March  2021, 17(2): 601-631. doi: 10.3934/jimo.2019125

Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours

1. 

Business School, Beijing Technology and Business University, Beijing 100048, China

2. 

State Grid Beijing Logistic Supply Company, State Grid Beijing Electric Power Company, Beijing 100054, China

3. 

School of Management, Capital Normal University, Beijing 100048, China

* Corresponding author: Hongxia Sun

Received  October 2018 Revised  May 2019 Published  October 2019

We study competition in a dual-channel supply chain in which a single supplier sells a single product through its own direct channel and through two different duopolistic retailers. The two retailers have three competitive behaviour patterns: Cournot, Collusion and Stackelberg. Three models are respectively constructed for these patterns, and the optimal decisions for the three patterns are obtained. These optimal solutions are compared, and the effects of certain parameters on the optimal solutions are examined for the three patterns by considering two scenarios: a special case and a general case. In the special case, the equilibrium supply chain structures are analysed, and the optimal quantity and profit are compared for the three different competitive behaviours. Furthermore, both parametric and numerical analyses are presented, and some managerial insights are obtained. We find that in the special case, the Stackelberg game allows the supplier to earn the highest profit, the retailer playing the Collusion game makes the supplier earn the lowest profit, and the Stackelberg leader can gain a first-mover advantage as to the follower. In the general case, the supplier can achieve a higher profit by raising the maximum retail price or holding down the self-price sensitivity factor.

Citation: Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125
References:
[1]

E. Adida and V. DeMiguel, Supply chain competition with multiple manufacturers and retailers, Oper. Res., 59 (2011), 156-172.  doi: 10.1287/opre.1100.0863.  Google Scholar

[2]

S. Balasubramanian, Mail versus mall: A strategic analysis of competition between direct marketers and conventional retailers, Marketing Science, 17 (1998), 181-195.  doi: 10.1287/mksc.17.3.181.  Google Scholar

[3]

E. BrynjolfssonY. Hu and M. Rahman, Battle of the retail channels: How product selection and geography drive cross-channel competition, Management Science, 55 (2009), 1755-1765.  doi: 10.1287/mnsc.1090.1062.  Google Scholar

[4]

K. Chen and T. Xiao, Pricing and replenishment policies in a supply chain with competing retailers under different retail behaviors, Computers and Industrial Engineering, 103 (2017), 145-157.  doi: 10.1016/j.cie.2016.11.018.  Google Scholar

[5]

W. ChiangD. Chhajed and J. Hess, Direct marketing, indirect profits: A strategic analysis of dual-channel supply-chain design, Management Science, 49 (2003), 1-20.  doi: 10.1287/mnsc.49.1.1.12749.  Google Scholar

[6]

A. David and E. Adida, Competition and coordination in a two-channel supply chain, Prod. and Oper. Management, 24 (2015), 1358-1370.  doi: 10.1111/poms.12327.  Google Scholar

[7]

A. Dumrongsiri, M. Fan and A. Jain, et al., A supply chain model with direct and retail channels, European J. Oper. Res., 187 (2008), 691–718. doi: 10.1016/j.ejor.2006.05.044.  Google Scholar

[8]

X. Han, H. Wu and Q. Yang, et al., Reverse channel selection under remanufacturing risks: Balancing profitability and robustness, International J. of Production Economics, 182 (2016), 63–72. doi: 10.1016/j.ijpe.2016.08.013.  Google Scholar

[9]

H. HuangH. Ke and L. Wang, Equilibrium analysis of pricing competition and cooperation in supply chain with one common manufacturer and duopoly retailers, International J. of Production Economics, 178 (2016), 12-21.  doi: 10.1016/j.ijpe.2016.04.022.  Google Scholar

[10]

C. Ingene and M. Parry, Channel coordination when retailers compete, Marketing Science, 14 (1995), 360-377.  doi: 10.1287/mksc.14.4.360.  Google Scholar

[11]

M. Lai, H. Yang and E. Cao, et al., Optimal decisions for a dual-channel supply chain under information asymmetry, J. Ind. Manag. Optim., 14 (2018), 1023–1040. doi: 10.3934/jimo.2017088.  Google Scholar

