[1]
|
S. Ahmed, Convexity and decomposition of mean-risk stochastic programs, Mathematical Programming, 106 (2006), 433-446.
doi: 10.1007/s10107-005-0638-8.
|
[2]
|
P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk, Mathematical Finance, 9 (1999), 203-228.
doi: 10.1111/1467-9965.00068.
|
[3]
|
A. Ben-Tal, D. D. Hertog, A. De Waegenaere, B. Melenberg and G. Rennen, Robust solutions of optimization problems affected by uncertain probabilities, Management Science, 59 (2013), 341-357.
|
[4]
|
A. Ben-Tal, T. Margalit and A. Nemirovski, Robust modeling of multi-stage portfolio problems, High Performance Optimization, 33 (2000), 303-328.
doi: 10.1007/978-1-4757-3216-0_12.
|
[5]
|
D. Victor, G. Lorenzo and U. Raman, Optimal versus naive diversification: How inefficient is the 1/n portfolio strategy?, Review of Financial Studies, 22 (2009), 1915-1953.
|
[6]
|
D. P. Bertsekas, Convex Optimization Algorithms, Athena Scientific, Belmont, MA, 2015.
|
[7]
|
G. Bayraksan and D. K. Love, Data-driven stochastic programming using phi-divergences, The Operations Research Revolution, INFORMS TutORials in Operations Research, (2015), 1–19.
doi: 10.1287/educ.2015.0134.
|
[8]
|
J. R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2011.
doi: 10.1007/978-1-4614-0237-4.
|
[9]
|
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004.
doi: 10.1017/CBO9780511804441.
|
[10]
|
H. H. Chen and C.-B. Yang, Multiperiod portfolio investment using stochastic programming with conditional value at risk, Computers and Operations Research, 81 (2017), 305-321.
doi: 10.1016/j.cor.2016.11.011.
|
[11]
|
E. Delage and Y. Y. Ye, Distributionally robust optimization under moment uncertainty with application to data-driven problems, Operations Research, 58 (2010), 595-612.
doi: 10.1287/opre.1090.0741.
|
[12]
|
C. I. Fábián, C. Wolf, A. Koberstein and L. Suhl, Risk-averse optimization in two-stage stochastic models: Computational aspects and a study, SIAM Journal on Optimization, 25 (2015), 28-52.
doi: 10.1137/130918216.
|
[13]
|
K. Fan, Minimax theorems, Proceedings of the National Academy of Sciences of the United States of America, 39 (1953), 42-47.
doi: 10.1073/pnas.39.1.42.
|
[14]
|
P. Glasserman, Monte Carlo Methods in Financial Engineering, Applications of Mathematics (New York), 53. Stochastic Modelling and Applied Probability, Springer-Verlag, New York, 2004.
|
[15]
|
R. Henrion, C. Küchler and W. Römisch, Discrepancy distances and scenario reduction in two-stage stochastic mixed-integer programming, Journal of Industrial and Management Optimization, 4 (2008), 363-384.
doi: 10.3934/jimo.2008.4.363.
|
[16]
|
J. C. Hull, Options, Futures, and Other Derivatives (Seventh Edition), Pearson Education International, 2009.
|
[17]
|
H. T. Huynh and I. Soumare, Stochastic Simulation and Applications in Finance with MATLAB Programs, John Wiley and Sons, 2012.
doi: 10.1002/9781118467374.
|
[18]
|
R. W. Jiang and Y. P. Guan, Risk-averse two-stage stochastic program with distributional ambiguity, Operations Research, 66 (2018), 1390-1405.
doi: 10.1287/opre.2018.1729.
|
[19]
|
R. W. Jiang and Y. P. Guan, Data-driven chance constrained stochastic program, Mathematical Programming, 158 (2016), 291-327.
doi: 10.1007/s10107-015-0929-7.
|
[20]
|
B. Li, Y. Rong, J. Sun and K. L. Teo, A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, IEEE Transactions on Wireless Communications, 16 (2017), 464-474.
