• Previous Article
    An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts
  • JIMO Home
  • This Issue
  • Next Article
    Calibration of a 3D laser rangefinder and a camera based on optimization solution
January  2021, 17(1): 447-465. doi: 10.3934/jimo.2019120

Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer

1. 

College of Missile Engineering, Rocket Force University of Engineering, Xi'an Shaanxi 710025, China

2. 

School of Astronautics, Northwestern Polytechnical University, Xi'an Shaanxi 710072, China

* Corresponding author: Guangbin Cai

Received  March 2019 Revised  April 2019 Published  September 2019

Fund Project: This work was supported in part by the National Natural Science Foundation of China under grant number 61773387, and by China Postdoctoral Fund under grant numbers 2017T100770 and 2016M590971

Considering the parameter uncertainty and actuator failure of hypersonic vehicle during maneuvering, this paper proposes a state observer-based hypersonic vehicle fault-tolerant control (FTC) system design method. Because hypersonic vehicles are prone to failure during maneuvering, the state quantity cannot be measured. First, a state observer-based FTC control method is designed for the linear parameter-varying (LPV) model with parameter uncertainty and partial failure of the actuator. Then, the Lyapunov function is used to demonstrate the asymptotic stability of the closed-loop system. The performance index function proved that the system has robust stability under the disturbance condition. Subsequently, the linear matrix inequality (LMI) was used to solve the observer parameters and the corresponding gain matrix in the control system. The simulation results indicated that the designed controller can track the flight command signal stably and has strong robustness, which verified the effectiveness of the design controller.

Citation: Guangbin CAI, Yang Zhao, Wanzhen Quan, Xiusheng Zhang. Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer. Journal of Industrial & Management Optimization, 2021, 17 (1) : 447-465. doi: 10.3934/jimo.2019120
References:
[1]

G. B. CaiG. R. Duan and C. H. Hu, A velocity-based LPV modeling and control framework for an airbreathing hypersonic vehicle, International Journal of Innovative Computing Information and Control, 7 (2011), 2269-2281.   Google Scholar

[2]

M. Corless and J. Tu, State and input estimation for a class of uncertain systems, Automatica J. IFAC, 34 (1998), 757-764.  doi: 10.1016/S0005-1098(98)00013-2.  Google Scholar

[3]

P. Gahinet and P. Apkarian, A linear matrix inequality approach to $H_\infty$ control, International Journal of Robust and Nonlinear Control, 4 (1994), 421-448.  doi: 10.1002/rnc.4590040403.  Google Scholar

[4]

Z. F. GaoT. Cao and J. X. Lin, Sliding mode fault tolerant tracking control for a flexible hypersonic vehicle with actuator faults, ICIC Express Letters Part B, Appli-Cations: An International Journal of Research and Surveys, 6 (2015), 1797-1804.   Google Scholar

[5]

Z. F. GaoB. JiangP. ShiJ. Y. Liu and Y. F. Xu, Passive fault-tolerant control design for near-space hypersonic vehicle dynamical system, Circuits, Systems, and Signal Processing, 31 (2012), 565-581.  doi: 10.1007/s00034-011-9385-7.  Google Scholar

[6]

Z. F. GaoJ. X. Lin and T. Cao, Robust fault tolerant tracking control design for a linearized hypersonic vehicle with sensor fault, International Journal of Control Automation and Systems, 13 (2015), 672-679.  doi: 10.1007/s12555-014-0169-2.  Google Scholar

[7]

S. Gao and J. S. Mei, Fault tolerant control of actuator faults for input nonlinear systems, Information and Control, 44 (2015), 463-468.   Google Scholar

[8]

X. GuanJ. Zhao and Y. He, Track technology of hypersonic aircraft in near space, Journal of Ordnance Equipment Engineering, 32 (2011), 4-6.   Google Scholar

[9]

J. J. HeR. Y. Qi and B. Jiang, Adaptive output feedback fault-tolerant control design for hypersonic flight vehicles, Journal of the Franklin Institute, 352 (2015), 1811-1835.  doi: 10.1016/j.jfranklin.2015.01.016.  Google Scholar

[10]

L. HuangZ. S. Duan and J. Y. Yang, Challenges of control science in near space hypersonic aircrafts, Control Theory and Applications, 28 (2011), 1496-1505.   Google Scholar

[11]