[12]

N. ModakS. Panda and S. Sana, Three-echelon supply chain coordination considering duopolistic retailers with perfect quality products, International J. of Production Economics, 182 (2016), 564-578.  doi: 10.1016/j.ijpe.2015.05.021.  Google Scholar

[13]

I. Moon and X. Feng, Supply chain coordination with a single supplier and multiple retailers considering customer arrival times and route selection, Transportation Research Part E: Logistics and Transportation Review, 106 (2017), 78-97.  doi: 10.1016/j.tre.2017.08.004.  Google Scholar

[14]

R. Sadeghi, A. Taleizadeh and F. Chan, et al., Coordinating and pricing decisions in two competitive reverse supply chains with different channel structures, International J. of Production Research, 57 (2019), 2601–2625. doi: 10.1080/00207543.2018.1551637.  Google Scholar

[15]

A. Sadigh, S. Chaharsooghi and M. Sheikhmohammady, A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain, J. Ind. Manag. Optim., 12 (2016), 337-355. doi: 10.3934/jimo.2016.12.337.  Google Scholar

[16]

A. Vinhas and E. Anderson, How potential conflict drives channel structure: Concurrent (direct and indirect) channels, Journal of Marketing Research, 42 (2005), 507-515.  doi: 10.1509/jmkr.2005.42.4.507.  Google Scholar

[17]

L. Wang, H. Song and D. Zhang, et al., Pricing decisions for complementary products in a fuzzy dual-channel supply chain, J. Ind. Manag. Optim., 15 (2019), 343–364. doi: 10.3934/jimo.2018046.  Google Scholar

[18]

S. WangJ. Wang and Y. Zhou, Channel coordination with different competitive duopolistic retail behaviour and non-linear demand function, International J. of Manag. Science and Engineering Manag., 7 (2012), 119-127.  doi: 10.1080/17509653.2012.10671214.  Google Scholar

[19]

S. Wang, Y. Zhou and J. Min, et al., Coordination of cooperative advertising models in a one-manufacturer two-retailer supply chain system, Computers and Industrial Engineering, 61 (2011), 1053–1071. doi: 10.1016/j.cie.2011.06.020.  Google Scholar

[20]

W. WangG. Li and T. Cheng, Channel selection in a supply chain with a multi-channel retailer: The role of channel operating costs, International J. of Production Economics, 173 (2016), 54-65.  doi: 10.1016/j.ijpe.2015.12.004.  Google Scholar

[21]

W. Wang, P. Zhang and J. Ding, et al., Closed-loop supply chain network equilibrium model with retailer-collection under legislation, J. Ind. Manag. Optim., 15 (2019), 199–219. doi: 10.3934/jimo.2018039.  Google Scholar

[22]

D. WuB. Zhang and O. Baron, A trade credit model with asymmetric competing retailers, Production and Oper. Manag., 28 (2019), 206-231.  doi: 10.1111/poms.12882.  Google Scholar

[23]

T. XiaoT. Choi and T. Cheng, Product variety and channel structure strategy for a retailer-Stackelberg supply chain, European J. Oper. Res., 233 (2014), 114-124.  doi: 10.1016/j.ejor.2013.08.038.  Google Scholar

[24]

G. Xu, B. Dan and X. Zhang, et al., Coordinating a dual-channel supply chain with riskaverse under a two-way revenue sharing contract, International J. of Production Economics, 147 (2014), 171–179. doi: 10.1016/j.ijpe.2013.09.012.  Google Scholar

[25]

L. YangJ. Ji and K. Chen, Advertising games on national brand and store brand in a dual-channel supply chain, J. Ind. Manag. Optim., 14 (2018), 105-134.  doi: 10.3934/jimo.2017039.  Google Scholar

[26]

S. Yang and Y. Zhou, Two-echelon supply chain models: Considering duopolistic retailers' different competitive behaviors, International J. of Production Economics, 103 (2006), 104-116.  doi: 10.1016/j.ijpe.2005.06.001.  Google Scholar

