November  2020, 16(6): 2913-2922. doi: 10.3934/jimo.2019086

A zero-forcing beamforming based time switching protocol for wireless powered internet of things system

1. 

College of Electrical and Information Technology, Sichuan University, Chengdu, China

2. 

Key Laboratory of Wireless Power Transmission of Ministry of Education, Sichuan University, Chengdu, China

* Corresponding author: Bin Li

Received  November 2018 Revised  March 2019 Published  November 2020 Early access  July 2019

Fund Project: This work was supported by a grant from National Natural Science Foundation of China under number 61701124, a grant from Science and Technology on Space Intelligent Control Laboratory, No.KGJZDSYS-2018-03, a grant from Sichuan Province Government under No.2019YJ0105, and a grant from Fundamental Research Funds for the Central Universities(China)

In this paper, a time switching (TS) protocol for the wireless powered communications system with per-antenna power constraints is considered. To eliminate the multi-user interference, we adopt the zero-forcing beamforming scheme to maximize the sum rate performance. A two-step algorithm is proposed to solve the sum rate maximization problem with per-antenna power constraints. More specifically, golden section search method is used to find optimal time switching factor in the first step. For each given TS factor, the sub-problem in the second step is convex, which can be efficiently solved by standard software package. Numerical results are provided to demonstrate the effectiveness of the proposed methods, and some interesting results are also observed.

Citation: Hanyu Cao, Meiying Zhang, Huanxi Cai, Wei Gong, Min Su, Bin Li. A zero-forcing beamforming based time switching protocol for wireless powered internet of things system. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2913-2922. doi: 10.3934/jimo.2019086
References:
[1]

Internet of Things in 2020 - A Road Map in the Future, 2008. Available from: http://www.smart{_}systems{_}integration.org/public/documents/publications/Internet{_}of{_}Things{_}in{_}2020{_}EC-EPoSS{_}Workshop{_}Report{_}2008{_}v3.pdf.

[2]

G. Caire and S. Shamai, On the achievable throughput of multiantenna Gaussian broadcast channel, IEEE Trans. Inf. Theory, 49 (2003), 1691-1706.  doi: 10.1109/TIT.2003.813523.

[3]

B. Clerckx and E. Bayguzina, Waveform design for wireless power transfer, IEEE Trans. Signal Process, 64 (2016), 6313-6328.  doi: 10.1109/TSP.2016.2601284.

[4]

Z. G. FengK. F. C. Yiu and S. E. Nordholm, A two-stage method for the design of near-field broadband beamformer, IEEE Transactions on Signal Processing, 59 (2011), 3647-3656.  doi: 10.1109/TSP.2011.2133490.

[5]

Z. G. FengK. F. C. Yiu and S. E. Nordholm, Placement design of microphone arrays in near-field broadband beamformers, IEEE Transactions on Signal Processing, 60 (2012), 1195-1204.  doi: 10.1109/TSP.2011.2178491.

[6]

M. GrantS. BoydL. Liberti and N. Maculan, Disciplined convex programming in global optimization: From theory to implementation, Nonconvex Optimization and Its Applications, 84 (2006), 155-210.  doi: 10.1007/0-387-30528-9_7.

[7]

B. LiH. H. DamA. Cantoni and K. L. Teo, A first-order optimal zero-forcing beamformer design for multiuser MIMO systems via a regularized dual accelerated gradient method, IEEE Commun. Lett., 19 (2015), 195-198.  doi: 10.3934/naco.2016012.

[8]

B. LiH. H. DamA. Cantoni and K. L. Teo, A global optimal zero-forcing beamformer design with signed power-of-two coefficients, Journal of Industrial and Management Optimization, 12 (2016), 595-607.  doi: 10.3934/jimo.2016.12.595.

[9]

B. Li and Y. Rong, Joint transceiver optimization for wireless information and energy transfer in nonregenerative MIMO relay systems, IEEE Transactions on Vehicular Technology, 67 (2018), 8348-8362.  doi: 10.1109/TVT.2018.2846556.