doi: 10.1109/TWC.2016.2625246.
|
[21]
|
B. Li, Y. Rong, J. Sun and K. L. Teo, A distributionally robust minimum variance beam former design, IEEE Signal Processing Letters, 25 (2018), 105-109.
|
[22]
|
B. Li, X. Qian, J. Sun, K. L. Teo and C. J. Yu, A model of distributionally robust two-stage stochastic convex programming with linear recourse, Applied Mathematical Modelling, 58 (2018), 86-97.
doi: 10.1016/j.apm.2017.11.039.
|
[23]
|
B. Li, J. Sun, H. L. Xu and M. Zhang, A class of two-stage distributionally robust games, Journal of Industrial and Management Optimization, 15 (2019), 387-400.
|
[24]
|
A. Ling, J. Sun, N. H. Xiu and X. G. Yang, Robust two-stage stochastic linear optimization with risk aversion, European Journal of Operational Research, 256 (2017), 215-229.
doi: 10.1016/j.ejor.2016.06.017.
|
[25]
|
Z. M. Liu, S. J. Qu, M. Goh, R. P. Huang and S. L. Wang, Optimization of fuzzy demand distribution supply chain using modified sequence quadratic programming approach, Journal of Intelligent & Fuzzy Systems, (2019).
|
[26]
|
D. Love and G. Bayraksan, Phi-divergence constrained ambiguous stochastic programs for data-driven optimization, Optimization Online, (2016). Available from: http://www.optimization-online.org/DB_HTML/2016/03/5350.html.
|
[27]
|
F. W. Meng, R. Tan and G. Y. Zhao, A superlinearly convergent algorithm for large scale multi-stage stochastic nonlinear programming, International Journal of Computational Engineering Science, 5 (2012), 327-344.
doi: 10.1142/9781860949524_0156.
|
[28]
|
N. Miller and A. Ruszczyński, Risk-averse two-stage stochastic linear programming: Modeling and decomposition, Operations Research, 59 (2011), 125-132.
doi: 10.1287/opre.1100.0847.
|
[29]
|
J. M. Mulvey and B. Shetty, Financial planning via multi-stage stochastic optimization, Computers and Operations Research, 31 (2004), 1-20.
doi: 10.1016/S0305-0548(02)00141-7.
|
[30]
|
J. M. Mulvey, R. J. Vanderbei and S. A. Zenios, Robust optimization of large-scale systems, Operations Research, 43 (1995), 264-281.
doi: 10.1287/opre.43.2.264.
|
[31]
|
A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs, SIAM Journal on Optimization, 17 (2006), 969-996.
doi: 10.1137/050622328.
|
[32]
|
S. Nickel, F. Saldanha-Da-Gama and H.-P. Ziegler, A multi-stage stochastic supply network design problem with financial decisions and risk management, Omega, 40 (2012), 511-524.
doi: 10.1016/j.omega.2011.09.006.
|
[33]
|
N. Noyan, Risk-averse two-stage stochastic programming with an application to disaster management, Computers and Operations Research, 39 (2012), 541-559.
doi: 10.1016/j.cor.2011.03.017.
|
[34]
|
W. de Oliveira and C. Sagastizabal, Level bundle methods for oracles with on demand accuracy, Optimization Methods and Software, 29 (2014), 1180-1209.
doi: 10.1080/10556788.2013.871282.
|
[35]
|
L. Pardo, Statistical Inference Based on Divergence Measures, Textbooks and Monographs, 185. Chapman & Hall/CRC, Boca Raton, FL, 2006.
|
[36]
|
A. Parisio and C. N. Jones, A two-stage stochastic programming approach to employee scheduling in retail outlets with uncertain demand, Omega, 53 (2015), 97-103.