[27]

Z. YaoS. Leung and K. Lai, Manufacturer's revenue-sharing contract and retail competition, European J. Oper. Res., 186 (2008), 637-651.  doi: 10.1016/j.ejor.2007.01.049.  Google Scholar

show all references

References:
[1]

E. Adida and V. DeMiguel, Supply chain competition with multiple manufacturers and retailers, Oper. Res., 59 (2011), 156-172.  doi: 10.1287/opre.1100.0863.  Google Scholar

[2]

S. Balasubramanian, Mail versus mall: A strategic analysis of competition between direct marketers and conventional retailers, Marketing Science, 17 (1998), 181-195.  doi: 10.1287/mksc.17.3.181.  Google Scholar

[3]

E. BrynjolfssonY. Hu and M. Rahman, Battle of the retail channels: How product selection and geography drive cross-channel competition, Management Science, 55 (2009), 1755-1765.  doi: 10.1287/mnsc.1090.1062.  Google Scholar

[4]

K. Chen and T. Xiao, Pricing and replenishment policies in a supply chain with competing retailers under different retail behaviors, Computers and Industrial Engineering, 103 (2017), 145-157.  doi: 10.1016/j.cie.2016.11.018.  Google Scholar

[5]

W. ChiangD. Chhajed and J. Hess, Direct marketing, indirect profits: A strategic analysis of dual-channel supply-chain design, Management Science, 49 (2003), 1-20.  doi: 10.1287/mnsc.49.1.1.12749.  Google Scholar

[6]

A. David and E. Adida, Competition and coordination in a two-channel supply chain, Prod. and Oper. Management, 24 (2015), 1358-1370.  doi: 10.1111/poms.12327.  Google Scholar

[7]

A. Dumrongsiri, M. Fan and A. Jain, et al., A supply chain model with direct and retail channels, European J. Oper. Res., 187 (2008), 691–718. doi: 10.1016/j.ejor.2006.05.044.  Google Scholar

[8]

X. Han, H. Wu and Q. Yang, et al., Reverse channel selection under remanufacturing risks: Balancing profitability and robustness, International J. of Production Economics, 182 (2016), 63–72. doi: 10.1016/j.ijpe.2016.08.013.  Google Scholar

[9]

H. HuangH. Ke and L. Wang, Equilibrium analysis of pricing competition and cooperation in supply chain with one common manufacturer and duopoly retailers, International J. of Production Economics, 178 (2016), 12-21.  doi: 10.1016/j.ijpe.2016.04.022.  Google Scholar

[10]

C. Ingene and M. Parry, Channel coordination when retailers compete, Marketing Science, 14 (1995), 360-377.  doi: 10.1287/mksc.14.4.360.  Google Scholar

[11]

M. Lai, H. Yang and E. Cao, et al., Optimal decisions for a dual-channel supply chain under information asymmetry, J. Ind. Manag. Optim., 14 (2018), 1023–1040. doi: 10.3934/jimo.2017088.  Google Scholar

[12]

N. ModakS. Panda and S. Sana, Three-echelon supply chain coordination considering duopolistic retailers with perfect quality products, International J. of Production Economics, 182 (2016), 564-578.  doi: 10.1016/j.ijpe.2015.05.021.  Google Scholar

[13]

I. Moon and X. Feng, Supply chain coordination with a single supplier and multiple retailers considering customer arrival times and route selection, Transportation Research Part E: Logistics and Transportation Review, 106 (2017), 78-97.  doi: 10.1016/j.tre.2017.08.004.  Google Scholar

[14]

R. Sadeghi, A. Taleizadeh and F. Chan, et al., Coordinating and pricing decisions in two competitive reverse supply chains with different channel structures, International J. of Production Research, 57 (2019), 2601–2625. doi: 10.1080/00207543.2018.1551637.  Google Scholar

[15]

A. Sadigh, S. Chaharsooghi and M. Sheikhmohammady, A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain, J. Ind. Manag. Optim., 12 (2016), 337-355. doi: 10.3934/jimo.2016.12.337.  Google Scholar

[16]

