4.360.

[7]

M. JainC. Shekhar and S. Shukla, N-policy for a repairable redundant machining system with controlled rates, RAIRO-Operations Research, 50 (2016), 891-907.  doi: 10.1051/ro/2015032.

[8]

M. Jain, Priority queue with batch arrival, balking, threshold recovery, unreliable server and optimal service, RAIRO-Operations Research, 51 (2017), 417-432.  doi: 10.1051/ro/2016032.

[9]

K. KalidassS. GopinathJ. Gnanaraj and K. Ramanath, Time-dependent analysis of an $M/M/1/N$ queue with catastrophes and a repairable server, Opsearch, 49 (2012), 39-61.  doi: 10.1007/s12597-012-0065-6.

[10]

J. C. Ke, Batch arrival queues under vacation policies with server breakdowns and startup/closedown times, Applied Mathematical Modelling, 31 (2007), 1282-1292.  doi: 10.1016/j.apm.2006.02.010.

[11]

B. K. KumarP. R. Parthasarthy and M. Sharafali, Transient solution of an $M/M/1$ queue with balking, Queueing Systems, 13 (1993), 441-447.  doi: 10.1007/BF01149265.

[12]

B. K. Kumar and D. Arivudainambi, Transient solution of an $M/M/1$ queue with catastrophes, Computers and Mathematics with Applications, 40 (2000), 1233-1240.  doi: 10.1016/S0898-1221(00)00234-0.

[13]

B. K. Kumar and S. P. Madheswari, Transient analysis of an $M/M/1$ queue subject to catastrophes and server failures, Stochastic Analysis and Applications, 23 (2005), 329-340.  doi: 10.1081/SAP-200050101.

[14]

B. K. KumarS. P. Madheswari and K. S. Venkatakrishnan, Transient solution of an $M/M/2$ queue with heterogeneous servers subject to catastrophes, International Journal of Information and Management Sciences, 18 (2007), 63-80. 

[15]

B. K. KumarA. KrishnamoorthyS. P. Madheswari and S. S. Basha, Transient analysis of a single server queue with catastrophes, failures and repairs, Queueing Systems, 56 (2007), 133-141.  doi: 10.1007/s11134-007-9014-0.

[16]

B. K. KumarS. Anbarasu and S. R. A. Lakshmi, Performance analysis for queueing systems with close down periods and server under maintenance, International Journal of Systems Science, 46 (2015), 88-110.  doi: 10.1080/00207721.2013.775384.

[17]

P. R. Parthasarathy, A transient solution to an $M/M/1$ queue: A simple approach, Advances in Applied Probability, 19 (1987), 997-998.  doi: 10.2307/1427113.

[18]

P. R. Parthasarathy and R. Sudhesh, Transient solution of a multiserver Poisson queue with N-policy, Computers & Mathematics with Applications, 55 (2008), 550-562.  doi: 10.1016/j.camwa.2007.04.024.

[19]

R. Sudhesh, Transient analysis of a queue with system disasters and customer impatience, Queueing Systems, 66 (2010), 95-105.  doi: 10.1007/s11134-010-9186-x.

[20]

R. SudheshR. Sebasthi Priya and R. B. Lenin, Analysis of N-policy queues with disastrous breakdown, TOP, 24 (2016), 612-634.  doi: 10.1007/s11750-016-0411-6.

[21]

R. SudheshA. Azhagappan and S. Dharmaraja, Transient analysis of $M/M/1$ queue with working vacation heterogeneous service and customers' impatience, RAIRO-Operations Research, 51 (2017), 591-606.  doi: 10.1051/ro/2016046.

[22]

R. Sudhesh and A. Azhagappan, Transient analysis of an $M/M/1$ queue with variant impatient behavior and working vacations, Opsearch, 55 (2018), 787-806.  doi: 10.1007/s12597-018-0339-8.

[23]

L. Takacs, A single server queue with feedback, Bell System Technical Journal, 42 (1963), 505-519.  doi: 10.1002/j.1538-7305.1963.tb00510.x.