[10]

B. Li and Y. Rong, AF MIMO relay systems with wireless powered relay node and direct link, IEEE Transactions on Communications, 66 (2018), 1508-1519.  doi: 10.1109/TCOMM.2017.2788006.

[11]

B. LiC. Z. WuH. H. DamA. Cantoni and K. L. Teo, A parallel low complexity zero-forcing beamformer design for multiuser MIMO systems via a regularized dual decomposition method, IEEE Trans. Signal Process, 63 (2015), 4179-4190.  doi: 10.1109/TSP.2015.2437846.

[12]

X. Lu, P. Wang, D. Niyato, D. I. Kim and Z. Han, Wireless networks with RF energy harvesting: A contemporary survey, IEEE Communications Surveys & Tutorials, 17 (2015), 757–789. doi: 10.1109/COMST.2014.2368999.

[13]

X. Lu, P. Wang, D. Niyato, D. I. Kim and Z. Han, Wireless charging technologies: fundamentals, standards, and network applications, IEEE Communications Surveys & Tutorials, 18 (2016), 1413–1452. doi: 10.1109/COMST.2015.2499783.

[14]

L. Ma, Y. Wang and Y. Xu, Sum rate optimization for SWIPT system based on zero-forcing beamforming and time switching, 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), (2017), 351–356. doi: 10.1109/TSP.2015.2489603.

[15]

A. A. Okandeji and et al., SWIPT in MISO full-duplex systems, Journal of Communications and Networks, 19 (2017), 470-480.  doi: 10.1109/JCN.2017.000079.

[16]

C. Peng, Q. Shi, W. Xu and M. Hong, Energy efficiency optimization for multi-user MISO swipt systems, 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), (2015), 772–776. doi: 10.1109/TSP.2015.2489603.

[17]

T. D. Ponnimbaduge Perera, D. N. K. Jayakody, S. K. Sharma, S. Chatzinotas and J. Li, Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges, IEEE Communications Surveys & Tutorials, 20 (2018), 264–302. doi: 10.1109/COMST.2017.2783901.

[18]

Q. ShiL. LiuW. Xu and R. Zhang, Joint transmit beamforming and receive power splitting for MISO SWIPT systems, IEEE Transactions on Wireless Communications, 13 (2014), 3269-3280.  doi: 10.1109/TWC.2014.041714.131688.

[19]

Q. ShiC. PengW. XuM. Hong and Y. Cai, Energy efficiency optimization for MISO SWIPT systems with zero-forcing beamforming, IEEE Transactions on Signal Processing, 64 (2016), 842-854.  doi: 10.1109/TSP.2015.2489603.

[20]

L. R. Varshney, Transporting information and energy simultaneously, IEEE Int. Symp. Inf. Theory (ISIT), 6 (2008), 1612-1616.  doi: 10.1109/ISIT.2008.4595260.

[21]

A. WieselY. C. Eldar and S. Shamai, Zero-Forcing precoding and generalized inverses, IEEE Transactions on Signal Processing, 56 (2008), 4409-4418.  doi: 10.1109/TSP.2008.924638.

[22]

R. Zhang, Cooperative multi-cell block diagonalization with per-base-station power constraints, IEEE Journal on Selected Areas in Communications, 28 (2010), 1435-1445.  doi: 10.1109/WCNC.2010.5506527.

[23]

R. ZhangR. G. Maunder and L. Hanzo, Wireless information and power transfer: From scientific hypothesis to engineering practice, IEEE Communications Magazine, 53 (2015), 99-105.  doi: 10.1109/MCOM.2015.7180515.

[24]

R. Zhang and C. K. Ho, MIMO broadcasting for simultaneous wireless information and power transfer, IEEE Trans. Wireless Commun., 12 (2013), 1989-2001.  doi: 10.1109/TWC.2013.031813.120224.

