• Previous Article
    Numerical solution to an inverse problem on a determination of places and capacities of sources in the hyperbolic systems
  • JIMO Home
  • This Issue
  • Next Article
    Optimality conditions for $ E $-differentiable vector optimization problems with the multiple interval-valued objective function
November  2020, 16(6): 2991-3009. doi: 10.3934/jimo.2019090

Pairs trading with illiquidity and position limits

1. 

Societe Generale Hong Kong, Three Pacific Place, 1 Queen's Road East, Hong Kong

2. 

Department of Mathematics and Information Technology, Education University of Hong Kong, Hong Kong SAR, China

3. 

Department of Statistics, The Chinese University of Hong Kong, Hong Kong SAR, China

*Corresponding author

Received  August 2018 Revised  February 2019 Published  July 2019

We investigate the optimal investment among the money market account, a liquid risky asset (e.g. stock index) and an illiquid risky asset (e.g. individual stock), where the two risky assets are cointegrated. The illiquid risky asset is subject to a proportional transaction cost and the portfolio of the three assets faces certain position limits. We develop the optimal investment strategy to maximize the gain function, which is realized through an expected sum of discounted utilities given transaction costs and position limits. The problem formulation uses a singular control framework with cointegration that determines optimal trading boundaries among holding, selling and no-trading regions. We conduct comprehensive numerical analysis on the optimal investment strategy and features of the optimal trading boundaries given various levels of position limits.

Citation: Menglu Feng, Mei Choi Chiu, Hoi Ying Wong. Pairs trading with illiquidity and position limits. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2991-3009. doi: 10.3934/jimo.2019090
References:
[1]

A. AlmazanK. C. BrownM. Carlson and D. Chapman, Why constrain your mutual fund manager?, J. of Financial Econ., 73 (2004), 289-321.   Google Scholar

[2]

M. AkianJ. L. Menaldi and and A. Sulem, On an investment-consumption model with transaction costs, SIAM J. on Control and Optimization, 34 (1996), 329-364.  doi: 10.1137/S0363012993247159.  Google Scholar

[3]

R. Baillie and T. Bollerslev, Common stochastic trends in a system of exchange rates, The J. of Finance, 44 (1989), 167-181.  doi: 10.1111/j.1540-6261.1989.tb02410.x.  Google Scholar

[4]

S. BasakA. Pavlova and A. Shapiro, Optimal asset allocation and risk shifting in money management, The Review of Financial Studies, 20 (2007), 1583-1621.   Google Scholar

[5]

M. Cerchi and A. Havenner, Cointegration and stock prices: The random walk on Wall Street revisited, J. of Econ. Dynamics and Control, 12 (1988), 333-346.  doi: 10.1016/0165-1889(88)90044-9.  Google Scholar

[6]

K. ChenM. C. Chiu and H. Y. Wong, Time-consistent mean-variance pairs-trading under regime-switching cointegration, SIAM J. on Finan. Math., 10 (2019), 632-665.  doi: 10.2139/ssrn.3250340.  Google Scholar

[7]

K. Chen and H. Y. Wong, Time-consistent mean-variance hedging of an illiquid asset with a cointegrated liquid asset, Finan. Research Letters, 29 (2019), 184-192.  doi: 10.1016/j.frl.2018.07.004.  Google Scholar

[8]

M. C. Chiu and H. Y. Wong, Mean-variance portfolio selection of cointegrated assets, J. of Econ. Dynamics and Control, 35 (2011), 1369-1385.  doi: 10.1016/j.jedc.2011.04.003.  Google Scholar

[9]

M. C. Chiu and H. Y. Wong, Mean-variance asset-liability management: Cointegrated assets and insurance liabilities, European J. of Oper. Research, 223 (2012), 785-793.  doi: 10.1016/j.ejor.2012.07.009.  Google Scholar

[10]

M. C. Chiu and H. Y. Wong, Optimal investment for an insurer with cointegrated assets: CRRA utility, Insurance: Math. and Econ., 52 (2013), 52-64.  doi: 10.1016/j.insmatheco.2012.11.004.  Google Scholar

[11]

M. C. Chiu and H. Y. Wong, Dynamic cointegrated pairs trading: Mean-variance time-consistent strategies, J. of Computational and Applied Math., 290 (2015), 516-534.  doi: 10.1016/j.cam.2015.06.004.  Google Scholar

[12]

M. DaiH. Jin and H. Liu, Illiquidity, position limits, and optimal investment for mutual funds, J. of Econ. Theory, 146 (2011), 1598-1630.  doi: 10.1016/j.jet.2011.03.014.  Google Scholar

[13]