[24]

P. Vijayalaxmi and K. Jyothsna, Analysis of finite buffer renewal input queue with balking and multiple working vacations, Opsearch, 50 (2013), 548-565.  doi: 10.1007/s12597-013-0123-8.

[25]

U. Yechiali, Queues with system disasters and impatient customers when system is down, Queueing Systems, 56 (2007), 195-202.  doi: 10.1007/s11134-007-9031-z.

show all references

References:
[1]

S. I. Ammar, Transient analysis of an $M/M/1$ queue with impatient behavior and multiple vacations, Applied Mathematics and Computation, 260 (2015), 97-105.  doi: 10.1016/j.amc.2015.03.066.

[2]

R. Arumuganathan and S. Jeyakumar, Steady state analysis of a bulk queue with multiple vacations, setup times with N-policy and closedown times, Applied Mathematical Modeling, 29 (2005), 972-986.  doi: 10.1016/j.apm.2005.02.013.

[3]

S. R. Chakravarthy, A catastrophic queueing model with delayed action, Applied Mathematical Modeling, 46 (2017), 631-649.  doi: 10.1016/j.apm.2017.01.089.

[4]

F. ChangT. Liu and J. Ke, On an unreliable-server retrial queue with customer feedback and impatience, Applied Mathematical Modeling, 55 (2018), 171-182.  doi: 10.1016/j.apm.2017.10.025.

[5]

D. I. Choi and T. S. Kim, Analysis of a two-phase queueing system with vacations and Bernoulli feedback, Stochastic Analysis and Applications, 21 (2003), 1009-1019.  doi: 10.1081/SAP-120024702.

[6]

F. A. Haight, Queueing with balking, Biometrika, 44 (1957), 360-369.  doi: 10.1093/biomet/44.3-4.360.

[7]

M. JainC. Shekhar and S. Shukla, N-policy for a repairable redundant machining system with controlled rates, RAIRO-Operations Research, 50 (2016), 891-907.  doi: 10.1051/ro/2015032.

[8]

M. Jain, Priority queue with batch arrival, balking, threshold recovery, unreliable server and optimal service, RAIRO-Operations Research, 51 (2017), 417-432.  doi: 10.1051/ro/2016032.

[9]

K. KalidassS. GopinathJ. Gnanaraj and K. Ramanath, Time-dependent analysis of an $M/M/1/N$ queue with catastrophes and a repairable server, Opsearch, 49 (2012), 39-61.  doi: 10.1007/s12597-012-0065-6.

[10]

J. C. Ke, Batch arrival queues under vacation policies with server breakdowns and startup/closedown times, Applied Mathematical Modelling, 31 (2007), 1282-1292.  doi: 10.1016/j.apm.2006.02.010.

[11]

B. K. KumarP. R. Parthasarthy and M. Sharafali, Transient solution of an $M/M/1$ queue with balking, Queueing Systems, 13 (1993), 441-447.  doi: 10.1007/BF01149265.

[12]

B. K. Kumar and D. Arivudainambi, Transient solution of an $M/M/1$ queue with catastrophes, Computers and Mathematics with Applications, 40 (2000), 1233-1240.  doi: 10.1016/S0898-1221(00)00234-0.

[13]

B. K. Kumar and S. P. Madheswari, Transient analysis of an $M/M/1$ queue subject to catastrophes and server failures, Stochastic Analysis and Applications, 23 (2005), 329-340.  doi: 10.1081/SAP-200050101.

[14]

B. K. KumarS. P. Madheswari and K. S. Venkatakrishnan, Transient solution of an $M/M/2$ queue with heterogeneous servers subject to catastrophes, International Journal of Information and Management Sciences, 18 (2007), 63-80. 

[15]

B. K. KumarA. KrishnamoorthyS. P. Madheswari and S. S. Basha, Transient analysis of a single server queue with catastrophes, failures and repairs, Queueing Systems, 56 (2007), 133-141.  doi: 10.1007/s11134-007-9014-0.

