• Previous Article
    An enhanced Genetic Algorithm with an innovative encoding strategy for flexible job-shop scheduling with operation and processing flexibility
  • JIMO Home
  • This Issue
  • Next Article
    A zero-forcing beamforming based time switching protocol for wireless powered internet of things system
November  2020, 16(6): 2923-2942. doi: 10.3934/jimo.2019087

Distributionally robust chance constrained problems under general moments information

1. 

School of Computer Science and Technology, Southwest Minzu University, Chengdu, Sichuan 610041, China

2. 

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

3. 

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China

* Corresponding author

Received  December 2018 Revised  March 2019 Published  November 2020 Early access  July 2019

In this paper, we focus on distributionally robust chance constrained problems (DRCCPs) under general moments information sets. By convex analysis, we obtain an equivalent convex programming form for DRCCP under assumptions that the first and second order moments belong to corresponding convex and compact sets respectively. We give some examples of support functions about matrix sets to show the tractability of the equivalent convex programming and obtain the closed form solution for the worst case VaR optimization problem. Then, we present an equivalent convex programming form for DRCCP under assumptions that the first order moment set and the support subsets are convex and compact. We also give an equivalent form for distributionally robust nonlinear chance constrained problem under assumptions that the first order moment set and the support set are convex and compact. Moreover, we provide illustrative examples to show our results.

Citation: Ke-Wei Ding, Nan-Jing Huang, Yi-Bin Xiao. Distributionally robust chance constrained problems under general moments information. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2923-2942. doi: 10.3934/jimo.2019087
References:
[1]

V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, Springer, New York, 2012. doi: 10.1007/978-94-007-2247-7.

[2]

A. Ben-TalD. Bertsimas and D. Brown, A soft robust model for optimization under ambiguity, Operations Research, 58 (2010), 1220-1234.  doi: 10.1287/opre.1100.0821.

[3]

A. Ben-TalD. Hertog and J. Vial, Deriving robust counterparts of nonlinear uncertain inequalities, Mathematical Programming, 149 (2015), 265-299.  doi: 10.1007/s10107-014-0750-8.

[4] D. S. Bernstein, Matrix Mathematics, Princeton University Press, New Jersey, 2009.  doi: 10.1515/9781400833344.
[5]

G. Calafiore and L. El Ghaoui, On distributionally robust chance-constrained linear programms with applications, Journal of Optimization Theory and Applications, 130 (2006), 1-22.  doi: 10.1007/s10957-006-9084-x.

[6]

E. Delage and Y. Ye, Distributionally robust optimization under moment uncertainty with application to data-driven problems, Operations Research, 58 (2010), 595-612.  doi: 10.1287/opre.1090.0741.

[7]

K. W. DingM. H. Wang and N. J. Huang, Distributionally robust chance constrained problem under interval distribution information, Optimization Letters, 12 (2018), 1315-1328.  doi: 10.1007/s11590-017-1160-7.

[8]

L. GhaouiM. Oks and F. Oustry, Worst-case value-at-risk and robust portfolio optimization: A conic programming approach, Operations Research, 51 (2003), 543-556.  doi: 10.1287/opre.51.4.543.16101.

[9]

R. HuY.-B. XiaoN.-J. Huang and X. Wang, Equivalence results of well-posedness for split variational-hemivariational inequalities, J. Nonlinear Convex Anal., 20 (2019), 447-459. 

[10]

K. Isii, On sharpness of Tchebychev-type inequalities, Annals of the Institute of Statistical Mathematics, 14 (1962), 185-197.  doi: 10.1007/BF02868641.

[11]

B. LiJ. SunH. Xu and M. Zhang, A class of two-stage distributionally robust stochastic games, Journal of Industrial and Management Optimization, 15 (2019), 387-400. 

[12]

B. LiX. QianJ. SunK. L. Teo and C. Yu, A model of distributionally robust two-stage stochastic convex programming with linear recourse, Applied Mathematical Modelling, 58 (2018), 86-97.  doi: 10.1016/j.apm.2017.11.039.

[13]

B. LiY. RongJ. Sun and K. L. Teo, A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, IEEE Transactions on Wireless Communications, 16 (2017), 464-474.  doi: 10.1109/TWC.2016.2625246.

