[1]
|
A. B. Abubakar and P. Kumam, An improved three-term derivative-free method for solving nonlinear equations, Comput. Appl. Math., 37 (2018), 6760-6773.
doi: 10.1007/s40314-018-0712-5.
|
[2]
|
A. B. Abubakar and P. Kumam, A descent Dai-Liao conjugate gradient method for nonlinear equations, Numer. Algorithms, 81 (2019), 197-210.
doi: 10.1007/s11075-018-0541-z.
|
[3]
|
Y. Bing and G. Lin, An efficient implementation of Merrill's method for sparse or partially separable systems of nonlinear equations, SIAM J. Optim., 1 (1991), 206-221.
doi: 10.1137/0801015.
|
[4]
|
W. Cheng, A PRP type method for systems of monotone equations, Math. Comput. Modelling, 50 (2009), 15-20.
doi: 10.1016/j.mcm.2009.04.007.
|
[5]
|
Y. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., 10 (1999), 177-182.
doi: 10.1137/S1052623497318992.
|
[6]
|
E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), 201-213.
doi: 10.1007/s101070100263.
|
[7]
|
X. L. Dong, H. Liu, Y. L. Xu and X. M. Yang, Some nonlinear conjugate gradient methods with sufficient descent condition and global convergence, Optim. Lett., 9 (2015), 1421-1432.
doi: 10.1007/s11590-014-0836-5.
|
[8]
|
M. Eshaghnezhad, S. Effati and A. Mansoori, A neurodynamic model to solve nonlinear pseudo-monotone projection equation and its applications, IEEE Transactions on Cybernetics, 47 (2017), 3050-3062.
doi: 10.1109/TCYB.2016.2611529.
|
[9]
|
M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems, Math. Programming, 53 (1992), 99-110.
doi: 10.1007/BF01585696.
|
[10]
|
B. Ghaddar, J. Marecek and M. Mevissen, Optimal power flow as a polynomial optimization problem, IEEE Transactions on Power Systems, 31 (2016), 539-546.
doi: 10.1109/TPWRS.2015.2390037.
|
[11]
|
B. Gu, V. S. Sheng, K. Y. Tay, W. Romano and S. Li, Incremental support vector learning for ordinal regression, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015), 1403-1416.
doi: 10.1109/TNNLS.2014.2342533.
|
[12]
|
L. Han, G. Yu and L. Guan, Multivariate spectral gradient method for unconstrained optimization, Appl. Math. Comput., 201 (2008), 621-630.
doi: 10.1016/j.amc.2007.12.054.
|
[13]
|
Y. Hu and Z. Wei, Wei–Yao–Liu conjugate gradient projection algorithm for nonlinear monotone equations with convex constraints, Int. J. Comput. Math., 92 (2015), 2261-2272.
doi: 10.1080/00207160.2014.977879.
|
[14]
|
W. La Cruz, A projected derivative-free algorithm for nonlinear equations with convex constraints, Optim. Methods Softw., 29 (2014), 24-41.
doi: 10.1080/10556788.2012.721129.
|
[15]
|
W. La Cruz, A spectral algorithm for large-scale systems of nonlinear monotone equations, Numer. Algorithms, 76 (2017), 1109-1130.
doi: 10.1007/s11075-017-0299-8.
|
[16]
|
W. La Cruz, J. Martínez and M. Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, Math. Comp., 75 (2006), 1429-1448.
doi: 10.1090/S0025-5718-06-01840-0.
|
[17]
|
J. Li, X. Li, B. Yang and X. Sun, Segmentation-based image copy-move forgery detection scheme, IEEE Transactions on Information Forensics and Security, 10 (2015), 507-518.
|
[18]
|
Q. Li and D. H. Li, A class of derivative-free methods for large-scale nonlinear monotone equations, IMA J. Numer. Anal., 31 (2011), 1625-1635.
doi: 10.1093/imanum/drq015.
|
[19]
|
J. Liu and X. L. Du, A gradient projection method for the sparse signal reconstruction in compressive sensing, Appl. Anal., 97 (2018), 2122-2131.
doi: 10.1080/00036811.2017.1359556.
|
[20]
|
J. Liu and Y. Duan, Two spectral gradient projection methods for constrained equations and their linear convergence rate, J. Inequal. Appl., 2015 (2015), 13pp.
doi: 10.1186/s13660-014-0525-z.
|
[21]
|
J. Liu and Y. Feng, A derivative-free iterative method for nonlinear monotone equations with convex constraints, Numerical Algorithms, 82 (2019), 1-18.
doi: 10.1007/s11075-018-0603-2.
|
[22]
|
J. Liu and S. Li, Multivariate spectral DY-type projection method for convex constrained nonlinear monotone equations, J. Ind. Manag. Optim., 13 (2017), 283-295.
doi: 10.3934/jimo.2016017.
|
[23]
|
J. Liu and S. Li, A projection method for convex constrained monotone nonlinear equations with applications, Comput. Math. Appl., 70 (2015), 2442-2453.
doi: 10.1016/j.camwa.2015.09.014.
|
[24]
|
S. Liu, Y. Huang and H. W. Jiao, Sufficient descent conjugate gradient methods for solving convex constrained nonlinear monotone equations, Abstr. Appl. Anal., 2014 (2014), 12pp.
doi: 10.1155/2014/305643.
|
[25]
|
F. Ma and C. Wang, Modified projection method for solving a system of monotone equations with convex constraints, J. Appl. Math. Comput., 34 (2010), 47-56.
