
-
Previous Article
Robust stochastic optimization with convex risk measures: A discretized subgradient scheme
- JIMO Home
- This Issue
-
Next Article
Orthogonal intrinsic mode functions via optimization approach
A chance-constrained stochastic model predictive control problem with disturbance feedback
1. | College of Electrical and Information Technology, Sichuan University, Chengdu, China |
2. | Business School, The University of Edinburgh, Edinburgh, UK |
3. | School of Electronic Engineering, Chengdu University of Information Technology, Chengdu, China |
4. | Inovation and Entrepreneurship College, Xihua University, Chengdu, China |
5. | College of Electrical and Information Technology, Sichuan University, Chengdu, China |
In this paper, we develop two algorithms for stochastic model predictive control (SMPC) problems with discrete linear systems. Participially, chance constraints on the state and control are considered. Different from the state-of-the-art robust model predictive control (RMPC) algorithm, the proposed is less conservative. Meanwhile, the proposed algorithms do not assume the full knowledge of the disturbance distribution. It only requires the mean and variance of the disturbance. Rigorous computational analysis is carried out for the proposed algorithms. Numerical results are provided to demonstrate the effectiveness and the superior of the proposed SMPC algorithms.
References:
[1] |
A. Bental and M. Teboulle, Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming. Mgmt. Science, (2011). Google Scholar |
[2] |
D. Bernardini and A. Bemporad, Scenario-based model predictive control of stochastic constrained linear systems, IEEE Conference on Decision & Control, IEEE, (2009).
doi: 10.1109/CDC.2009.5399917. |
[3] |
G. C. Calafiore and L. Fagiano, Robust model predictive control via scenario optimization, IEEE Transactions on Automatic Control, 58 (2013), 219-224.
doi: 10.1109/TAC.2012.2203054. |
[4] |
M. Cannon, B. Kouvaritakis and D. Ng,
Probabilistic tubes in linear stochastic model predictive control, Systems & Control Letters, 58 (2009), 747-753.
doi: 10.1016/j.sysconle.2009.08.004. |
[5] |
W. Chen, M. Sim, J. Sun and C.-P. Teo,
From CVaR to uncertainty set: Implications in joint chance-constrained optimization, Ops. Research, 58 (2010), 470-485.
doi: 10.1287/opre.1090.0712. |
[6] |
E. Cinquemani, M. Agarwal, D. Chatterjee and J. Lygeros,
Convexity and convex approximations of discrete-time stochastic control problems with constraints, Automatica, 47 (2011), 2082-2087.
doi: 10.1016/j.automatica.2011.01.023. |
[7] |
M. Farina, L. Giulioni and L. Magni, A probabilistic approach to model predictive control, in 52nd IEEE Conference on Decision and Control, IEEE, (2013).
doi: 10.1109/CDC.2013.6761117. |
[8] |
M. Farina, L. Giulioni, L. Magni and R. Scattolini,
An approach to output-feedback MPC of stochastic linear discrete-time systems, Automatica, 55 (2015), 140-149.
doi: 10.1016/j.automatica.2015.02.039. |
[9] |
M. Farina, L. Giulioni and R. Scattolini,
Stochastic linear Model Predictive Control with chance constraints - A review, J. of Process Control, 44 (2016), 53-67.
doi: 10.1016/j.jprocont.2016.03.005. |
[10] |
M. Farina and R. Scattolini,
Model predictive control of linear systems with multiplicative unbounded uncertainty and chance constraints, Automatica, 70 (2016), 258-265.
doi: 10.1016/j.automatica.2016.04.008. |
[11] |
Z. H. Gong, C. Y. Liu, K. L. Teo and J. Sun,
Distributionally robust parameter identification of a time-delay dynamical system with stochastic measurements, Appl. Math. Modelling, 69 (2019), 685-695.
doi: 10.1016/j.apm.2018.09.040. |
[12] |
Z. H. Gong, C. Y. Liu, J. Sun and K. L. Teo,
Distributional robust $L_1$-estimation in multiple linear regression, Optim. Letters, 13 (2019), 935-947.
doi: 10.1007/s11590-018-1299-x. |
[13] |
M. Grantand and S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.1, (2014). Retrieved from: http://cvxr.com/cvx. Google Scholar |
[14] |
P. Hokayem, D. Chatterjee and J. Lygeros,
On stochastic receding horizon control with bounded control inputs: A vector space approach, IEE Trans. on Automat. Control, 56 (2011), 2704-2710.