|
[37]
|
S. J. Qu, Y. Y. Zhou, Y. L. Zhang, M. Wahab, G. Zhang and Y. Y. Ye, Optimal strategy for a green supply chain considering shipping policy and default risk, Computers and Industrial Engineering, 131 (2019), 172-186.
doi: 10.1016/j.cie.2019.03.042.
|
[38]
|
M. A. Quddus, S. Chowdhury, M. Marufuzzaman, F. Yu and L. Bian, A two-stage chance-constrained stochastic programming model for a bio-fuel supply chain network, International Journal of Production Economics, 195 (2018), 27-44.
doi: 10.1016/j.ijpe.2017.09.019.
|
[39]
|
C. G. Rawls and M. A. Turnquist, Pre-positioning of emergency supplies for disaster response, 2006 IEEE International Symposium on Technology and Society, (2006).
doi: 10.1109/ISTAS.2006.4375894.
|
[40]
|
M. I. Restrepo, B. Gendron and L.-M. Rousseau, A two-stage stochastic programming approach for multi-activity tour scheduling, European Journal of Oerational Research, 262 (2017), 620-635.
doi: 10.1016/j.ejor.2017.04.055.
|
[41]
|
A. Rezaee, F. Dehghanian, B. Fahimnia and B. Beamon, Green supply chain network design with stochastic demand and carbon price, Annals of Operations Research, 250 (2017), 463-485.
doi: 10.1007/s10479-015-1936-z.
|
[42]
|
R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk, Journal of Risk, 2 (2000), 21-41.
doi: 10.21314/JOR.2000.038.
|
[43]
|
A. Ruszczyński, Decomposition methods, Handbooks in Operations Research and Management Science, 10 (2003), 141-211.
doi: 10.1016/S0927-0507(03)10003-5.
|
[44]
|
A. Ruszczyński and A. Shapiro, Optimality and duality in stochastic programming, Handbooks in Operations Research and Management Science, 10 (2003), 65-139.
doi: 10.1016/S0927-0507(03)10002-3.
|
[45]
|
T. Santoso, S. Ahmed, M. Goetschalckx and A. Shapiro, A stochastic programming approach for supply chain network design under uncertainty, European Journal of Operational Research, 167 (2005), 96-115.
doi: 10.1016/j.ejor.2004.01.046.
|
[46]
|
A. Shapiro, D. Dentcheva and A. Ruszczyński, Lectures on Stochastic Programming: Modeling and Theory, , MPS/SIAM Series on Optimization, 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Programming Society (MPS), Philadelphia, PA, 2009.
doi: 10.1137/1.9780898718751.
|
[47]
|
J. Shu and J. Sun, Designing the distribution network for an integrated supply chain, Journal of Industrial and Management Optimization, 2 (2006), 339-349.
doi: 10.3934/jimo.2006.2.339.
|
[48]
|
H. L. Sun and H. F. Xu, Convergence analysis for distributionally robust optimization and equilibrium problems, Mathematics of Operations Research, 41 (2016), 377-401.
doi: 10.1287/moor.2015.0732.
|
[49]
|
S. Zymler, D. Kuhn and B. Rustem, Distributionally robust joint chance constraints with second-order moment information, Mathematical Programming, 137 (2013), 167-198.
doi: 10.1007/s10107-011-0494-7.
|
[50]
|
W. Wiesemann, D. Kuhn and M. Sim, Distributionally robust convex optimization, Operations Research, 62 (2014), 1358-1376.
doi: 10.1287/opre.2014.1314.
|
[51]
|
S. S. Zhu and M. Fukushima, Worst-case conditional value-at-risk with application to robust portfolio management, Operations Research, 57 (2009), 1155-1168.
doi: 10.1287/opre.1080.0684.
|
[52]
|
W. N. Zhang, H. Rahimian and G. Bayraksan, Decomposition algorithms for risk-averse multistage stochastic programs with application to water allocation under uncertainty, Informs Journal on Computing, 28 (2016), 385-404.
doi: 10.1287/ijoc.2015.0684.
|