• Previous Article
    An enhanced Genetic Algorithm with an innovative encoding strategy for flexible job-shop scheduling with operation and processing flexibility
  • JIMO Home
  • This Issue
  • Next Article
    A zero-forcing beamforming based time switching protocol for wireless powered internet of things system
November  2020, 16(6): 2923-2942. doi: 10.3934/jimo.2019087

Distributionally robust chance constrained problems under general moments information

1. 

School of Computer Science and Technology, Southwest Minzu University, Chengdu, Sichuan 610041, China

2. 

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

3. 

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China

* Corresponding author

Received  December 2018 Revised  March 2019 Published  July 2019

In this paper, we focus on distributionally robust chance constrained problems (DRCCPs) under general moments information sets. By convex analysis, we obtain an equivalent convex programming form for DRCCP under assumptions that the first and second order moments belong to corresponding convex and compact sets respectively. We give some examples of support functions about matrix sets to show the tractability of the equivalent convex programming and obtain the closed form solution for the worst case VaR optimization problem. Then, we present an equivalent convex programming form for DRCCP under assumptions that the first order moment set and the support subsets are convex and compact. We also give an equivalent form for distributionally robust nonlinear chance constrained problem under assumptions that the first order moment set and the support set are convex and compact. Moreover, we provide illustrative examples to show our results.

Citation: Ke-Wei Ding, Nan-Jing Huang, Yi-Bin Xiao. Distributionally robust chance constrained problems under general moments information. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2923-2942. doi: 10.3934/jimo.2019087
References:
[1]

V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, Springer, New York, 2012. doi: 10.1007/978-94-007-2247-7.  Google Scholar

[2]

A. Ben-TalD. Bertsimas and D. Brown, A soft robust model for optimization under ambiguity, Operations Research, 58 (2010), 1220-1234.  doi: 10.1287/opre.1100.0821.  Google Scholar

[3]

A. Ben-TalD. Hertog and J. Vial, Deriving robust counterparts of nonlinear uncertain inequalities, Mathematical Programming, 149 (2015), 265-299.  doi: 10.1007/s10107-014-0750-8.  Google Scholar

[4] D. S. Bernstein, Matrix Mathematics, Princeton University Press, New Jersey, 2009.  doi: 10.1515/9781400833344.  Google Scholar
[5]

G. Calafiore and L. El Ghaoui, On distributionally robust chance-constrained linear programms with applications, Journal of Optimization Theory and Applications, 130 (2006), 1-22.  doi: 10.1007/s10957-006-9084-x.  Google Scholar

[6]

E. Delage and Y. Ye, Distributionally robust optimization under moment uncertainty with application to data-driven problems, Operations Research, 58 (2010), 595-612.  doi: 10.1287/opre.1090.0741.  Google Scholar

[7]

K. W. DingM. H. Wang and N. J. Huang, Distributionally robust chance constrained problem under interval distribution information, Optimization Letters, 12 (2018), 1315-1328.  doi: 10.1007/s11590-017-1160-7.  Google Scholar

[8]

L. GhaouiM. Oks and F. Oustry, Worst-case value-at-risk and robust portfolio optimization: A conic programming approach, Operations Research, 51 (2003), 543-556.  doi: 10.1287/opre.51.4.543.16101.  Google Scholar

[9]

R. HuY.-B. XiaoN.-J. Huang and X. Wang, Equivalence results of well-posedness for split variational-hemivariational inequalities, J. Nonlinear Convex Anal., 20 (2019), 447-459.   Google Scholar

[10]

K. Isii, On sharpness of Tchebychev-type inequalities, Annals of the Institute of Statistical Mathematics, 14 (1962), 185-197.  doi: 10.1007/BF02868641.  Google Scholar

[11]

B. LiJ. SunH. Xu and M. Zhang, A class of two-stage distributionally robust stochastic games, Journal of Industrial and Management Optimization, 15 (2019), 387-400.   Google Scholar

[12]

B. LiX. QianJ. SunK. L. Teo and C. Yu, A model of distributionally robust two-stage stochastic convex programming with linear recourse, Applied Mathematical Modelling, 58 (2018), 86-97.  doi: 10.1016/j.apm.2017.11.039.  Google Scholar

[13]

B. LiY. RongJ. Sun and K. L. Teo, A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, IEEE Transactions on Wireless Communications, 16 (2017), 464-474.  doi: 10.1109/TWC.2016.2625246.  Google Scholar

[14]

B. LiY. RongJ. Sun and K. L. Teo, A distributionally robust minimum variance beamformer design, IEEE Signal Processing Letters, 25 (2018), 105-109.  doi: 10.1109/LSP.2017.2773601.  Google Scholar

[15]

