November  2020, 16(6): 2913-2922. doi: 10.3934/jimo.2019086

A zero-forcing beamforming based time switching protocol for wireless powered internet of things system

1. 

College of Electrical and Information Technology, Sichuan University, Chengdu, China

2. 

Key Laboratory of Wireless Power Transmission of Ministry of Education, Sichuan University, Chengdu, China

* Corresponding author: Bin Li

Received  November 2018 Revised  March 2019 Published  July 2019

Fund Project: This work was supported by a grant from National Natural Science Foundation of China under number 61701124, a grant from Science and Technology on Space Intelligent Control Laboratory, No.KGJZDSYS-2018-03, a grant from Sichuan Province Government under No.2019YJ0105, and a grant from Fundamental Research Funds for the Central Universities(China)

In this paper, a time switching (TS) protocol for the wireless powered communications system with per-antenna power constraints is considered. To eliminate the multi-user interference, we adopt the zero-forcing beamforming scheme to maximize the sum rate performance. A two-step algorithm is proposed to solve the sum rate maximization problem with per-antenna power constraints. More specifically, golden section search method is used to find optimal time switching factor in the first step. For each given TS factor, the sub-problem in the second step is convex, which can be efficiently solved by standard software package. Numerical results are provided to demonstrate the effectiveness of the proposed methods, and some interesting results are also observed.

Citation: Hanyu Cao, Meiying Zhang, Huanxi Cai, Wei Gong, Min Su, Bin Li. A zero-forcing beamforming based time switching protocol for wireless powered internet of things system. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2913-2922. doi: 10.3934/jimo.2019086
References:
[1]

Internet of Things in 2020 - A Road Map in the Future, 2008. Available from: http://www.smart{_}systems{_}integration.org/public/documents/publications/Internet{_}of{_}Things{_}in{_}2020{_}EC-EPoSS{_}Workshop{_}Report{_}2008{_}v3.pdf. Google Scholar

[2]

G. Caire and S. Shamai, On the achievable throughput of multiantenna Gaussian broadcast channel, IEEE Trans. Inf. Theory, 49 (2003), 1691-1706.  doi: 10.1109/TIT.2003.813523.  Google Scholar

[3]

B. Clerckx and E. Bayguzina, Waveform design for wireless power transfer, IEEE Trans. Signal Process, 64 (2016), 6313-6328.  doi: 10.1109/TSP.2016.2601284.  Google Scholar

[4]

Z. G. FengK. F. C. Yiu and S. E. Nordholm, A two-stage method for the design of near-field broadband beamformer, IEEE Transactions on Signal Processing, 59 (2011), 3647-3656.  doi: 10.1109/TSP.2011.2133490.  Google Scholar

[5]

Z. G. FengK. F. C. Yiu and S. E. Nordholm, Placement design of microphone arrays in near-field broadband beamformers, IEEE Transactions on Signal Processing, 60 (2012), 1195-1204.  doi: 10.1109/TSP.2011.2178491.  Google Scholar

[6]

M. GrantS. BoydL. Liberti and N. Maculan, Disciplined convex programming in global optimization: From theory to implementation, Nonconvex Optimization and Its Applications, 84 (2006), 155-210.  doi: 10.1007/0-387-30528-9_7.  Google Scholar

[7]

B. LiH. H. DamA. Cantoni and K. L. Teo, A first-order optimal zero-forcing beamformer design for multiuser MIMO systems via a regularized dual accelerated gradient method, IEEE Commun. Lett., 19 (2015), 195-198.  doi: 10.3934/naco.2016012.  Google Scholar

[8]

B. LiH. H. DamA. Cantoni and K. L. Teo, A global optimal zero-forcing beamformer design with signed power-of-two coefficients, Journal of Industrial and Management Optimization, 12 (2016), 595-607.  doi: 10.3934/jimo.2016.12.595.  Google Scholar

[9]

B. Li and Y. Rong, Joint transceiver optimization for wireless information and energy transfer in nonregenerative MIMO relay systems, IEEE Transactions on Vehicular Technology, 67 (2018), 8348-8362.  doi: 10.1109/TVT.2018.2846556.  Google Scholar