[25]

Y. ZengB. Clerckx and and R. Zhang, Communications and signals design for wireless power transmission, IEEE Trans. Commun., 65 (2017), 2264-2290.  doi: 10.1109/TCOMM.2017.2676103.

show all references

References:
[1]

Internet of Things in 2020 - A Road Map in the Future, 2008. Available from: http://www.smart{_}systems{_}integration.org/public/documents/publications/Internet{_}of{_}Things{_}in{_}2020{_}EC-EPoSS{_}Workshop{_}Report{_}2008{_}v3.pdf.

[2]

G. Caire and S. Shamai, On the achievable throughput of multiantenna Gaussian broadcast channel, IEEE Trans. Inf. Theory, 49 (2003), 1691-1706.  doi: 10.1109/TIT.2003.813523.

[3]

B. Clerckx and E. Bayguzina, Waveform design for wireless power transfer, IEEE Trans. Signal Process, 64 (2016), 6313-6328.  doi: 10.1109/TSP.2016.2601284.

[4]

Z. G. FengK. F. C. Yiu and S. E. Nordholm, A two-stage method for the design of near-field broadband beamformer, IEEE Transactions on Signal Processing, 59 (2011), 3647-3656.  doi: 10.1109/TSP.2011.2133490.

[5]

Z. G. FengK. F. C. Yiu and S. E. Nordholm, Placement design of microphone arrays in near-field broadband beamformers, IEEE Transactions on Signal Processing, 60 (2012), 1195-1204.  doi: 10.1109/TSP.2011.2178491.

[6]

M. GrantS. BoydL. Liberti and N. Maculan, Disciplined convex programming in global optimization: From theory to implementation, Nonconvex Optimization and Its Applications, 84 (2006), 155-210.  doi: 10.1007/0-387-30528-9_7.

[7]

B. LiH. H. DamA. Cantoni and K. L. Teo, A first-order optimal zero-forcing beamformer design for multiuser MIMO systems via a regularized dual accelerated gradient method, IEEE Commun. Lett., 19 (2015), 195-198.  doi: 10.3934/naco.2016012.

[8]

B. LiH. H. DamA. Cantoni and K. L. Teo, A global optimal zero-forcing beamformer design with signed power-of-two coefficients, Journal of Industrial and Management Optimization, 12 (2016), 595-607.  doi: 10.3934/jimo.2016.12.595.

[9]

B. Li and Y. Rong, Joint transceiver optimization for wireless information and energy transfer in nonregenerative MIMO relay systems, IEEE Transactions on Vehicular Technology, 67 (2018), 8348-8362.  doi: 10.1109/TVT.2018.2846556.

[10]

B. Li and Y. Rong, AF MIMO relay systems with wireless powered relay node and direct link, IEEE Transactions on Communications, 66 (2018), 1508-1519.  doi: 10.1109/TCOMM.2017.2788006.

[11]

B. LiC. Z. WuH. H. DamA. Cantoni and K. L. Teo, A parallel low complexity zero-forcing beamformer design for multiuser MIMO systems via a regularized dual decomposition method, IEEE Trans. Signal Process, 63 (2015), 4179-4190.  doi: 10.1109/TSP.2015.2437846.

[12]

X. Lu, P. Wang, D. Niyato, D. I. Kim and Z. Han, Wireless networks with RF energy harvesting: A contemporary survey, IEEE Communications Surveys & Tutorials, 17 (2015), 757–789. doi: 10.1109/COMST.2014.2368999.

[13]

X. Lu, P. Wang, D. Niyato, D. I. Kim and Z. Han, Wireless charging technologies: fundamentals, standards, and network applications, IEEE Communications Surveys & Tutorials, 18 (2016), 1413–1452. doi: 10.1109/COMST.2015.2499783.

[14]

L. Ma, Y. Wang and Y. Xu, Sum rate optimization for SWIPT system based on zero-forcing beamforming and time switching, 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), (2017), 351–356. doi: 10.1109/TSP.2015.2489603.