[16]

B. K. KumarS. Anbarasu and S. R. A. Lakshmi, Performance analysis for queueing systems with close down periods and server under maintenance, International Journal of Systems Science, 46 (2015), 88-110.  doi: 10.1080/00207721.2013.775384.

[17]

P. R. Parthasarathy, A transient solution to an $M/M/1$ queue: A simple approach, Advances in Applied Probability, 19 (1987), 997-998.  doi: 10.2307/1427113.

[18]

P. R. Parthasarathy and R. Sudhesh, Transient solution of a multiserver Poisson queue with N-policy, Computers & Mathematics with Applications, 55 (2008), 550-562.  doi: 10.1016/j.camwa.2007.04.024.

[19]

R. Sudhesh, Transient analysis of a queue with system disasters and customer impatience, Queueing Systems, 66 (2010), 95-105.  doi: 10.1007/s11134-010-9186-x.

[20]

R. SudheshR. Sebasthi Priya and R. B. Lenin, Analysis of N-policy queues with disastrous breakdown, TOP, 24 (2016), 612-634.  doi: 10.1007/s11750-016-0411-6.

[21]

R. SudheshA. Azhagappan and S. Dharmaraja, Transient analysis of $M/M/1$ queue with working vacation heterogeneous service and customers' impatience, RAIRO-Operations Research, 51 (2017), 591-606.  doi: 10.1051/ro/2016046.

[22]

R. Sudhesh and A. Azhagappan, Transient analysis of an $M/M/1$ queue with variant impatient behavior and working vacations, Opsearch, 55 (2018), 787-806.  doi: 10.1007/s12597-018-0339-8.

[23]

L. Takacs, A single server queue with feedback, Bell System Technical Journal, 42 (1963), 505-519.  doi: 10.1002/j.1538-7305.1963.tb00510.x.

[24]

P. Vijayalaxmi and K. Jyothsna, Analysis of finite buffer renewal input queue with balking and multiple working vacations, Opsearch, 50 (2013), 548-565.  doi: 10.1007/s12597-013-0123-8.

[25]

U. Yechiali, Queues with system disasters and impatient customers when system is down, Queueing Systems, 56 (2007), 195-202.  doi: 10.1007/s11134-007-9031-z.

Figure 1.  State Transition Diagram
Figure 2.  Transient probabilities for the off state of the server
Figure 3.  Transient probabilities for the on state of the server
Figure 4.  Mean system size with different values of $ \sigma $
Figure 5.  Variance of system size for various values of $ \sigma $
Figure 6.  Mean system size with different values of $ \eta $
Figure 7.  Variance of system size for various values of $ \eta $
[1]

Feng Zhang, Jinting Wang, Bin Liu. Equilibrium joining probabilities in observable queues with general service and setup times. Journal of Industrial and Management Optimization, 2013, 9 (4) : 901-917. doi: 10.3934/jimo.2013.9.901

[2]

Ruiling Tian, Dequan Yue, Wuyi Yue. Optimal balking strategies in an M/G/1 queueing system with a removable server under N-policy. Journal of Industrial and Management Optimization, 2015, 11 (3) : 715-731. doi: 10.3934/jimo.2015.11.715

[3]

Pikkala Vijaya Laxmi, Singuluri Indira, Kanithi Jyothsna. Ant colony optimization for optimum service times in a Bernoulli schedule vacation interruption queue with balking and reneging. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1199-1214. doi: 10.3934/jimo.2016.12.1199

[4]

Zhanyou Ma, Pengcheng Wang, Wuyi Yue. Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with N-policy, setup time and multiple working vacations. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1467-1481. doi: 10.3934/jimo.2017002

[5]

Bart Feyaerts, Stijn De Vuyst, Herwig Bruneel, Sabine Wittevrongel. The impact of the $NT$-policy on the behaviour of a discrete-time queue with general service times. Journal of Industrial and Management Optimization, 2014, 10 (1) : 131-149. doi: 10.3934/jimo.2014.10.131

[6]