[14]

B. LiY. RongJ. Sun and K. L. Teo, A distributionally robust minimum variance beamformer design, IEEE Signal Processing Letters, 25 (2018), 105-109.  doi: 10.1109/LSP.2017.2773601.

[15]

J. LuY.-B. Xiao and N.-J. Huang, A Stackelberg quasi-equilibrium problem via quasi-variational inequalities, Carpathian Journal of Mathematics, 34 (2018), 355-362. 

[16]

W. LiY.-B. XiaoN.-J. Huang and Y. J. Cho, A class of differential inverse quasi-variational inequalities in finite dimensional spaces, Journal of Nonlinear Sciences and Applications, 10 (2017), 4532-4543.  doi: 10.22436/jnsa.010.08.45.

[17]

K. NatarajanM. Sim and J. Uichanco, Tractable robust expected utility and risk models for portofolio optimization, Mathematical Finance, 20 (2010), 695-731.  doi: 10.1111/j.1467-9965.2010.00417.x.

[18]

A. PetruselG. PetruselY.-B. Xiao and J.-C. Yao, Fixed point theorems for generalized contractions with applications to coupled fixed point theory, Journal of Nonlinear and Convex Analysis, 19 (2018), 71-87. 

[19]

I. Pólik and T. Terlaky, A survey of the $\mathcal{S}$-lemma, SIAM Review, 49 (2007), 371-481.  doi: 10.1137/S003614450444614X.

[20]

Q.-Y. Shu, R. Hu and Y.-B. Xiao, Metric characterizations for well-posedness of split hemivariational inequalities, J. Inequal. Appl., (2018), 17 pp. doi: 10.1186/s13660-018-1761-4.

[21]

A. Shapiro and A. Kleywegt, Minimax analysis of stochastic problems, Optimization Methods & Software, 17 (2002), 523-542.  doi: 10.1080/1055678021000034008.

[22]

M. Sofonea, Y.-B. Xiao and M. Couderc, Optimization problems for elastic contact models with unilateral constraints, Z. Angew. Math. Phys., 70 (2019), 17 pp. doi: 10.1007/s00033-018-1046-2.

[23]

M. Sofonea and Y.-B. Xiao, Boundary optimal control of a nonsmooth frictionless contact problem, Comput. Math. Appl., 78 (2019), 152-165.  doi: 10.1016/j.camwa.2019.02.027.

[24]

H. Sun and H. Xu, Convergence analysis for distributionally robust optimization and equilibrium problems, Mathematics of Operations Research, 41 (2016), 377-401.  doi: 10.1287/moor.2015.0732.

[25]

X. TongH. SunX. Luo and Q. Zheng, Distributionally robust chance constrained optimization for economic dispatch in renewable energy integrated systems, Journal of Global Optimization, 70 (2018), 131-158.  doi: 10.1007/s10898-017-0572-3.

[26]

X. WangN. Fan and P. Pardalos, Robust chance-constrained support vector machines with second-order moment information, Annals of Operations Research, 263 (2018), 45-68.  doi: 10.1007/s10479-015-2039-6.

[27]

Y.-M. WangY.-B. XiaoX. Wang and Y. J. Cho, Equivalence of well-posedness between systems of hemivariational inequalities and inclusion problems, J. Nonlinear Sci. Appl., 9 (2016), 1178-1192.  doi: 10.22436/jnsa.009.03.44.

[28]

W. WiesemannD. Kuhn and M. Sim, Distributionally robust convex optimization, Operations Research, 62 (2014), 1358-1376.  doi: 10.1287/opre.2014.1314.

[29]

W. Xie and S. Ahmed, On deterministic reformulations of distributionally robust joint chance constrained optimization problems, SIAM Journal on Optimization, 28 (2018), 1151-1182.  doi: 10.1137/16M1094725.

[30]

Y.-B. Xiao and M. Sofonea, On the optimal control of variational-hemivariational inequalities, Journal of Mathematical Analysis and Applications, 475 (2019), 364-384.  doi: 10.1016/j.jmaa.2019.02.046.

[31]

Y.-B. Xiao and M. Sofonea, Generalized penalty method for elliptic variational-hemivariational inequalities, Applied Mathematics and Optimization, (2019). doi: 10.1007/s00245-019-09563-4.