B. Fidan, M. Mirmirani and P. Ioannou, Flight dynamics and control of air-breathing hypersonic vehicles: Review and new directions, 12th AIAA International Space Planes and Hypersonic Systems and technologies, (2003). doi: 10.2514/6.2003-7081.  Google Scholar

[12]

B. LiX. QianJ. SunK. L. Teo and C. J. Yu, A model of distributionally robust two-stage stochastic convex programming with linear recourse, Applied Mathematical Modelling, 58 (2018), 86-97.  doi: 10.1016/j.apm.2017.11.039.  Google Scholar

[13]

B. Li and Y. Rong, Joint transceiver optimization for wireless information and energy transfer in non-regenerative MIMO relay systems, IEEE Transactions on Vehicular Technology, 67 (2018), 8348-8362.   Google Scholar

[14]

B. LiY. RongJ. Sun and K. L. Teo, A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, Journal of Industrial and Management Optimization, 16 (2017), 464-474.  doi: 10.1109/TWC.2016.2625246.  Google Scholar

[15]

B. LiJ. SunH. L. Xu and M. Zhang, A class of two-stage distributionally robust stochastic games, Journal of Industrial and Management Optimization, 15 (2019), 387-400.   Google Scholar

[16]

A. Marcos and S. Bennani, LPV modeling, analysis and design in space systems: Rationale, objectives and limitations, AIAA Guidance, Navigation, and Control Conference, (2009). doi: 10.2514/6.2009-5633.  Google Scholar

[17]

J. T. ParkerA. SerraniY. StephenA. B. Michael and B. D. David, Control-oriented modeling of an air-breathing hypersonic vehicle, Journal of Guidance Control and Dynamics, 30 (2007), 856-869.  doi: 10.2514/1.27830.  Google Scholar

[18]

C. PengX. M. Wang and R. Xie, Fault-tolerant control for hypersonic vehicle with system uncertainty, Journal of Beijing University of Aeronautics and Astronautics, 42 (2016), 1414-1421.   Google Scholar

[19]

R. Y. QiY. H. Huang and B. Jiang, Adaptive backstepping control for a hypersonic vehicle with uncertain parameters and actuator faults, Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 227 (2013), 51-61.  doi: 10.1177/0959651812450134.  Google Scholar

[20]

D. O. Sigthorsson, Control-Oriented Modeling and Output Feedback Control of Hypersonic Air-Breathing Vehicles, Ph.D thesis, The Ohio State University, 2008. Google Scholar

[21]

H. B. SunS. H. Li and C. Y. Sun, Robust adaptive integral-sliding-mode fault-tolerant control for air-breathing hypersonic vehicles, Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 226 (2012), 1344-1355.   Google Scholar

[22]

C. Y. SunC. X. Mu and Y. Yu, Some control problems for near space hypersonic vehicles, Acta Automatica Sinica, 39 (2013), 1901-1913.  doi: 10.3724/SP.J.1004.2013.01901.  Google Scholar

[23]

J. G. SunS. M. Song and G. Q. Wu, Fault-tolerant track control of hypersonic vehicle based on fast terminal sliding mode, Journal of Spacecraft and Rockets, 54 (2017), 1304-1316.  doi: 10.2514/1.A33890.  Google Scholar

[24]

Z. D. WangG. L. Wei and G. Feng, Reliable control for discrete-time piecewise linear systems with infinite distributed delays, Automatica J. IFAC, 45 (2009), 2991-2994.  doi: 10.1016/j.automatica.2009.09.012.  Google Scholar

[25]

Y. WangY. Zhang and C. Bai, Review of guidance and control approaches for air-breathing hypersonic vehicle, Journal of Ordnance Equipment Engineering, 38 (2017), 72-76.   Google Scholar

[26]

Y. F. Xu, B. Jiang and Z. F. Gao, Fault tolerant tracking control for near space hypersonic vehicle via neural network, 3rd Systems and Control in Aeronautics and Astronautics (ISSCAA) International Symposium, (2010), 637–642. doi: 10.1109/ISSCAA.2010.5633189.  Google Scholar

[27]

F. YangK. L. TeoR. LoxtonV. RehbockB. LiC. J. Yu and L. Jennings, Visual MISER: An efficient user-friendly visual program for solving optimal control problems, Journal of Industrial and Management Optimization, 12 (2016), 781-810.  doi: 10.3934/jimo.2016.12.781.  Google Scholar

[28]

Q. C. YangQ. Zong and Q. Dong, Reentry control and performance evaluation method for hypersonic vehicle, Information and Control, 46 (2017), 33-40.   Google Scholar