[15]

A. A. Okandeji and et al., SWIPT in MISO full-duplex systems, Journal of Communications and Networks, 19 (2017), 470-480.  doi: 10.1109/JCN.2017.000079.

[16]

C. Peng, Q. Shi, W. Xu and M. Hong, Energy efficiency optimization for multi-user MISO swipt systems, 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), (2015), 772–776. doi: 10.1109/TSP.2015.2489603.

[17]

T. D. Ponnimbaduge Perera, D. N. K. Jayakody, S. K. Sharma, S. Chatzinotas and J. Li, Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges, IEEE Communications Surveys & Tutorials, 20 (2018), 264–302. doi: 10.1109/COMST.2017.2783901.

[18]

Q. ShiL. LiuW. Xu and R. Zhang, Joint transmit beamforming and receive power splitting for MISO SWIPT systems, IEEE Transactions on Wireless Communications, 13 (2014), 3269-3280.  doi: 10.1109/TWC.2014.041714.131688.

[19]

Q. ShiC. PengW. XuM. Hong and Y. Cai, Energy efficiency optimization for MISO SWIPT systems with zero-forcing beamforming, IEEE Transactions on Signal Processing, 64 (2016), 842-854.  doi: 10.1109/TSP.2015.2489603.

[20]

L. R. Varshney, Transporting information and energy simultaneously, IEEE Int. Symp. Inf. Theory (ISIT), 6 (2008), 1612-1616.  doi: 10.1109/ISIT.2008.4595260.

[21]

A. WieselY. C. Eldar and S. Shamai, Zero-Forcing precoding and generalized inverses, IEEE Transactions on Signal Processing, 56 (2008), 4409-4418.  doi: 10.1109/TSP.2008.924638.

[22]

R. Zhang, Cooperative multi-cell block diagonalization with per-base-station power constraints, IEEE Journal on Selected Areas in Communications, 28 (2010), 1435-1445.  doi: 10.1109/WCNC.2010.5506527.

[23]

R. ZhangR. G. Maunder and L. Hanzo, Wireless information and power transfer: From scientific hypothesis to engineering practice, IEEE Communications Magazine, 53 (2015), 99-105.  doi: 10.1109/MCOM.2015.7180515.

[24]

R. Zhang and C. K. Ho, MIMO broadcasting for simultaneous wireless information and power transfer, IEEE Trans. Wireless Commun., 12 (2013), 1989-2001.  doi: 10.1109/TWC.2013.031813.120224.

[25]

Y. ZengB. Clerckx and and R. Zhang, Communications and signals design for wireless power transmission, IEEE Trans. Commun., 65 (2017), 2264-2290.  doi: 10.1109/TCOMM.2017.2676103.

Figure 1.  Sum Rate versus $ P $
Figure 2.  Sum Rate versus $ P $
Figure 3.  Sum Rate versus $ P $
[1]

Bin Li, Hai Huyen Dam, Antonio Cantoni. A global optimal zero-forcing Beamformer design with signed power-of-two coefficients. Journal of Industrial and Management Optimization, 2016, 12 (2) : 595-607. doi: 10.3934/jimo.2016.12.595

[2]

Bin Li, Hai Huyen Dam, Antonio Cantoni. A low-complexity zero-forcing Beamformer design for multiuser MIMO systems via a dual gradient method. Numerical Algebra, Control and Optimization, 2016, 6 (3) : 297-304. doi: 10.3934/naco.2016012

[3]

Ping Chen, Haixiang Yao. Continuous-time mean-variance portfolio selection with no-shorting constraints and regime-switching. Journal of Industrial and Management Optimization, 2020, 16 (2) : 531-551. doi: 10.3934/jimo.2018166

[4]

Annalisa Pascarella, Alberto Sorrentino, Cristina Campi, Michele Piana. Particle filtering, beamforming and multiple signal classification for the analysis of magnetoencephalography time series: a comparison of algorithms. Inverse Problems and Imaging, 2010, 4 (1) : 169-190. doi: 10.3934/ipi.2010.4.169

[5]