[10]

B. Li and Y. Rong, AF MIMO relay systems with wireless powered relay node and direct link, IEEE Transactions on Communications, 66 (2018), 1508-1519.  doi: 10.1109/TCOMM.2017.2788006.  Google Scholar

[11]

B. LiC. Z. WuH. H. DamA. Cantoni and K. L. Teo, A parallel low complexity zero-forcing beamformer design for multiuser MIMO systems via a regularized dual decomposition method, IEEE Trans. Signal Process, 63 (2015), 4179-4190.  doi: 10.1109/TSP.2015.2437846.  Google Scholar

[12]

X. Lu, P. Wang, D. Niyato, D. I. Kim and Z. Han, Wireless networks with RF energy harvesting: A contemporary survey, IEEE Communications Surveys & Tutorials, 17 (2015), 757–789. doi: 10.1109/COMST.2014.2368999.  Google Scholar

[13]

X. Lu, P. Wang, D. Niyato, D. I. Kim and Z. Han, Wireless charging technologies: fundamentals, standards, and network applications, IEEE Communications Surveys & Tutorials, 18 (2016), 1413–1452. doi: 10.1109/COMST.2015.2499783.  Google Scholar

[14]

L. Ma, Y. Wang and Y. Xu, Sum rate optimization for SWIPT system based on zero-forcing beamforming and time switching, 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), (2017), 351–356. doi: 10.1109/TSP.2015.2489603.  Google Scholar

[15]

A. A. Okandeji and et al., SWIPT in MISO full-duplex systems, Journal of Communications and Networks, 19 (2017), 470-480.  doi: 10.1109/JCN.2017.000079.  Google Scholar

[16]

C. Peng, Q. Shi, W. Xu and M. Hong, Energy efficiency optimization for multi-user MISO swipt systems, 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), (2015), 772–776. doi: 10.1109/TSP.2015.2489603.  Google Scholar

[17]

T. D. Ponnimbaduge Perera, D. N. K. Jayakody, S. K. Sharma, S. Chatzinotas and J. Li, Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges, IEEE Communications Surveys & Tutorials, 20 (2018), 264–302. doi: 10.1109/COMST.2017.2783901.  Google Scholar

[18]

Q. ShiL. LiuW. Xu and R. Zhang, Joint transmit beamforming and receive power splitting for MISO SWIPT systems, IEEE Transactions on Wireless Communications, 13 (2014), 3269-3280.  doi: 10.1109/TWC.2014.041714.131688.  Google Scholar

[19]

Q. ShiC. PengW. XuM. Hong and Y. Cai, Energy efficiency optimization for MISO SWIPT systems with zero-forcing beamforming, IEEE Transactions on Signal Processing, 64 (2016), 842-854.  doi: 10.1109/TSP.2015.2489603.  Google Scholar

[20]

L. R. Varshney, Transporting information and energy simultaneously, IEEE Int. Symp. Inf. Theory (ISIT), 6 (2008), 1612-1616.  doi: 10.1109/ISIT.2008.4595260.  Google Scholar

[21]

A. WieselY. C. Eldar and S. Shamai, Zero-Forcing precoding and generalized inverses, IEEE Transactions on Signal Processing, 56 (2008), 4409-4418.  doi: 10.1109/TSP.2008.924638.  Google Scholar

[22]

R. Zhang, Cooperative multi-cell block diagonalization with per-base-station power constraints, IEEE Journal on Selected Areas in Communications, 28 (2010), 1435-1445.  doi: 10.1109/WCNC.2010.5506527.  Google Scholar

[23]

R. ZhangR. G. Maunder and L. Hanzo, Wireless information and power transfer: From scientific hypothesis to engineering practice, IEEE Communications Magazine, 53 (2015), 99-105.  doi: 10.1109/MCOM.2015.7180515.  Google Scholar

[24]