M. Davis and A. Norman, Portfolio selection with transaction costs, Math. of Ops. Research, 15 (1990), 676-713.  doi: 10.1287/moor.15.4.676.  Google Scholar

[14]

J. Duan and S. R. Pliska, Option valuation with co-integrated asset prices, J. of Econ. Dynamics and Control, 28 (2004), 727-754.  doi: 10.1016/S0165-1889(03)00042-3.  Google Scholar

[15]

R. Engle and C. Granger, Co-integration and error correction: Representation, estimation, and testing, Econometrica, 55 (1987), 251-276.  doi: 10.2307/1913236.  Google Scholar

[16]

P. A. Forsyth and K. R. Vetzal, Quadratic convergence for valuing American options using a penalty method, SIAM J. on Scientific Computing, 23 (2002), 2095-2122.  doi: 10.1137/S1064827500382324.  Google Scholar

[17]

E. GatevW. N. Goetzmann and K. G. Rouwenhorst, Pairs trading: Performance of a relative-value arbitrage rule, The Review of Finan. Studies, 19 (2006), 797-827.  doi: 10.1093/rfs/hhj020.  Google Scholar

[18]

J. Karceski, M. Livingston and E. S. O'Neal, Portfolio transactions costs at US equity mutual funds, Working Paper, (2004). Google Scholar

[19]

Y. Lei and J. Xu, Costly arbitrage through pairs trading, J. of Econ. Dynamics and Control, 56 (2015), 1-19.  doi: 10.1016/j.jedc.2015.04.006.  Google Scholar

[20]

J. Liu and A. Timmermann, Optimal convergence trade strategies, The Review of Finan. Studies, 26 (2013), 1048-1086.  doi: 10.1093/rfs/hhs130.  Google Scholar

[21]

R. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Econ. Theory, 3 (1971), 373-413.  doi: 10.1016/0022-0531(71)90038-X.  Google Scholar

[22]

A. Tourin and R. Yan, Dynamic pairs trading using the stochastic control approach, J. of Econ. Dynamics and Control, 37 (2013), 1972-1981.  doi: 10.1016/j.jedc.2013.05.010.  Google Scholar

[23]

N. Touzi, Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE, Fields Institute Monographs, 29, Springer, New York, 2013. doi: 10.1007/978-1-4614-4286-8.  Google Scholar

[24]

R. Wermers, Mutual fund performance: An empirical decomposition into stock-picking talent, style, transactions costs, and expenses, The J. of Finance, 55 (2000), 1655-1695.  doi: 10.1111/0022-1082.00263.  Google Scholar

show all references

References:
[1]

A. AlmazanK. C. BrownM. Carlson and D. Chapman, Why constrain your mutual fund manager?, J. of Financial Econ., 73 (2004), 289-321.   Google Scholar

[2]

M. AkianJ. L. Menaldi and and A. Sulem, On an investment-consumption model with transaction costs, SIAM J. on Control and Optimization, 34 (1996), 329-364.  doi: 10.1137/S0363012993247159.  Google Scholar

[3]

R. Baillie and T. Bollerslev, Common stochastic trends in a system of exchange rates, The J. of Finance, 44 (1989), 167-181.  doi: 10.1111/j.1540-6261.1989.tb02410.x.  Google Scholar

[4]

S. BasakA. Pavlova and A. Shapiro, Optimal asset allocation and risk shifting in money management, The Review of Financial Studies, 20 (2007), 1583-1621.   Google Scholar

[5]

M. Cerchi and A. Havenner, Cointegration and stock prices: The random walk on Wall Street revisited, J. of Econ. Dynamics and Control, 12 (1988), 333-346.  doi: 10.1016/0165-1889(88)90044-9.  Google Scholar

[6]

K. ChenM. C. Chiu and H. Y. Wong, Time-consistent mean-variance pairs-trading under regime-switching cointegration, SIAM J. on Finan. Math., 10 (2019), 632-665.  doi: 10.2139/ssrn.3250340.  Google Scholar

[7]

K. Chen and H. Y. Wong, Time-consistent mean-variance hedging of an illiquid asset with a cointegrated liquid asset, Finan. Research Letters, 29 (2019), 184-192.  doi: 10.1016/j.frl.2018.07.004.  Google Scholar

[8]

M. C. Chiu and H. Y. Wong, Mean-variance portfolio selection of cointegrated assets, J. of Econ. Dynamics and Control, 35 (2011), 1369-1385.  doi: 10.1016/j.jedc.2011.04.003.  Google Scholar

[9]

M. C. Chiu and H. Y. Wong, Mean-variance asset-liability management: Cointegrated assets and insurance liabilities, European J. of Oper. Research, 223 (2012), 785-793.  doi: 10.1016/j.ejor.2012.07.009.  Google Scholar