Giuseppe Maria Coclite, Mauro Garavello, Laura V. Spinolo. Optimal strategies for a time-dependent harvesting problem. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 865-900. doi: 10.3934/dcdss.2018053

[6]

Yun Kang. Permanence of a general discrete-time two-species-interaction model with nonlinear per-capita growth rates. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2123-2142. doi: 10.3934/dcdsb.2013.18.2123

[7]

Thomas Demoor, Joris Walraevens, Dieter Fiems, Stijn De Vuyst, Herwig Bruneel. Influence of real-time queue capacity on system contents in DiffServ's expedited forwarding per-hop-behavior. Journal of Industrial and Management Optimization, 2010, 6 (3) : 587-602. doi: 10.3934/jimo.2010.6.587

[8]

Tomáš Gedeon. Attractors in continuous –time switching networks. Communications on Pure and Applied Analysis, 2003, 2 (2) : 187-209. doi: 10.3934/cpaa.2003.2.187

[9]

Lei Guo, Gao-Xi Li, Xinmin Yang. Global convergence of augmented Lagrangian method applied to mathematical program with switching constraints. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022114

[10]

Xi Zhu, Changjun Yu, Kok Lay Teo. A new switching time optimization technique for multi-switching systems. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022067

[11]

Gregorio Díaz, Jesús Ildefonso Díaz. Stochastic energy balance climate models with Legendre weighted diffusion and an additive cylindrical Wiener process forcing. Discrete and Continuous Dynamical Systems - S, 2022, 15 (10) : 2837-2870. doi: 10.3934/dcdss.2021165

[12]

Shulin Qin, Gengsheng Wang, Huaiqiang Yu. On switching properties of time optimal controls for linear ODEs. Mathematical Control and Related Fields, 2021, 11 (2) : 329-351. doi: 10.3934/mcrf.2020039

[13]

A. Zeblah, Y. Massim, S. Hadjeri, A. Benaissa, H. Hamdaoui. Optimization for series-parallel continuous power systems with buffers under reliability constraints using ant colony. Journal of Industrial and Management Optimization, 2006, 2 (4) : 467-479. doi: 10.3934/jimo.2006.2.467

[14]

Reetabrata Mookherjee, Benjamin F. Hobbs, Terry L. Friesz, Matthew A. Rigdon. Dynamic oligopolistic competition on an electric power network with ramping costs and joint sales constraints. Journal of Industrial and Management Optimization, 2008, 4 (3) : 425-452. doi: 10.3934/jimo.2008.4.425

[15]

Hongming Yang, C. Y. Chung, Xiaojiao Tong, Pingping Bing. Research on dynamic equilibrium of power market with complex network constraints based on nonlinear complementarity function. Journal of Industrial and Management Optimization, 2008, 4 (3) : 617-630. doi: 10.3934/jimo.2008.4.617

[16]

Chrystie Burr, Laura Gardini, Ferenc Szidarovszky. Discrete time dynamic oligopolies with adjustment constraints. Journal of Dynamics and Games, 2015, 2 (1) : 65-87. doi: 10.3934/jdg.2015.2.65

[17]

Changjun Yu, Shuxuan Su, Yanqin Bai. On the optimal control problems with characteristic time control constraints. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1305-1320. doi: 10.3934/jimo.2021021

[18]

Masataka Kato, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Effect of energy-saving server scheduling on power consumption for large-scale data centers. Journal of Industrial and Management Optimization, 2016, 12 (2) : 667-685. doi: 10.3934/jimo.2016.12.667

[19]

Wei Chen, Jianchang Fan, Hongyan Du, Pingsi Zhong. Investment strategy for renewable energy and electricity service quality under different power structures. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022006

[20]

Alexander J. Zaslavski. Structure of approximate solutions of dynamic continuous time zero-sum games. Journal of Dynamics and Games, 2014, 1 (1) : 153-179. doi: 10.3934/jdg.2014.1.153

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (212)
  • HTML views (879)
  • Cited by (0)

[Back to Top]