doi: 10.1109/TAC.2011.2159422. |
[15] |
P. Hokayem, E. Cinquemani, D. Chatterjee, F. Ramponi and J. Lygeros,
Stochastic receding horizon control with output feedback and bounded controls, Automatica, 48 (2012), 77-88.
doi: 10.1016/j.automatica.2011.09.048. |
[16] |
B. Li, Y. Rong, J. Sun and K. L. Teo,
A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, IEEE Trans. on Wireless Comms., 16 (2017), 464-474.
doi: 10.1109/TWC.2016.2625246. |
[17] |
B. Li, Y. Rong, J. Sun and K. L. Teo,
A distributionally robust minimum variance beamformer design, IEEE Signal Processing Letters, 25 (2018), 105-109.
doi: 10.1109/LSP.2017.2773601. |
[18] |
B. Li, J. Sun, K. L. Teo, C. J. Yu and M. Zhang, A distributionally robust approach to a class of three-stage stochastic linear programs. Pacific J. of Optim., 15 (2019), 219-236. Google Scholar |
[19] |
B. Li, J. Sun, H. L. Xu and M. Zhang,
A class of two-stage distributionally robust stochastic games, J. of Indust. and Mgmt. Optim., 15 (2019), 387-400.
|
[20] |
B. Li, Q. Xun, J. Sun, K. L. Teo and C. J. Yu,
A model of distributionally robust two-stage stochastic convex programming with linear recourse, Appl. Math. Modelling, 58 (2018), 86-97.
doi: 10.1016/j.apm.2017.11.039. |
[21] |
M. S. Lobo, L. Vandenberghe, S. Boyd and H. Lebret,
Applications of second-order cone programming, Linear Algebra and its Appl., 284 (1998), 193-228.
doi: 10.1016/S0024-3795(98)10032-0. |
[22] |
L. Magni, G. D. Nicolao and R. Scattolini,
Robust model predictive control for nonlinear discrete-time systems, Int. J. of Robust & Nonlinear Control, 13 (2003), 229-246.
doi: 10.1002/rnc.815. |
[23] |
D. Q. Mayne, J. B. Rawlings, C. V. Rao and P. O. M. Scokaert, Constrained model predictive control: Stability and optimality, Automatica, 36 (2000), 789-814.
doi: 10.1016/S0005-1098(99)00214-9. |
[24] |
D. Q. Mayne, M. M. Seron and S. V. Raković,
Robust model predictive control of constrained linear systems with bounded disturbances, Automatica, 41 (2005), 219-224.
doi: 10.1016/j.automatica.2004.08.019. |
[25] |
A. Nemirovski and A. Shapiro,
Convex approximations of chance constrained programs, SIAM J. on Optim., 17 (2006), 969-996.
doi: 10.1137/050622328. |
[26] |
J. A. Paulson, E. A. Buehler, R. D. Braatz and A. Mesbah, Stochastic model predictive control with joint chance constraints, Int. J. of Control, (2017), 1–14.
doi: 10.1080/00207179.2017.1323351. |
[27] |
S. Qu, Y. Zhou, Y. Zhang, M. I. M. Wahab, G. Zhang and Y. Ye,
Optimal strategy for a green supply chain considering shipping policy and default risk, Comp. & Indust. Engineering, 131 (2019), 172-186.
doi: 10.1016/j.cie.2019.03.042. |
[28] |
D. M. Raimondo, D. Limon and M. Lazar, Min-max model predictive control of nonlinear systems: A unifying overview on stability, European J. of Control, 15 (2009), 5-21.
doi: 10.3166/ejc.15.5-21. |
[29] |
D. R. Ramírez, T. Alamo and E. F. Camacho,
Min-Max MPC based on a computationally efficient upper bound of the worst case cost, J. of Process Control, 16 (2006), 511-519.
doi: 10.1016/j.jprocont.2005.07.005. |
[30] |
G. Schildbach, P. Goulart and M. Morari, Linear controller design for chance constrained systems, Automatica, 51 (2015), 278-284.
doi: 10.1016/j.automatica.2014.10.096. |
[31] |
M. Y. Shin, Compution in constrained stochanstic model perdictive control of linear systems, Ph.D dissertation, Stanford University in California, 2011. Google Scholar |
[32] |
Y. F. Sun, G. Aw, B. Li, K. L. Teo and J. Sun., CVaR-based robust models for portfolio selection. Journal of Industrial and Management Optimization, 2018.