[32]

W. Yang and H. Xu, Distributionally robust chance constraints for non-linear uncertainties, Mathematical Programming, 155 (2016), 231-265.  doi: 10.1007/s10107-014-0842-5.

[33]

Y. ZhangS. Shen and S. Erdogan, Distributionally robust appointment scheduling with moment-based ambiguity set, Operations Research Letters, 45 (2017), 139-144.  doi: 10.1016/j.orl.2017.01.010.

[34]

S. ZymlerD. Kuhn and B. Rustem, Distributionally robust joint chance constraints with second-order moment information, Mathematical Programming, 137 (2013), 167-198.  doi: 10.1007/s10107-011-0494-7.

[35]

S. ZymlerD. Kuhn and B. Rustem, Worst-case value at risk of nonlinear portfolios, Management Science, 59 (2009), 172-188.  doi: 10.1287/mnsc.1120.1615.

show all references

References:
[1]

V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, Springer, New York, 2012. doi: 10.1007/978-94-007-2247-7.

[2]

A. Ben-TalD. Bertsimas and D. Brown, A soft robust model for optimization under ambiguity, Operations Research, 58 (2010), 1220-1234.  doi: 10.1287/opre.1100.0821.

[3]

A. Ben-TalD. Hertog and J. Vial, Deriving robust counterparts of nonlinear uncertain inequalities, Mathematical Programming, 149 (2015), 265-299.  doi: 10.1007/s10107-014-0750-8.

[4] D. S. Bernstein, Matrix Mathematics, Princeton University Press, New Jersey, 2009.  doi: 10.1515/9781400833344.
[5]

G. Calafiore and L. El Ghaoui, On distributionally robust chance-constrained linear programms with applications, Journal of Optimization Theory and Applications, 130 (2006), 1-22.  doi: 10.1007/s10957-006-9084-x.

[6]

E. Delage and Y. Ye, Distributionally robust optimization under moment uncertainty with application to data-driven problems, Operations Research, 58 (2010), 595-612.  doi: 10.1287/opre.1090.0741.

[7]

K. W. DingM. H. Wang and N. J. Huang, Distributionally robust chance constrained problem under interval distribution information, Optimization Letters, 12 (2018), 1315-1328.  doi: 10.1007/s11590-017-1160-7.

[8]

L. GhaouiM. Oks and F. Oustry, Worst-case value-at-risk and robust portfolio optimization: A conic programming approach, Operations Research, 51 (2003), 543-556.  doi: 10.1287/opre.51.4.543.16101.

[9]

R. HuY.-B. XiaoN.-J. Huang and X. Wang, Equivalence results of well-posedness for split variational-hemivariational inequalities, J. Nonlinear Convex Anal., 20 (2019), 447-459. 

[10]

K. Isii, On sharpness of Tchebychev-type inequalities, Annals of the Institute of Statistical Mathematics, 14 (1962), 185-197.  doi: 10.1007/BF02868641.

[11]

B. LiJ. SunH. Xu and M. Zhang, A class of two-stage distributionally robust stochastic games, Journal of Industrial and Management Optimization, 15 (2019), 387-400. 

[12]

B. LiX. QianJ. SunK. L. Teo and C. Yu, A model of distributionally robust two-stage stochastic convex programming with linear recourse, Applied Mathematical Modelling, 58 (2018), 86-97.  doi: 10.1016/j.apm.2017.11.039.

[13]

B. LiY. RongJ. Sun and K. L. Teo, A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, IEEE Transactions on Wireless Communications, 16 (2017), 464-474.  doi: 10.1109/TWC.2016.2625246.

[14]

B. LiY. RongJ. Sun and K. L. Teo, A distributionally robust minimum variance beamformer design, IEEE Signal Processing Letters, 25 (2018), 105-109.  doi: 10.1109/LSP.2017.2773601.

[15]

J. LuY.-B. Xiao and N.-J. Huang, A Stackelberg quasi-equilibrium problem via quasi-variational inequalities, Carpathian Journal of Mathematics, 34 (2018), 355-362. 

[16]

W. LiY.-B. XiaoN.-J. Huang and Y. J. Cho, A class of differential inverse quasi-variational inequalities in finite dimensional spaces, Journal of Nonlinear Sciences and Applications, 10 (2017), 4532-4543.  doi: 10.22436/jnsa.010.08.45.