Ahmed M. K. Tarabia. Transient and steady state analysis of an M/M/1 queue with balking, catastrophes, server failures and repairs. Journal of Industrial and Management Optimization, 2011, 7 (4) : 811-823. doi: 10.3934/jimo.2011.7.811

[7]

Jianyu Cao, Weixin Xie. Optimization of a condition-based duration-varying preventive maintenance policy for the stockless production system based on queueing model. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1049-1083. doi: 10.3934/jimo.2018085

[8]

Gábor Horváth, Zsolt Saffer, Miklós Telek. Queue length analysis of a Markov-modulated vacation queue with dependent arrival and service processes and exhaustive service policy. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1365-1381. doi: 10.3934/jimo.2016077

[9]

Pikkala Vijaya Laxmi, Obsie Mussa Yesuf. Analysis of a finite buffer general input queue with Markovian service process and accessible and non-accessible batch service. Journal of Industrial and Management Optimization, 2010, 6 (4) : 929-944. doi: 10.3934/jimo.2010.6.929

[10]

Chia-Huang Wu, Dong-Yuh Yang, Chia-Ru Yong. Performance evaluation and bi-objective optimization for $ F $-policy queue with alternating service rates. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022111

[11]

Pikkala Vijaya Laxmi, Seleshi Demie. Performance analysis of renewal input $(a,c,b)$ policy queue with multiple working vacations and change over times. Journal of Industrial and Management Optimization, 2014, 10 (3) : 839-857. doi: 10.3934/jimo.2014.10.839

[12]

Hideaki Takagi. Times until service completion and abandonment in an M/M/$ m$ preemptive-resume LCFS queue with impatient customers. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1701-1726. doi: 10.3934/jimo.2018028

[13]

Yen-Luan Chen, Chin-Chih Chang, Zhe George Zhang, Xiaofeng Chen. Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models. Journal of Industrial and Management Optimization, 2021, 17 (1) : 501-516. doi: 10.3934/jimo.2020149

[14]

Dequan Yue, Jun Yu, Wuyi Yue. A Markovian queue with two heterogeneous servers and multiple vacations. Journal of Industrial and Management Optimization, 2009, 5 (3) : 453-465. doi: 10.3934/jimo.2009.5.453

[15]

Shaojun Lan, Yinghui Tang, Miaomiao Yu. System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1435-1464. doi: 10.3934/jimo.2016.12.1435

[16]

Tuan Phung-Duc, Ken'ichi Kawanishi. Multiserver retrial queue with setup time and its application to data centers. Journal of Industrial and Management Optimization, 2019, 15 (1) : 15-35. doi: 10.3934/jimo.2018030

[17]

Arnaud Devos, Joris Walraevens, Tuan Phung-Duc, Herwig Bruneel. Analysis of the queue lengths in a priority retrial queue with constant retrial policy. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2813-2842. doi: 10.3934/jimo.2019082

[18]

Javad Taheri-Tolgari, Mohammad Mohammadi, Bahman Naderi, Alireza Arshadi-Khamseh, Abolfazl Mirzazadeh. An inventory model with imperfect item, inspection errors, preventive maintenance and partial backlogging in uncertainty environment. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1317-1344. doi: 10.3934/jimo.2018097

[19]

Masoud Ebrahimi, Seyyed Mohammad Taghi Fatemi Ghomi, Behrooz Karimi. Application of the preventive maintenance scheduling to increase the equipment reliability: Case study- bag filters in cement factory. Journal of Industrial and Management Optimization, 2020, 16 (1) : 189-205. doi: 10.3934/jimo.2018146

[20]

Le Thi Hoai An, Tran Duc Quynh, Kondo Hloindo Adjallah. A difference of convex functions algorithm for optimal scheduling and real-time assignment of preventive maintenance jobs on parallel processors. Journal of Industrial and Management Optimization, 2014, 10 (1) : 243-258. doi: 10.3934/jimo.2014.10.243

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (451)
  • HTML views (789)
  • Cited by (0)

Other articles
by authors

[Back to Top]