doi: 10.3934/jimo.2019032. |
[33] |
D. P. Tesi, MS Thesis, Ph.D thesis, University of Pavia in Italy, 2009. Google Scholar |
show all references
References:
[1] |
A. Bental and M. Teboulle, Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming. Mgmt. Science, (2011). Google Scholar |
[2] |
D. Bernardini and A. Bemporad, Scenario-based model predictive control of stochastic constrained linear systems, IEEE Conference on Decision & Control, IEEE, (2009).
doi: 10.1109/CDC.2009.5399917. |
[3] |
G. C. Calafiore and L. Fagiano, Robust model predictive control via scenario optimization, IEEE Transactions on Automatic Control, 58 (2013), 219-224.
doi: 10.1109/TAC.2012.2203054. |
[4] |
M. Cannon, B. Kouvaritakis and D. Ng,
Probabilistic tubes in linear stochastic model predictive control, Systems & Control Letters, 58 (2009), 747-753.
doi: 10.1016/j.sysconle.2009.08.004. |
[5] |
W. Chen, M. Sim, J. Sun and C.-P. Teo,
From CVaR to uncertainty set: Implications in joint chance-constrained optimization, Ops. Research, 58 (2010), 470-485.
doi: 10.1287/opre.1090.0712. |
[6] |
E. Cinquemani, M. Agarwal, D. Chatterjee and J. Lygeros,
Convexity and convex approximations of discrete-time stochastic control problems with constraints, Automatica, 47 (2011), 2082-2087.
doi: 10.1016/j.automatica.2011.01.023. |
[7] |
M. Farina, L. Giulioni and L. Magni, A probabilistic approach to model predictive control, in 52nd IEEE Conference on Decision and Control, IEEE, (2013).
doi: 10.1109/CDC.2013.6761117. |
[8] |
M. Farina, L. Giulioni, L. Magni and R. Scattolini,
An approach to output-feedback MPC of stochastic linear discrete-time systems, Automatica, 55 (2015), 140-149.
doi: 10.1016/j.automatica.2015.02.039. |
[9] |
M. Farina, L. Giulioni and R. Scattolini,
Stochastic linear Model Predictive Control with chance constraints - A review, J. of Process Control, 44 (2016), 53-67.
doi: 10.1016/j.jprocont.2016.03.005. |
[10] |
M. Farina and R. Scattolini,
Model predictive control of linear systems with multiplicative unbounded uncertainty and chance constraints, Automatica, 70 (2016), 258-265.
doi: 10.1016/j.automatica.2016.04.008. |
[11] |
Z. H. Gong, C. Y. Liu, K. L. Teo and J. Sun,
Distributionally robust parameter identification of a time-delay dynamical system with stochastic measurements, Appl. Math. Modelling, 69 (2019), 685-695.
doi: 10.1016/j.apm.2018.09.040. |
[12] |
Z. H. Gong, C. Y. Liu, J. Sun and K. L. Teo,
Distributional robust $L_1$-estimation in multiple linear regression, Optim. Letters, 13 (2019), 935-947.
doi: 10.1007/s11590-018-1299-x. |
[13] |
M. Grantand and S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.1, (2014). Retrieved from: http://cvxr.com/cvx. Google Scholar |
[14] |
P. Hokayem, D. Chatterjee and J. Lygeros,
On stochastic receding horizon control with bounded control inputs: A vector space approach, IEE Trans. on Automat. Control, 56 (2011), 2704-2710.
doi: 10.1109/TAC.2011.2159422. |
[15] |
P. Hokayem, E. Cinquemani, D. Chatterjee, F. Ramponi and J. Lygeros,
Stochastic receding horizon control with output feedback and bounded controls, Automatica, 48 (2012), 77-88.
doi: 10.1016/j.automatica.2011.09.048. |
[16] |
B. Li, Y. Rong, J. Sun and K. L. Teo,
A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, IEEE Trans. on Wireless Comms., 16 (2017), 464-474.
doi: 10.1109/TWC.2016.2625246. |
[17] |
B. Li, Y. Rong, J. Sun and K. L. Teo,
A distributionally robust minimum variance beamformer design, IEEE Signal Processing Letters, 25 (2018), 105-109.