R. Zhang and C. K. Ho, MIMO broadcasting for simultaneous wireless information and power transfer, IEEE Trans. Wireless Commun., 12 (2013), 1989-2001.  doi: 10.1109/TWC.2013.031813.120224.  Google Scholar

[25]

Y. ZengB. Clerckx and and R. Zhang, Communications and signals design for wireless power transmission, IEEE Trans. Commun., 65 (2017), 2264-2290.  doi: 10.1109/TCOMM.2017.2676103.  Google Scholar

show all references

References:
[1]

Internet of Things in 2020 - A Road Map in the Future, 2008. Available from: http://www.smart{_}systems{_}integration.org/public/documents/publications/Internet{_}of{_}Things{_}in{_}2020{_}EC-EPoSS{_}Workshop{_}Report{_}2008{_}v3.pdf. Google Scholar

[2]

G. Caire and S. Shamai, On the achievable throughput of multiantenna Gaussian broadcast channel, IEEE Trans. Inf. Theory, 49 (2003), 1691-1706.  doi: 10.1109/TIT.2003.813523.  Google Scholar

[3]

B. Clerckx and E. Bayguzina, Waveform design for wireless power transfer, IEEE Trans. Signal Process, 64 (2016), 6313-6328.  doi: 10.1109/TSP.2016.2601284.  Google Scholar

[4]

Z. G. FengK. F. C. Yiu and S. E. Nordholm, A two-stage method for the design of near-field broadband beamformer, IEEE Transactions on Signal Processing, 59 (2011), 3647-3656.  doi: 10.1109/TSP.2011.2133490.  Google Scholar

[5]

Z. G. FengK. F. C. Yiu and S. E. Nordholm, Placement design of microphone arrays in near-field broadband beamformers, IEEE Transactions on Signal Processing, 60 (2012), 1195-1204.  doi: 10.1109/TSP.2011.2178491.  Google Scholar

[6]

M. GrantS. BoydL. Liberti and N. Maculan, Disciplined convex programming in global optimization: From theory to implementation, Nonconvex Optimization and Its Applications, 84 (2006), 155-210.  doi: 10.1007/0-387-30528-9_7.  Google Scholar

[7]

B. LiH. H. DamA. Cantoni and K. L. Teo, A first-order optimal zero-forcing beamformer design for multiuser MIMO systems via a regularized dual accelerated gradient method, IEEE Commun. Lett., 19 (2015), 195-198.  doi: 10.3934/naco.2016012.  Google Scholar

[8]

B. LiH. H. DamA. Cantoni and K. L. Teo, A global optimal zero-forcing beamformer design with signed power-of-two coefficients, Journal of Industrial and Management Optimization, 12 (2016), 595-607.  doi: 10.3934/jimo.2016.12.595.  Google Scholar

[9]

B. Li and Y. Rong, Joint transceiver optimization for wireless information and energy transfer in nonregenerative MIMO relay systems, IEEE Transactions on Vehicular Technology, 67 (2018), 8348-8362.  doi: 10.1109/TVT.2018.2846556.  Google Scholar

[10]

B. Li and Y. Rong, AF MIMO relay systems with wireless powered relay node and direct link, IEEE Transactions on Communications, 66 (2018), 1508-1519.  doi: 10.1109/TCOMM.2017.2788006.  Google Scholar

[11]

B. LiC. Z. WuH. H. DamA. Cantoni and K. L. Teo, A parallel low complexity zero-forcing beamformer design for multiuser MIMO systems via a regularized dual decomposition method, IEEE Trans. Signal Process, 63 (2015), 4179-4190.  doi: 10.1109/TSP.2015.2437846.  Google Scholar

[12]

X. Lu, P. Wang, D. Niyato, D. I. Kim and Z. Han, Wireless networks with RF energy harvesting: A contemporary survey, IEEE Communications Surveys & Tutorials, 17 (2015), 757–789. doi: 10.1109/COMST.2014.2368999.  Google Scholar

[13]

X. Lu, P. Wang, D. Niyato, D. I. Kim and Z. Han, Wireless charging technologies: fundamentals, standards, and network applications, IEEE Communications Surveys & Tutorials, 18 (2016), 1413–1452. doi: 10.1109/COMST.2015.2499783.  Google Scholar

