[1]
|
H. T. Banks, J. A. Burns and E. M. Cliff, Parameter estimation and identification for systems with delay, SIAM J. Control Optim., 19 (1981), 791-828.
doi: 10.1137/0319051.
|
[2]
|
Y. Bard, Comparison of gradient methods for the solution of nonlinear parameter estimation problems, SIAM J. Numer. Anal., 7 (1970), 157-186.
doi: 10.1137/0707011.
|
[3]
|
Q. Q. Chai, R. Loxton, K. L. Teo and C. H. Yang, A unified parameter identification method for nonlinear time-delay systems, J. Ind. Manag. Optim., 9 (2013), 471-486.
doi: 10.3934/jimo.2013.9.471.
|
[4]
|
D. Debeljković, Time-Delay Systems, InTech, 2011.
|
[5]
|
S. Diop, I. Kolmanovsky, P. E. Moraal and M. V. Nieuwstadt, Preserving stability/performance when facing an unknown time-delay, Control Eng. Pract., 9 (2001), 1319-1325.
|
[6]
|
P. J. Gawthrop and M. T. Nihtilä, Identification of time-delays using a polynomial identification method, Syst. Control Lett., 5 (1985), 267-271.
doi: 10.1016/0167-6911(85)90020-9.
|
[7]
|
Q. Lin, R. Loxton, C. Xu and K. L. Teo, Parameter estimation for nonlinear time-delay systems with noisy output measurements, Automatica J. IFAC, 60 (2015), 48-56.
doi: 10.1016/j.automatica.2015.06.028.
|
[8]
|
Q. Lin, R. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal control: A survey, J. Ind. Manag. Optim., 10 (2014), 275-309.
doi: 10.3934/jimo.2014.10.275.
|
[9]
|
C. Y. Liu and Z. H. Gong, Optimal Control of Switched Systems Arising in Fermentation Processes, Springer Optimization and Its Applications, 97. Springer, Heidelberg, Tsinghua University Press, Beijing, 2014.
doi: 10.1007/978-3-662-43793-3.
|
[10]
|
C. Y. Liu, Z. H. Gong, E. Feng and H. C. Yin, Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture, J. Ind. Manag. Optim., 5 (2009), 835-850.
doi: 10.3934/jimo.2009.5.835.
|
[11]
|
C. Y. Liu, Z. H. Gong, K. L. Teo, J. Sun and L. Caccetta, Robust multi-objective optimal switching control arising in $1, 3$-propanediol microbial fed-batch process, Nonlinear Anal. Hybrid Syst., 25 (2017), 1-20.
doi: 10.1016/j.nahs.2017.01.006.
|
[12]
|
C. Y. Liu, Z. H. Gong and K. L. Teo, Robust parameter estimation for nonlinear multistage time-delay systems with noisy measurement data, Appl. Math. Model., 53 (2018), 353-368.
doi: 10.1016/j.apm.2017.09.007.
|
[13]
|
C. Y. Liu, Z. H. Gong, H. W. J. Lee and K. L. Teo, Robust bi-objective optimal control of $1, 3$-propanediol microbial batch production process, J. Process Contr., 78 (2019), 170-182.
doi: 10.1016/j.jprocont.2018.10.001.
|
[14]
|
C. Y. Liu, R. Loxton and K. L. Teo, Optimal parameter selection for nonlinear multistage systems with time-delays, Comput. Optim. Appl., 59 (2014), 285-306.
doi: 10.1007/s10589-013-9632-x.
|
[15]
|
R. Loxton, K. L. Teo and V. Rehbock, An optimization approach to state-delay identification, IEEE Trans. Aut. Control, 55 (2010), 2113-2119.
doi: 10.1109/TAC.2010.2050710.
|
[16]
|
R. B. Martin, Optimal control drug scheduling of cancer chemotherapy, Automatica J. IFAC, 28 (1992), 1113-1123.
doi: 10.1016/0005-1098(92)90054-J.
|
[17]
|
P. Mendes and D. Kell, Non-linear optimization of biochemical pathways: Applications to metabolic engineering and parameter estimation, Bioinformatics, 14 (1998), 869-883.
doi: 10.1093/bioinformatics/14.10.869.
|
[18]
|
J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2006.
|
[19]
|
F. Pan, R. C. Han and D. M. Feng, An identification method of time-varying delay based on genetic algorithm, in Proceedings of the Second International Conference on Machine Learning and Cybernetics, (2003), 781–783.
|
[20]
|
X. M. Ren, A. B. Rad, P. T. Chan and W. L. Lo, Online identification of continuous-time systems with unknown time-delay, IEEE Trans. Aut. Control, 50 (2005), 1418-1422.
doi: 10.1109/TAC.2005.854640.
|
[21]
|
J. P. Richard, Time-delay systems: An overview of some recent advances and open problems, Automatica J. IFAC, 39 (2003), 1667-1694.
doi: 10.1016/S0005-1098(03)00167-5.
|
[22]
|
K. Schittkowski, A Fortran Implementation of a Sequential Quadratic Programming Algorithm with Distributed and Non-monotone Line Search-User's Guide, University of Bayreuth, Bayreuth, 2007.
|
[23]
|
J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer, New York-Heidelberg, 1980.
|
[24]
|
K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems, Pitman Monographs and Surveys in Pure and Applied Mathematics, 55. Longman Scientific & Technical, Harlow, copublished in the United States with John Wiley & Sons, Inc., New York, 1991.
|
[25]
|
L. Wang, Q. Lin, R. Loxton, K. L. Teo and G. Cheng, Optimal 1, 3-propanediol production: Exploring the trade-off between process yield and feeding rate variation, J. Process Contr., 32 (2015), 1-9.
doi: 10.1016/j.jprocont.2015.04.011.
|
[26]
|
L. Y. Wang, W. H. Gui, K. L. Teo, R. Loxton and C. H. Yang, Optimal control problems arising in the zinc sulphate electrolyte purification process, J. Glob. Optim., 54 (2012), 307-323.
doi: 10.1007/s10898-012-9863-x.
|
[27]
|
Z. L. Xiu, B.-H. Song, L.-H. Sun and A.-P. Zeng, Theoretical analysis of effects of metabolic overflow and time delay on the performance and dynamic behavior of a two-stage fermentation process, Biochem. Eng. J., 11 (2002), 101-109.
doi: 10.1016/S1369-703X(02)00033-5.
|
[28]
|
Z. L. Xiu, A. P. Zeng and L. J. An, Mathematical modelling of kinetics and research on multiplicity of glycerol bioconversion to 1, 3-propanediol, J. Dalian Univ. Tech., 40 (2000), 428-433.
|
[29]
|
J. L. Yuan, X. Zhang, X. Zhu, E. Feng, H. C. Yin and Z. L. Xiu, Pathway identification using parallel optimization for a nonlinear hybrid system in batch culture, Nonlinear Anal. Hybrid Syst., 15 (2015), 112-131.
doi: 10.1016/j.nahs.2014.08.004.
|
[30]
|
J. L. Yuan, X. Zhu, X. Zhang, H. C. Yin, E. Feng and Z. L. Xiu, Robust identification of enzymatic nonlinear dynamical systems for 1, 3-propanediol transport mechanisms in microbial batch culture, Appl. Math. Comput., 232 (2014), 150-163.
doi: 10.1016/j.amc.2014.01.027.
|