doi: 10.1007/s12190-009-0305-y.
|
[26]
|
H. Mohammad and A. B. Abubakar, A positive spectral gradient-like method for nonlinear monotone equations, Bull. Comput. Appl. Math., 5 (2017), 99-115.
|
[27]
|
H. Mohammad and S. A. Santos, A structured diagonal Hessian approximation method with evaluation complexity analysis for nonlinear least squares, Comput. Appl. Math., 37 (2018), 6619-6653.
doi: 10.1007/s40314-018-0696-1.
|
[28]
|
Y. Ou and J. Li, A new derivative-free SCG-type projection method for nonlinear monotone equations with convex constraints, J. Appl. Math. Comput., 56 (2018), 195-216.
doi: 10.1007/s12190-016-1068-x.
|
[29]
|
Y. Ou and Y. Liu, Supermemory gradient methods for monotone nonlinear equations with convex constraints, Comput. Appl. Math., 36 (2017), 259-279.
doi: 10.1007/s40314-015-0228-1.
|
[30]
|
Z. Papp and S. Rapajić, FR type methods for systems of large-scale nonlinear monotone equations, Appl. Math. Comput., 269 (2015), 816-823.
doi: 10.1016/j.amc.2015.08.002.
|
[31]
|
E. Polak and G. Ribiere, Note sur la convergence de méthodes de directions conjuguées, Revue française d'informatique et de recherche opérationnelle. Série rouge, 3 (1969), 35–43.
|
[32]
|
B. T. Polyak, The conjugate gradient method in extremal problems, USSR Comp. Math. and Mathem. Physics, 9 (1969), 94-112.
doi: 10.1016/0041-5553(69)90035-4.
|
[33]
|
G. Qian, D. Han, L. Xu and H. Y., Solving nonadditive traffic assignment problems: A self-adaptive projection-auxiliary problem method for variational inequalities, J. Ind. Manag. Optim., 9 (2013), 255-274.
doi: 10.3934/jimo.2013.9.255.
|
[34]
|
M. V. Solodov and B. Svaiter, A globally convergent inexact Newton method for systems of monotone equations, in Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Applied Optimization, Springer, 1998,355–369.
doi: 10.1007/978-1-4757-6388-1_18.
|
[35]
|
M. Sun and J. Liu, Three derivative-free projection methods for nonlinear equations with convex constraints, J. Appl. Math. Comput., 47 (2015), 265-276.
doi: 10.1007/s12190-014-0774-5.
|
[36]
|
C. Wang and Y. Wang, A superlinearly convergent projection method for constrained systems of nonlinear equations, J. Global Optim., 44 (2009), 283-296.
doi: 10.1007/s10898-008-9324-8.
|
[37]
|
C. Wang, Y. Wang and C. Xu, A projection method for a system of nonlinear monotone equations with convex constraints, Math. Methods Oper. Res., 66 (2007), 33-46.
doi: 10.1007/s00186-006-0140-y.
|
[38]
|
X. Wang, S. Li and X. Kou, A self-adaptive three-term conjugate gradient method for monotone nonlinear equations with convex constraints, Calcolo, 53 (2016), 133-145.
doi: 10.1007/s10092-015-0140-5.
|
[39]
|
A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and Control, John Wiley & Sons, 2012.
|
[40]
|
Y. Xiao and H. Zhu, A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing, J. Math. Anal. Appl., 405 (2013), 310-319.
doi: 10.1016/j.jmaa.2013.04.017.
|
[41]
|
Q. Yan, X. Z. Peng and D. H. Li, A globally convergent derivative-free method for solving large-scale nonlinear monotone equations, J. Comput. Appl. Math., 234 (2010), 649-657.
doi: 10.1016/j.cam.2010.01.001.
|
[42]
|
G. Yu, S. Niu and J. Ma, Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints, J. Ind. Manag. Optim., 9 (2013), 117-129.
doi: 10.3934/jimo.2013.9.117.
|
[43]
|
Z. Yu, J. Lin, J. Sun, Y. H. Xiao, L. Liu and Z. H. Li, Spectral gradient projection method for monotone nonlinear equations with convex constraints, Appl. Numer. Math., 59 (2009), 2416-2423.
doi: 10.1016/j.apnum.2009.04.004.
|
[44]
|
N. Yuan, A derivative-free projection method for solving convex constrained monotone equations, SCIENCEASIA, 43 (2017), 195-200.
doi: 10.2306/scienceasia1513-1874.2017.43.195.
|
[45]
|
M. Zhang, Y. Xiao and H. Dou, Solving nonlinear constrained monotone equations via limited memory BFGS algorithm, J. of Comp. Infor. Syst., 7 (2011), 3995-4006.
|
[46]
|
Y. Zheng, B. Jeon, D. Xu, Q. M. Wu and H. Zhang, Image segmentation by generalized hierarchical fuzzy c-means algorithm, J. of Int. & Fuzzy Syst., 28 (2015), 961-973.
|
[47]
|
W. Zhou and D. H. Li, Limited memory BFGS method for nonlinear monotone equations, J. Comput. Math., 25 (2007), 89-96.
|
[48]
|
W. Zhou and F. Wang, A PRP-based residual method for large-scale monotone nonlinear equations, Appl. Math. Comput., 261 (2015), 1-7.
doi: 10.1016/j.amc.2015.03.069.
|