[10]

M. C. Chiu and H. Y. Wong, Optimal investment for an insurer with cointegrated assets: CRRA utility, Insurance: Math. and Econ., 52 (2013), 52-64.  doi: 10.1016/j.insmatheco.2012.11.004.  Google Scholar

[11]

M. C. Chiu and H. Y. Wong, Dynamic cointegrated pairs trading: Mean-variance time-consistent strategies, J. of Computational and Applied Math., 290 (2015), 516-534.  doi: 10.1016/j.cam.2015.06.004.  Google Scholar

[12]

M. DaiH. Jin and H. Liu, Illiquidity, position limits, and optimal investment for mutual funds, J. of Econ. Theory, 146 (2011), 1598-1630.  doi: 10.1016/j.jet.2011.03.014.  Google Scholar

[13]

M. Davis and A. Norman, Portfolio selection with transaction costs, Math. of Ops. Research, 15 (1990), 676-713.  doi: 10.1287/moor.15.4.676.  Google Scholar

[14]

J. Duan and S. R. Pliska, Option valuation with co-integrated asset prices, J. of Econ. Dynamics and Control, 28 (2004), 727-754.  doi: 10.1016/S0165-1889(03)00042-3.  Google Scholar

[15]

R. Engle and C. Granger, Co-integration and error correction: Representation, estimation, and testing, Econometrica, 55 (1987), 251-276.  doi: 10.2307/1913236.  Google Scholar

[16]

P. A. Forsyth and K. R. Vetzal, Quadratic convergence for valuing American options using a penalty method, SIAM J. on Scientific Computing, 23 (2002), 2095-2122.  doi: 10.1137/S1064827500382324.  Google Scholar

[17]

E. GatevW. N. Goetzmann and K. G. Rouwenhorst, Pairs trading: Performance of a relative-value arbitrage rule, The Review of Finan. Studies, 19 (2006), 797-827.  doi: 10.1093/rfs/hhj020.  Google Scholar

[18]

J. Karceski, M. Livingston and E. S. O'Neal, Portfolio transactions costs at US equity mutual funds, Working Paper, (2004). Google Scholar

[19]

Y. Lei and J. Xu, Costly arbitrage through pairs trading, J. of Econ. Dynamics and Control, 56 (2015), 1-19.  doi: 10.1016/j.jedc.2015.04.006.  Google Scholar

[20]

J. Liu and A. Timmermann, Optimal convergence trade strategies, The Review of Finan. Studies, 26 (2013), 1048-1086.  doi: 10.1093/rfs/hhs130.  Google Scholar

[21]

R. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Econ. Theory, 3 (1971), 373-413.  doi: 10.1016/0022-0531(71)90038-X.  Google Scholar

[22]

A. Tourin and R. Yan, Dynamic pairs trading using the stochastic control approach, J. of Econ. Dynamics and Control, 37 (2013), 1972-1981.  doi: 10.1016/j.jedc.2013.05.010.  Google Scholar

[23]

N. Touzi, Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE, Fields Institute Monographs, 29, Springer, New York, 2013. doi: 10.1007/978-1-4614-4286-8.  Google Scholar

[24]

R. Wermers, Mutual fund performance: An empirical decomposition into stock-picking talent, style, transactions costs, and expenses, The J. of Finance, 55 (2000), 1655-1695.  doi: 10.1111/0022-1082.00263.  Google Scholar