J. LuY.-B. Xiao and N.-J. Huang, A Stackelberg quasi-equilibrium problem via quasi-variational inequalities, Carpathian Journal of Mathematics, 34 (2018), 355-362.   Google Scholar

[16]

W. LiY.-B. XiaoN.-J. Huang and Y. J. Cho, A class of differential inverse quasi-variational inequalities in finite dimensional spaces, Journal of Nonlinear Sciences and Applications, 10 (2017), 4532-4543.  doi: 10.22436/jnsa.010.08.45.  Google Scholar

[17]

K. NatarajanM. Sim and J. Uichanco, Tractable robust expected utility and risk models for portofolio optimization, Mathematical Finance, 20 (2010), 695-731.  doi: 10.1111/j.1467-9965.2010.00417.x.  Google Scholar

[18]

A. PetruselG. PetruselY.-B. Xiao and J.-C. Yao, Fixed point theorems for generalized contractions with applications to coupled fixed point theory, Journal of Nonlinear and Convex Analysis, 19 (2018), 71-87.   Google Scholar

[19]

I. Pólik and T. Terlaky, A survey of the $\mathcal{S}$-lemma, SIAM Review, 49 (2007), 371-481.  doi: 10.1137/S003614450444614X.  Google Scholar

[20]

Q.-Y. Shu, R. Hu and Y.-B. Xiao, Metric characterizations for well-posedness of split hemivariational inequalities, J. Inequal. Appl., (2018), 17 pp. doi: 10.1186/s13660-018-1761-4.  Google Scholar

[21]

A. Shapiro and A. Kleywegt, Minimax analysis of stochastic problems, Optimization Methods & Software, 17 (2002), 523-542.  doi: 10.1080/1055678021000034008.  Google Scholar

[22]

M. Sofonea, Y.-B. Xiao and M. Couderc, Optimization problems for elastic contact models with unilateral constraints, Z. Angew. Math. Phys., 70 (2019), 17 pp. doi: 10.1007/s00033-018-1046-2.  Google Scholar

[23]

M. Sofonea and Y.-B. Xiao, Boundary optimal control of a nonsmooth frictionless contact problem, Comput. Math. Appl., 78 (2019), 152-165.  doi: 10.1016/j.camwa.2019.02.027.  Google Scholar

[24]

H. Sun and H. Xu, Convergence analysis for distributionally robust optimization and equilibrium problems, Mathematics of Operations Research, 41 (2016), 377-401.  doi: 10.1287/moor.2015.0732.  Google Scholar

[25]

X. TongH. SunX. Luo and Q. Zheng, Distributionally robust chance constrained optimization for economic dispatch in renewable energy integrated systems, Journal of Global Optimization, 70 (2018), 131-158.  doi: 10.1007/s10898-017-0572-3.  Google Scholar

[26]

X. WangN. Fan and P. Pardalos, Robust chance-constrained support vector machines with second-order moment information, Annals of Operations Research, 263 (2018), 45-68.  doi: 10.1007/s10479-015-2039-6.  Google Scholar

[27]

Y.-M. WangY.-B. XiaoX. Wang and Y. J. Cho, Equivalence of well-posedness between systems of hemivariational inequalities and inclusion problems, J. Nonlinear Sci. Appl., 9 (2016), 1178-1192.  doi: 10.22436/jnsa.009.03.44.  Google Scholar

[28]

W. WiesemannD. Kuhn and M. Sim, Distributionally robust convex optimization, Operations Research, 62 (2014), 1358-1376.  doi: 10.1287/opre.2014.1314.  Google Scholar

[29]

W. Xie and S. Ahmed, On deterministic reformulations of distributionally robust joint chance constrained optimization problems, SIAM Journal on Optimization, 28 (2018), 1151-1182.  doi: 10.1137/16M1094725.  Google Scholar

[30]

Y.-B. Xiao and M. Sofonea, On the optimal control of variational-hemivariational inequalities, Journal of Mathematical Analysis and Applications, 475 (2019), 364-384.  doi: 10.1016/j.jmaa.2019.02.046.  Google Scholar

[31]

Y.-B. Xiao and M. Sofonea, Generalized penalty method for elliptic variational-hemivariational inequalities, Applied Mathematics and Optimization, (2019). doi: 10.1007/s00245-019-09563-4.  Google Scholar

[32]

W. Yang and H. Xu, Distributionally robust chance constraints for non-linear uncertainties, Mathematical Programming, 155 (2016), 231-265.  doi: 10.1007/s10107-014-0842-5.  Google Scholar

[33]

Y. ZhangS. Shen and S. Erdogan, Distributionally robust appointment scheduling with moment-based ambiguity set, Operations Research Letters, 45 (2017), 139-144.  doi: 10.1016/j.orl.2017.01.010.  Google Scholar