[17]

K. NatarajanM. Sim and J. Uichanco, Tractable robust expected utility and risk models for portofolio optimization, Mathematical Finance, 20 (2010), 695-731.  doi: 10.1111/j.1467-9965.2010.00417.x.

[18]

A. PetruselG. PetruselY.-B. Xiao and J.-C. Yao, Fixed point theorems for generalized contractions with applications to coupled fixed point theory, Journal of Nonlinear and Convex Analysis, 19 (2018), 71-87. 

[19]

I. Pólik and T. Terlaky, A survey of the $\mathcal{S}$-lemma, SIAM Review, 49 (2007), 371-481.  doi: 10.1137/S003614450444614X.

[20]

Q.-Y. Shu, R. Hu and Y.-B. Xiao, Metric characterizations for well-posedness of split hemivariational inequalities, J. Inequal. Appl., (2018), 17 pp. doi: 10.1186/s13660-018-1761-4.

[21]

A. Shapiro and A. Kleywegt, Minimax analysis of stochastic problems, Optimization Methods & Software, 17 (2002), 523-542.  doi: 10.1080/1055678021000034008.

[22]

M. Sofonea, Y.-B. Xiao and M. Couderc, Optimization problems for elastic contact models with unilateral constraints, Z. Angew. Math. Phys., 70 (2019), 17 pp. doi: 10.1007/s00033-018-1046-2.

[23]

M. Sofonea and Y.-B. Xiao, Boundary optimal control of a nonsmooth frictionless contact problem, Comput. Math. Appl., 78 (2019), 152-165.  doi: 10.1016/j.camwa.2019.02.027.

[24]

H. Sun and H. Xu, Convergence analysis for distributionally robust optimization and equilibrium problems, Mathematics of Operations Research, 41 (2016), 377-401.  doi: 10.1287/moor.2015.0732.

[25]

X. TongH. SunX. Luo and Q. Zheng, Distributionally robust chance constrained optimization for economic dispatch in renewable energy integrated systems, Journal of Global Optimization, 70 (2018), 131-158.  doi: 10.1007/s10898-017-0572-3.

[26]

X. WangN. Fan and P. Pardalos, Robust chance-constrained support vector machines with second-order moment information, Annals of Operations Research, 263 (2018), 45-68.  doi: 10.1007/s10479-015-2039-6.

[27]

Y.-M. WangY.-B. XiaoX. Wang and Y. J. Cho, Equivalence of well-posedness between systems of hemivariational inequalities and inclusion problems, J. Nonlinear Sci. Appl., 9 (2016), 1178-1192.  doi: 10.22436/jnsa.009.03.44.

[28]

W. WiesemannD. Kuhn and M. Sim, Distributionally robust convex optimization, Operations Research, 62 (2014), 1358-1376.  doi: 10.1287/opre.2014.1314.

[29]

W. Xie and S. Ahmed, On deterministic reformulations of distributionally robust joint chance constrained optimization problems, SIAM Journal on Optimization, 28 (2018), 1151-1182.  doi: 10.1137/16M1094725.

[30]

Y.-B. Xiao and M. Sofonea, On the optimal control of variational-hemivariational inequalities, Journal of Mathematical Analysis and Applications, 475 (2019), 364-384.  doi: 10.1016/j.jmaa.2019.02.046.

[31]

Y.-B. Xiao and M. Sofonea, Generalized penalty method for elliptic variational-hemivariational inequalities, Applied Mathematics and Optimization, (2019). doi: 10.1007/s00245-019-09563-4.

[32]

W. Yang and H. Xu, Distributionally robust chance constraints for non-linear uncertainties, Mathematical Programming, 155 (2016), 231-265.  doi: 10.1007/s10107-014-0842-5.

[33]

Y. ZhangS. Shen and S. Erdogan, Distributionally robust appointment scheduling with moment-based ambiguity set, Operations Research Letters, 45 (2017), 139-144.  doi: 10.1016/j.orl.2017.01.010.

[34]

S. ZymlerD. Kuhn and B. Rustem, Distributionally robust joint chance constraints with second-order moment information, Mathematical Programming, 137 (2013), 167-198.  doi: 10.1007/s10107-011-0494-7.