[29]

C. F. ZhangQ. Zong and Q. Dong, A survey of models and control problems of hypersonic vehicles, Information and Control, 46 (2017), 90-102.   Google Scholar

[30]

H. X. ZhangZ. F. GongG. B. Cai and R. Song, Reentry tracking control of hypersonic vehicle with complicated constraints, Journal of Ordnance Equipment Engineering, 40 (2019), 1-6.   Google Scholar

show all references

References:
[1]

G. B. CaiG. R. Duan and C. H. Hu, A velocity-based LPV modeling and control framework for an airbreathing hypersonic vehicle, International Journal of Innovative Computing Information and Control, 7 (2011), 2269-2281.   Google Scholar

[2]

M. Corless and J. Tu, State and input estimation for a class of uncertain systems, Automatica J. IFAC, 34 (1998), 757-764.  doi: 10.1016/S0005-1098(98)00013-2.  Google Scholar

[3]

P. Gahinet and P. Apkarian, A linear matrix inequality approach to $H_\infty$ control, International Journal of Robust and Nonlinear Control, 4 (1994), 421-448.  doi: 10.1002/rnc.4590040403.  Google Scholar

[4]

Z. F. GaoT. Cao and J. X. Lin, Sliding mode fault tolerant tracking control for a flexible hypersonic vehicle with actuator faults, ICIC Express Letters Part B, Appli-Cations: An International Journal of Research and Surveys, 6 (2015), 1797-1804.   Google Scholar

[5]

Z. F. GaoB. JiangP. ShiJ. Y. Liu and Y. F. Xu, Passive fault-tolerant control design for near-space hypersonic vehicle dynamical system, Circuits, Systems, and Signal Processing, 31 (2012), 565-581.  doi: 10.1007/s00034-011-9385-7.  Google Scholar

[6]

Z. F. GaoJ. X. Lin and T. Cao, Robust fault tolerant tracking control design for a linearized hypersonic vehicle with sensor fault, International Journal of Control Automation and Systems, 13 (2015), 672-679.  doi: 10.1007/s12555-014-0169-2.  Google Scholar

[7]

S. Gao and J. S. Mei, Fault tolerant control of actuator faults for input nonlinear systems, Information and Control, 44 (2015), 463-468.   Google Scholar

[8]

X. GuanJ. Zhao and Y. He, Track technology of hypersonic aircraft in near space, Journal of Ordnance Equipment Engineering, 32 (2011), 4-6.   Google Scholar

[9]

J. J. HeR. Y. Qi and B. Jiang, Adaptive output feedback fault-tolerant control design for hypersonic flight vehicles, Journal of the Franklin Institute, 352 (2015), 1811-1835.  doi: 10.1016/j.jfranklin.2015.01.016.  Google Scholar

[10]

L. HuangZ. S. Duan and J. Y. Yang, Challenges of control science in near space hypersonic aircrafts, Control Theory and Applications, 28 (2011), 1496-1505.   Google Scholar

[11]

B. Fidan, M. Mirmirani and P. Ioannou, Flight dynamics and control of air-breathing hypersonic vehicles: Review and new directions, 12th AIAA International Space Planes and Hypersonic Systems and technologies, (2003). doi: 10.2514/6.2003-7081.  Google Scholar

[12]

B. LiX. QianJ. SunK. L. Teo and C. J. Yu, A model of distributionally robust two-stage stochastic convex programming with linear recourse, Applied Mathematical Modelling, 58 (2018), 86-97.  doi: 10.1016/j.apm.2017.11.039.  Google Scholar

[13]

B. Li and Y. Rong, Joint transceiver optimization for wireless information and energy transfer in non-regenerative MIMO relay systems, IEEE Transactions on Vehicular Technology, 67 (2018), 8348-8362.   Google Scholar

[14]

B. LiY. RongJ. Sun and K. L. Teo, A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, Journal of Industrial and Management Optimization, 16 (2017), 464-474.  doi: 10.1109/TWC.2016.2625246.  Google Scholar

[15]

B. LiJ. SunH. L. Xu and M. Zhang, A class of two-stage distributionally robust stochastic games, Journal of Industrial and Management Optimization, 15 (2019), 387-400.   Google Scholar

[16]

A. Marcos and S. Bennani, LPV modeling, analysis and design in space systems: Rationale, objectives and limitations, AIAA Guidance, Navigation, and Control Conference, (2009). doi: 10.2514/6.2009-5633.  Google Scholar