[34]

S. ZymlerD. Kuhn and B. Rustem, Distributionally robust joint chance constraints with second-order moment information, Mathematical Programming, 137 (2013), 167-198.  doi: 10.1007/s10107-011-0494-7.  Google Scholar

[35]

S. ZymlerD. Kuhn and B. Rustem, Worst-case value at risk of nonlinear portfolios, Management Science, 59 (2009), 172-188.  doi: 10.1287/mnsc.1120.1615.  Google Scholar

show all references

References:
[1]

V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, Springer, New York, 2012. doi: 10.1007/978-94-007-2247-7.  Google Scholar

[2]

A. Ben-TalD. Bertsimas and D. Brown, A soft robust model for optimization under ambiguity, Operations Research, 58 (2010), 1220-1234.  doi: 10.1287/opre.1100.0821.  Google Scholar

[3]

A. Ben-TalD. Hertog and J. Vial, Deriving robust counterparts of nonlinear uncertain inequalities, Mathematical Programming, 149 (2015), 265-299.  doi: 10.1007/s10107-014-0750-8.  Google Scholar

[4] D. S. Bernstein, Matrix Mathematics, Princeton University Press, New Jersey, 2009.  doi: 10.1515/9781400833344.  Google Scholar
[5]

G. Calafiore and L. El Ghaoui, On distributionally robust chance-constrained linear programms with applications, Journal of Optimization Theory and Applications, 130 (2006), 1-22.  doi: 10.1007/s10957-006-9084-x.  Google Scholar

[6]

E. Delage and Y. Ye, Distributionally robust optimization under moment uncertainty with application to data-driven problems, Operations Research, 58 (2010), 595-612.  doi: 10.1287/opre.1090.0741.  Google Scholar

[7]

K. W. DingM. H. Wang and N. J. Huang, Distributionally robust chance constrained problem under interval distribution information, Optimization Letters, 12 (2018), 1315-1328.  doi: 10.1007/s11590-017-1160-7.  Google Scholar

[8]

L. GhaouiM. Oks and F. Oustry, Worst-case value-at-risk and robust portfolio optimization: A conic programming approach, Operations Research, 51 (2003), 543-556.  doi: 10.1287/opre.51.4.543.16101.  Google Scholar

[9]

R. HuY.-B. XiaoN.-J. Huang and X. Wang, Equivalence results of well-posedness for split variational-hemivariational inequalities, J. Nonlinear Convex Anal., 20 (2019), 447-459.   Google Scholar

[10]

K. Isii, On sharpness of Tchebychev-type inequalities, Annals of the Institute of Statistical Mathematics, 14 (1962), 185-197.  doi: 10.1007/BF02868641.  Google Scholar

[11]

B. LiJ. SunH. Xu and M. Zhang, A class of two-stage distributionally robust stochastic games, Journal of Industrial and Management Optimization, 15 (2019), 387-400.   Google Scholar

[12]

B. LiX. QianJ. SunK. L. Teo and C. Yu, A model of distributionally robust two-stage stochastic convex programming with linear recourse, Applied Mathematical Modelling, 58 (2018), 86-97.  doi: 10.1016/j.apm.2017.11.039.  Google Scholar

[13]

B. LiY. RongJ. Sun and K. L. Teo, A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, IEEE Transactions on Wireless Communications, 16 (2017), 464-474.  doi: 10.1109/TWC.2016.2625246.  Google Scholar

[14]

B. LiY. RongJ. Sun and K. L. Teo, A distributionally robust minimum variance beamformer design, IEEE Signal Processing Letters, 25 (2018), 105-109.  doi: 10.1109/LSP.2017.2773601.  Google Scholar

[15]

J. LuY.-B. Xiao and N.-J. Huang, A Stackelberg quasi-equilibrium problem via quasi-variational inequalities, Carpathian Journal of Mathematics, 34 (2018), 355-362.   Google Scholar

[16]

W. LiY.-B. XiaoN.-J. Huang and Y. J. Cho, A class of differential inverse quasi-variational inequalities in finite dimensional spaces, Journal of Nonlinear Sciences and Applications, 10 (2017), 4532-4543.  doi: 10.22436/jnsa.010.08.45.  Google Scholar

[17]

K. NatarajanM. Sim and J. Uichanco, Tractable robust expected utility and risk models for portofolio optimization, Mathematical Finance, 20 (2010), 695-731.  doi: 10.1111/j.1467-9965.2010.00417.x.  Google Scholar

[18]

A. PetruselG. PetruselY.-B. Xiao and J.-C. Yao, Fixed point theorems for generalized contractions with applications to coupled fixed point theory, Journal of Nonlinear and Convex Analysis, 19 (2018), 71-87.   Google Scholar