[35]

S. ZymlerD. Kuhn and B. Rustem, Worst-case value at risk of nonlinear portfolios, Management Science, 59 (2009), 172-188.  doi: 10.1287/mnsc.1120.1615.

[1]

Qing Ma, Yanjun Wang. Distributionally robust chance constrained svm model with $\ell_2$-Wasserstein distance. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021212

[2]

Bin Li, Jie Sun, Honglei Xu, Min Zhang. A class of two-stage distributionally robust games. Journal of Industrial and Management Optimization, 2019, 15 (1) : 387-400. doi: 10.3934/jimo.2018048

[3]

Fengming Lin, Xiaolei Fang, Zheming Gao. Distributionally Robust Optimization: A review on theory and applications. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 159-212. doi: 10.3934/naco.2021057

[4]

Yanjun Wang, Shisen Liu. Relaxation schemes for the joint linear chance constraint based on probability inequalities. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021132

[5]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial and Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[6]

Lin Jiang, Changzhi Wu, Song Wang. Distributionally robust multi-period portfolio selection subject to bankruptcy constraints. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021218

[7]

Yubo Yuan, Weiguo Fan, Dongmei Pu. Spline function smooth support vector machine for classification. Journal of Industrial and Management Optimization, 2007, 3 (3) : 529-542. doi: 10.3934/jimo.2007.3.529

[8]

Yu Chen, Yonggang Li, Bei Sun, Chunhua Yang, Hongqiu Zhu. Multi-objective chance-constrained blending optimization of zinc smelter under stochastic uncertainty. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021169

[9]

Jie Jiang, Zhiping Chen, He Hu. Stability of a class of risk-averse multistage stochastic programs and their distributionally robust counterparts. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2415-2440. doi: 10.3934/jimo.2020075

[10]

Yuli Zhang, Lin Han, Xiaotian Zhuang. Distributionally robust front distribution center inventory optimization with uncertain multi-item orders. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1777-1795. doi: 10.3934/dcdss.2022006

[11]

Jutamas Kerdkaew, Rabian Wangkeeree. Characterizing robust weak sharp solution sets of convex optimization problems with uncertainty. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2651-2673. doi: 10.3934/jimo.2019074

[12]

Xin Sun, Dachuan Xu, Dongmei Zhang, Yang Zhou. An adaptive algorithm for maximization of non-submodular function with a matroid constraint. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022031

[13]

Matthew H. Henry, Yacov Y. Haimes. Robust multiobjective dynamic programming: Minimax envelopes for efficient decisionmaking under scenario uncertainty. Journal of Industrial and Management Optimization, 2009, 5 (4) : 791-824. doi: 10.3934/jimo.2009.5.791

[14]

Nasim Ullah, Ahmad Aziz Al-Ahmadi. A triple mode robust sliding mode controller for a nonlinear system with measurement noise and uncertainty. Mathematical Foundations of Computing, 2020, 3 (2) : 81-99. doi: 10.3934/mfc.2020007

[15]

Jutamas Kerdkaew, Rabian Wangkeeree, Rattanaporn Wangkeeree. Global optimality conditions and duality theorems for robust optimal solutions of optimization problems with data uncertainty, using underestimators. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 93-107. doi: 10.3934/naco.2021053

[16]

Georgios I. Papayiannis. Robust policy selection and harvest risk quantification for natural resources management under model uncertainty. Journal of Dynamics and Games, 2022, 9 (2) : 203-217. doi: 10.3934/jdg.2022004

[17]

Shihan Di, Dong Ma, Peibiao Zhao. $ \alpha $-robust portfolio optimization problem under the distribution uncertainty. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022054

[18]

Meixin Xiong, Liuhong Chen, Ju Ming. Quantify uncertainty by estimating the probability density function of the output of interest using MLMC based Bayes method. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022095

[19]

Axel Heim, Vladimir Sidorenko, Uli Sorger. Computation of distributions and their moments in the trellis. Advances in Mathematics of Communications, 2008, 2 (4) : 373-391. doi: 10.3934/amc.2008.2.373

[20]

J. Alberto Conejero, Marko Kostić, Pedro J. Miana, Marina Murillo-Arcila. Distributionally chaotic families of operators on Fréchet spaces. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1915-1939. doi: 10.3934/cpaa.2016022

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (321)
  • HTML views (885)
  • Cited by (0)

Other articles
by authors

[Back to Top]