[17]

J. T. ParkerA. SerraniY. StephenA. B. Michael and B. D. David, Control-oriented modeling of an air-breathing hypersonic vehicle, Journal of Guidance Control and Dynamics, 30 (2007), 856-869.  doi: 10.2514/1.27830.  Google Scholar

[18]

C. PengX. M. Wang and R. Xie, Fault-tolerant control for hypersonic vehicle with system uncertainty, Journal of Beijing University of Aeronautics and Astronautics, 42 (2016), 1414-1421.   Google Scholar

[19]

R. Y. QiY. H. Huang and B. Jiang, Adaptive backstepping control for a hypersonic vehicle with uncertain parameters and actuator faults, Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 227 (2013), 51-61.  doi: 10.1177/0959651812450134.  Google Scholar

[20]

D. O. Sigthorsson, Control-Oriented Modeling and Output Feedback Control of Hypersonic Air-Breathing Vehicles, Ph.D thesis, The Ohio State University, 2008. Google Scholar

[21]

H. B. SunS. H. Li and C. Y. Sun, Robust adaptive integral-sliding-mode fault-tolerant control for air-breathing hypersonic vehicles, Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 226 (2012), 1344-1355.   Google Scholar

[22]

C. Y. SunC. X. Mu and Y. Yu, Some control problems for near space hypersonic vehicles, Acta Automatica Sinica, 39 (2013), 1901-1913.  doi: 10.3724/SP.J.1004.2013.01901.  Google Scholar

[23]

J. G. SunS. M. Song and G. Q. Wu, Fault-tolerant track control of hypersonic vehicle based on fast terminal sliding mode, Journal of Spacecraft and Rockets, 54 (2017), 1304-1316.  doi: 10.2514/1.A33890.  Google Scholar

[24]

Z. D. WangG. L. Wei and G. Feng, Reliable control for discrete-time piecewise linear systems with infinite distributed delays, Automatica J. IFAC, 45 (2009), 2991-2994.  doi: 10.1016/j.automatica.2009.09.012.  Google Scholar

[25]

Y. WangY. Zhang and C. Bai, Review of guidance and control approaches for air-breathing hypersonic vehicle, Journal of Ordnance Equipment Engineering, 38 (2017), 72-76.   Google Scholar

[26]

Y. F. Xu, B. Jiang and Z. F. Gao, Fault tolerant tracking control for near space hypersonic vehicle via neural network, 3rd Systems and Control in Aeronautics and Astronautics (ISSCAA) International Symposium, (2010), 637–642. doi: 10.1109/ISSCAA.2010.5633189.  Google Scholar

[27]

F. YangK. L. TeoR. LoxtonV. RehbockB. LiC. J. Yu and L. Jennings, Visual MISER: An efficient user-friendly visual program for solving optimal control problems, Journal of Industrial and Management Optimization, 12 (2016), 781-810.  doi: 10.3934/jimo.2016.12.781.  Google Scholar

[28]

Q. C. YangQ. Zong and Q. Dong, Reentry control and performance evaluation method for hypersonic vehicle, Information and Control, 46 (2017), 33-40.   Google Scholar

[29]

C. F. ZhangQ. Zong and Q. Dong, A survey of models and control problems of hypersonic vehicles, Information and Control, 46 (2017), 90-102.   Google Scholar

[30]

H. X. ZhangZ. F. GongG. B. Cai and R. Song, Reentry tracking control of hypersonic vehicle with complicated constraints, Journal of Ordnance Equipment Engineering, 40 (2019), 1-6.   Google Scholar

Figure 1.  Curve of flight path angle under actuator fault
Figure 2.  Structure diagram of control system
Figure 3.  Velocity curve under actuator fault
Figure 4.  Flight path angle curve under actuator fault
Figure 5.  Attack angle curve under actuator fault
Figure 6.  Altitude curve under actuator fault
Figure 7.  Velocity tracking performance
Figure 8.  Flight path angle tracking performance
Figure 9.  Attack angle tracking performance
Figure 10.  Altitude tracking performance
Figure 11.  Control surface deflection angle curve
Figure 12.  Diffuser area ratio curve
[1]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[2]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096

[3]

Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328

[4]

Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65

[5]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[6]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[7]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[8]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[9]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[10]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[11]

Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

[12]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[13]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020051

[14]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012

[15]

Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020375

[16]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[17]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[18]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[19]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[20]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]