[14]

L. Ma, Y. Wang and Y. Xu, Sum rate optimization for SWIPT system based on zero-forcing beamforming and time switching, 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), (2017), 351–356. doi: 10.1109/TSP.2015.2489603.  Google Scholar

[15]

A. A. Okandeji and et al., SWIPT in MISO full-duplex systems, Journal of Communications and Networks, 19 (2017), 470-480.  doi: 10.1109/JCN.2017.000079.  Google Scholar

[16]

C. Peng, Q. Shi, W. Xu and M. Hong, Energy efficiency optimization for multi-user MISO swipt systems, 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), (2015), 772–776. doi: 10.1109/TSP.2015.2489603.  Google Scholar

[17]

T. D. Ponnimbaduge Perera, D. N. K. Jayakody, S. K. Sharma, S. Chatzinotas and J. Li, Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges, IEEE Communications Surveys & Tutorials, 20 (2018), 264–302. doi: 10.1109/COMST.2017.2783901.  Google Scholar

[18]

Q. ShiL. LiuW. Xu and R. Zhang, Joint transmit beamforming and receive power splitting for MISO SWIPT systems, IEEE Transactions on Wireless Communications, 13 (2014), 3269-3280.  doi: 10.1109/TWC.2014.041714.131688.  Google Scholar

[19]

Q. ShiC. PengW. XuM. Hong and Y. Cai, Energy efficiency optimization for MISO SWIPT systems with zero-forcing beamforming, IEEE Transactions on Signal Processing, 64 (2016), 842-854.  doi: 10.1109/TSP.2015.2489603.  Google Scholar

[20]

L. R. Varshney, Transporting information and energy simultaneously, IEEE Int. Symp. Inf. Theory (ISIT), 6 (2008), 1612-1616.  doi: 10.1109/ISIT.2008.4595260.  Google Scholar

[21]

A. WieselY. C. Eldar and S. Shamai, Zero-Forcing precoding and generalized inverses, IEEE Transactions on Signal Processing, 56 (2008), 4409-4418.  doi: 10.1109/TSP.2008.924638.  Google Scholar

[22]

R. Zhang, Cooperative multi-cell block diagonalization with per-base-station power constraints, IEEE Journal on Selected Areas in Communications, 28 (2010), 1435-1445.  doi: 10.1109/WCNC.2010.5506527.  Google Scholar

[23]

R. ZhangR. G. Maunder and L. Hanzo, Wireless information and power transfer: From scientific hypothesis to engineering practice, IEEE Communications Magazine, 53 (2015), 99-105.  doi: 10.1109/MCOM.2015.7180515.  Google Scholar

[24]

R. Zhang and C. K. Ho, MIMO broadcasting for simultaneous wireless information and power transfer, IEEE Trans. Wireless Commun., 12 (2013), 1989-2001.  doi: 10.1109/TWC.2013.031813.120224.  Google Scholar

[25]

Y. ZengB. Clerckx and and R. Zhang, Communications and signals design for wireless power transmission, IEEE Trans. Commun., 65 (2017), 2264-2290.  doi: 10.1109/TCOMM.2017.2676103.  Google Scholar

Figure 1.  Sum Rate versus $ P $
Figure 2.  Sum Rate versus $ P $
Figure 3.  Sum Rate versus $ P $
[1]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[2]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[3]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[4]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[5]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[6]

Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025

[7]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[8]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[9]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[10]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[11]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[12]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[13]

Junkee Jeon. Finite horizon portfolio selection problems with stochastic borrowing constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 733-763. doi: 10.3934/jimo.2019132

[14]

Nan Zhang, Linyi Qian, Zhuo Jin, Wei Wang. Optimal stop-loss reinsurance with joint utility constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 841-868. doi: 10.3934/jimo.2020001

[15]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[16]

Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040

[17]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[18]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[19]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[20]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (71)
  • HTML views (610)
  • Cited by (0)

[Back to Top]