Figure 1.  Optimal investment boundaries for the illiquid asset without position limits. Parameter values: $ \beta_1 = 0.1 $, $ \beta_2 = 0.15 $, $ \sigma_1 = 0.2 $, $ \sigma_2 = 0.25 $, $ \delta_1 = 1 $, $ \delta_2 = 0.4 $, $ \lambda = 1 $, $ \rho = 0.8 $, $ \alpha = 0.01 $, $ \theta = 0.01 $, $ \gamma = 0.5 $, $ r = 0.01 $, $ \nu = 0.02 $
Figure 2.  Optimal investment boundaries for the illiquid asset with position limits. Parameter values: $ \beta_1 = 0.1 $, $ \beta_2 = 0.15 $, $ \sigma_1 = 0.2 $, $ \sigma_2 = 0.25 $, $ \delta_1 = 1 $, $ \delta_2 = 0.4 $, $ \lambda = 1 $, $ \rho = 0.8 $, $ \alpha = 0.01 $, $ \theta = 0.01 $, $ \gamma = 0.5 $, $ r = 0.01 $, $ \nu = 0.02 $, $ \underset{\bar{}}{l} = -0.5 $, $ \bar{l} = 0.7 $
Figure 3.  Optimal investment boundaries for the illiquid asset at $ x = 15 $. Parameter values: $ \beta_1 = 0.1 $, $ \beta_2 = 0.15 $, $ \sigma_1 = 0.2 $, $ \sigma_2 = 0.25 $, $ \delta_1 = 1 $, $ \delta_2 = 0.4 $, $ \lambda = 1 $, $ \rho = 0.8 $, $ \alpha = 0.01 $, $ \theta = 0.01 $, $ \gamma = 0.5 $, $ r = 0.01 $, $ \nu = 0.02 $, $ \underset{\bar{}}{l} = -0.5 $, $ \bar{l} = 0.7 $
Figure 4.  Optimal investment boundaries for the illiquid asset at $ x = 15 $ with various transaction cost rates $ \alpha $. Parameter values: $ \beta_1 = 0.1 $, $ \beta_2 = 0.15 $, $ \sigma_1 = 0.2 $, $ \sigma_2 = 0.25 $, $ \delta_1 = 1 $, $ \delta_2 = 0.4 $, $ \lambda = 1 $, $ \rho = 0.8 $, $ \gamma = 0.5 $, $ r = 0.01 $, $ \nu = 0.02 $
Figure 5.  Optimal investment boundaries for the illiquid asset at $ x = 15 $ with various correlation coefficients $ \rho $. Parameter values: $ \beta_1 = 0.1 $, $ \beta_2 = 0.15 $, $ \sigma_1 = 0.2 $, $ \sigma_2 = 0.25 $, $ \delta_1 = 1 $, $ \delta_2 = 0.4 $, $ \lambda = 1 $, $ \alpha = 0.01 $, $ \theta = 0.01 $, $ \gamma = 0.5 $, $ r = 0.01 $, $ \nu = 0.02 $
Figure 6.  Optimal investment boundaries for creating positions with the illiquid asset at $ x = 15 $ with various lower bound $ \underset{\bar{}}{l} $. Parameter values: $ \beta_1 = 0.1 $, $ \beta_2 = 0.15 $, $ \sigma_1 = 0.2 $, $ \sigma_2 = 0.25 $, $ \delta_1 = 1 $, $ \delta_2 = 0.4 $, $ \lambda = 1 $, $ \alpha = 0.01 $, $ \theta = 0.01 $, $ \gamma = 0.5 $, $ r = 0.01 $, $ \nu = 0.02 $
Figure 7.  Optimal investment boundaries for the illiquid asset at $ x = 15 $ with various $ \kappa $. Parameter values: $ \beta_1 = 0.1 $, $ \beta_2 = 0.15 $, $ \sigma_1 = 0.2 $, $ \sigma_2 = 0.25 $, $ \delta_1 = 1 $, $ \delta_2 = 0.4 $, $ \lambda = 1 $, $ \alpha = 0.01 $, $ \theta = 0.01 $, $ \gamma = 0.5 $, $ r = 0.01 $, $ \nu = 0.02 $, $ \underset{\bar{}}{l} = -0.5 $, $ \bar{l} = 0.7 $
Table 1.  Summary of Default Parameters for Numerical Analysis
Parameter Value Parameter Value
$ \beta_1\; \; $ 0.1 $ \rho\; \; $ 0.8
$ \beta_2\; \; $ 0.15 $ \alpha\; \; $ 0.01
$ \delta_1\; \; $ 1 $ \theta\; \; $ 0.01
$ \delta_2\; \; $ 0.4 $ \gamma\; \; $ 0.5
$ \sigma_1\; \; $ 0.2 $ r\; \; $ 0.01
$ \sigma_2\; \; $ 0.25 $ \nu\; \; $ 0.02
$ \lambda\; \; $ 1
Parameter Value Parameter Value
$ \beta_1\; \; $ 0.1 $ \rho\; \; $ 0.8
$ \beta_2\; \; $ 0.15 $ \alpha\; \; $ 0.01
$ \delta_1\; \; $ 1 $ \theta\; \; $ 0.01
$ \delta_2\; \; $ 0.4 $ \gamma\; \; $ 0.5
$ \sigma_1\; \; $ 0.2 $ r\; \; $ 0.01
$ \sigma_2\; \; $ 0.25 $ \nu\; \; $ 0.02
$ \lambda\; \; $ 1
[1]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[2]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[3]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[4]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020051

[5]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[6]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[7]

Qing-Hu Hou, Yarong Wei. Telescoping method, summation formulas, and inversion pairs. Electronic Research Archive, , () : -. doi: 10.3934/era.2021007

[8]

Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021007

[9]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279

[10]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[11]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[12]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[13]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[14]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[15]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[16]

Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021011

[17]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[18]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[19]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[20]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (194)
  • HTML views (583)
  • Cited by (1)

Other articles
by authors

[Back to Top]