doi: 10.1109/LSP.2017.2773601. |
[18] |
B. Li, J. Sun, K. L. Teo, C. J. Yu and M. Zhang, A distributionally robust approach to a class of three-stage stochastic linear programs. Pacific J. of Optim., 15 (2019), 219-236. Google Scholar |
[19] |
B. Li, J. Sun, H. L. Xu and M. Zhang,
A class of two-stage distributionally robust stochastic games, J. of Indust. and Mgmt. Optim., 15 (2019), 387-400.
|
[20] |
B. Li, Q. Xun, J. Sun, K. L. Teo and C. J. Yu,
A model of distributionally robust two-stage stochastic convex programming with linear recourse, Appl. Math. Modelling, 58 (2018), 86-97.
doi: 10.1016/j.apm.2017.11.039. |
[21] |
M. S. Lobo, L. Vandenberghe, S. Boyd and H. Lebret,
Applications of second-order cone programming, Linear Algebra and its Appl., 284 (1998), 193-228.
doi: 10.1016/S0024-3795(98)10032-0. |
[22] |
L. Magni, G. D. Nicolao and R. Scattolini,
Robust model predictive control for nonlinear discrete-time systems, Int. J. of Robust & Nonlinear Control, 13 (2003), 229-246.
doi: 10.1002/rnc.815. |
[23] |
D. Q. Mayne, J. B. Rawlings, C. V. Rao and P. O. M. Scokaert, Constrained model predictive control: Stability and optimality, Automatica, 36 (2000), 789-814.
doi: 10.1016/S0005-1098(99)00214-9. |
[24] |
D. Q. Mayne, M. M. Seron and S. V. Raković,
Robust model predictive control of constrained linear systems with bounded disturbances, Automatica, 41 (2005), 219-224.
doi: 10.1016/j.automatica.2004.08.019. |
[25] |
A. Nemirovski and A. Shapiro,
Convex approximations of chance constrained programs, SIAM J. on Optim., 17 (2006), 969-996.
doi: 10.1137/050622328. |
[26] |
J. A. Paulson, E. A. Buehler, R. D. Braatz and A. Mesbah, Stochastic model predictive control with joint chance constraints, Int. J. of Control, (2017), 1–14.
doi: 10.1080/00207179.2017.1323351. |
[27] |
S. Qu, Y. Zhou, Y. Zhang, M. I. M. Wahab, G. Zhang and Y. Ye,
Optimal strategy for a green supply chain considering shipping policy and default risk, Comp. & Indust. Engineering, 131 (2019), 172-186.
doi: 10.1016/j.cie.2019.03.042. |
[28] |
D. M. Raimondo, D. Limon and M. Lazar, Min-max model predictive control of nonlinear systems: A unifying overview on stability, European J. of Control, 15 (2009), 5-21.
doi: 10.3166/ejc.15.5-21. |
[29] |
D. R. Ramírez, T. Alamo and E. F. Camacho,
Min-Max MPC based on a computationally efficient upper bound of the worst case cost, J. of Process Control, 16 (2006), 511-519.
doi: 10.1016/j.jprocont.2005.07.005. |
[30] |
G. Schildbach, P. Goulart and M. Morari, Linear controller design for chance constrained systems, Automatica, 51 (2015), 278-284.
doi: 10.1016/j.automatica.2014.10.096. |
[31] |
M. Y. Shin, Compution in constrained stochanstic model perdictive control of linear systems, Ph.D dissertation, Stanford University in California, 2011. Google Scholar |
[32] |
Y. F. Sun, G. Aw, B. Li, K. L. Teo and J. Sun., CVaR-based robust models for portfolio selection. Journal of Industrial and Management Optimization, 2018.
doi: 10.3934/jimo.2019032. |
[33] |
D. P. Tesi, MS Thesis, Ph.D thesis, University of Pavia in Italy, 2009. Google Scholar |





[1] |
Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100 |
[2] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021013 |
[3] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020391 |
[4] |
Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021011 |
[5] |
Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109 |
[6] |
Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029 |
[7] |
Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021012 |
[8] |
M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014 |
[9] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[10] |
Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021003 |
[11] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[12] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[13] |
Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020347 |
[14] |
Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020371 |
[15] |
Sebastian J. Schreiber. The $ P^* $ rule in the stochastic Holt-Lawton model of apparent competition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 633-644. doi: 10.3934/dcdsb.2020374 |
[16] |
Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021010 |
[17] |
Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071 |
[18] |
Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2020032 |
[19] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[20] |
Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050 |
2019 Impact Factor: 1.366
Tools
Article outline
Figures and Tables
[Back to Top]