[19]

I. Pólik and T. Terlaky, A survey of the $\mathcal{S}$-lemma, SIAM Review, 49 (2007), 371-481.  doi: 10.1137/S003614450444614X.  Google Scholar

[20]

Q.-Y. Shu, R. Hu and Y.-B. Xiao, Metric characterizations for well-posedness of split hemivariational inequalities, J. Inequal. Appl., (2018), 17 pp. doi: 10.1186/s13660-018-1761-4.  Google Scholar

[21]

A. Shapiro and A. Kleywegt, Minimax analysis of stochastic problems, Optimization Methods & Software, 17 (2002), 523-542.  doi: 10.1080/1055678021000034008.  Google Scholar

[22]

M. Sofonea, Y.-B. Xiao and M. Couderc, Optimization problems for elastic contact models with unilateral constraints, Z. Angew. Math. Phys., 70 (2019), 17 pp. doi: 10.1007/s00033-018-1046-2.  Google Scholar

[23]

M. Sofonea and Y.-B. Xiao, Boundary optimal control of a nonsmooth frictionless contact problem, Comput. Math. Appl., 78 (2019), 152-165.  doi: 10.1016/j.camwa.2019.02.027.  Google Scholar

[24]

H. Sun and H. Xu, Convergence analysis for distributionally robust optimization and equilibrium problems, Mathematics of Operations Research, 41 (2016), 377-401.  doi: 10.1287/moor.2015.0732.  Google Scholar

[25]

X. TongH. SunX. Luo and Q. Zheng, Distributionally robust chance constrained optimization for economic dispatch in renewable energy integrated systems, Journal of Global Optimization, 70 (2018), 131-158.  doi: 10.1007/s10898-017-0572-3.  Google Scholar

[26]

X. WangN. Fan and P. Pardalos, Robust chance-constrained support vector machines with second-order moment information, Annals of Operations Research, 263 (2018), 45-68.  doi: 10.1007/s10479-015-2039-6.  Google Scholar

[27]

Y.-M. WangY.-B. XiaoX. Wang and Y. J. Cho, Equivalence of well-posedness between systems of hemivariational inequalities and inclusion problems, J. Nonlinear Sci. Appl., 9 (2016), 1178-1192.  doi: 10.22436/jnsa.009.03.44.  Google Scholar

[28]

W. WiesemannD. Kuhn and M. Sim, Distributionally robust convex optimization, Operations Research, 62 (2014), 1358-1376.  doi: 10.1287/opre.2014.1314.  Google Scholar

[29]

W. Xie and S. Ahmed, On deterministic reformulations of distributionally robust joint chance constrained optimization problems, SIAM Journal on Optimization, 28 (2018), 1151-1182.  doi: 10.1137/16M1094725.  Google Scholar

[30]

Y.-B. Xiao and M. Sofonea, On the optimal control of variational-hemivariational inequalities, Journal of Mathematical Analysis and Applications, 475 (2019), 364-384.  doi: 10.1016/j.jmaa.2019.02.046.  Google Scholar

[31]

Y.-B. Xiao and M. Sofonea, Generalized penalty method for elliptic variational-hemivariational inequalities, Applied Mathematics and Optimization, (2019). doi: 10.1007/s00245-019-09563-4.  Google Scholar

[32]

W. Yang and H. Xu, Distributionally robust chance constraints for non-linear uncertainties, Mathematical Programming, 155 (2016), 231-265.  doi: 10.1007/s10107-014-0842-5.  Google Scholar

[33]

Y. ZhangS. Shen and S. Erdogan, Distributionally robust appointment scheduling with moment-based ambiguity set, Operations Research Letters, 45 (2017), 139-144.  doi: 10.1016/j.orl.2017.01.010.  Google Scholar

[34]

S. ZymlerD. Kuhn and B. Rustem, Distributionally robust joint chance constraints with second-order moment information, Mathematical Programming, 137 (2013), 167-198.  doi: 10.1007/s10107-011-0494-7.  Google Scholar

[35]

S. ZymlerD. Kuhn and B. Rustem, Worst-case value at risk of nonlinear portfolios, Management Science, 59 (2009), 172-188.  doi: 10.1287/mnsc.1120.1615.  Google Scholar

[1]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[2]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[3]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[4]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[5]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[6]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[7]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[8]

Yao Nie, Jia Yuan. The Littlewood-Paley $ pth $-order moments in three-dimensional MHD turbulence. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020397

[9]

Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021011

[10]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[11]

Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021013

[12]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[13]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[14]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021004

[15]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[16]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[17]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[18]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[19]

Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65

[20]

Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (113)
  • HTML views (634)
  • Cited by (0)

Other articles
by authors

[Back to Top]