A. Vinhas and E. Anderson, How potential conflict drives channel structure: Concurrent (direct and indirect) channels, Journal of Marketing Research, 42 (2005), 507-515.  doi: 10.1509/jmkr.2005.42.4.507.  Google Scholar

[17]

L. Wang, H. Song and D. Zhang, et al., Pricing decisions for complementary products in a fuzzy dual-channel supply chain, J. Ind. Manag. Optim., 15 (2019), 343–364. doi: 10.3934/jimo.2018046.  Google Scholar

[18]

S. WangJ. Wang and Y. Zhou, Channel coordination with different competitive duopolistic retail behaviour and non-linear demand function, International J. of Manag. Science and Engineering Manag., 7 (2012), 119-127.  doi: 10.1080/17509653.2012.10671214.  Google Scholar

[19]

S. Wang, Y. Zhou and J. Min, et al., Coordination of cooperative advertising models in a one-manufacturer two-retailer supply chain system, Computers and Industrial Engineering, 61 (2011), 1053–1071. doi: 10.1016/j.cie.2011.06.020.  Google Scholar

[20]

W. WangG. Li and T. Cheng, Channel selection in a supply chain with a multi-channel retailer: The role of channel operating costs, International J. of Production Economics, 173 (2016), 54-65.  doi: 10.1016/j.ijpe.2015.12.004.  Google Scholar

[21]

W. Wang, P. Zhang and J. Ding, et al., Closed-loop supply chain network equilibrium model with retailer-collection under legislation, J. Ind. Manag. Optim., 15 (2019), 199–219. doi: 10.3934/jimo.2018039.  Google Scholar

[22]

D. WuB. Zhang and O. Baron, A trade credit model with asymmetric competing retailers, Production and Oper. Manag., 28 (2019), 206-231.  doi: 10.1111/poms.12882.  Google Scholar

[23]

T. XiaoT. Choi and T. Cheng, Product variety and channel structure strategy for a retailer-Stackelberg supply chain, European J. Oper. Res., 233 (2014), 114-124.  doi: 10.1016/j.ejor.2013.08.038.  Google Scholar

[24]

G. Xu, B. Dan and X. Zhang, et al., Coordinating a dual-channel supply chain with riskaverse under a two-way revenue sharing contract, International J. of Production Economics, 147 (2014), 171–179. doi: 10.1016/j.ijpe.2013.09.012.  Google Scholar

[25]

L. YangJ. Ji and K. Chen, Advertising games on national brand and store brand in a dual-channel supply chain, J. Ind. Manag. Optim., 14 (2018), 105-134.  doi: 10.3934/jimo.2017039.  Google Scholar

[26]

S. Yang and Y. Zhou, Two-echelon supply chain models: Considering duopolistic retailers' different competitive behaviors, International J. of Production Economics, 103 (2006), 104-116.  doi: 10.1016/j.ijpe.2005.06.001.  Google Scholar

[27]

Z. YaoS. Leung and K. Lai, Manufacturer's revenue-sharing contract and retail competition, European J. Oper. Res., 186 (2008), 637-651.  doi: 10.1016/j.ejor.2007.01.049.  Google Scholar

Figure 1.  Supply chain structure
Figure 2.  Effect of $a_k$ on $\Pi_0$ and ($\Pi_1$-$\Pi_2$) in three patterns
Figure 3.  Effect of $\theta_k$ on $q_0$ and $ \Pi_0$ in three patterns
Figure 4.  Effect of $\theta_k$ on $q_1$ and $\Pi_1$ in three patterns
Figure 5.  Effect of $\theta_k$ on $q_2$ and $\Pi_2$ in three patterns
Figure 6.  Effect of $\theta_k$ or $\beta$ on ($\Pi_1$-$\Pi_2$) in three patterns
Figure 7.  Effect of $\beta$ on $q_k$ or $\Pi_k$ in three patterns
Table 1.  The equilibrium supply chain structure about the three different competitive behaviors
Structure Wholesale supplier Dual-channel Monopoly retailer
Cournot $ \delta\leq\frac{2\beta}{2\theta+\beta} $ $ \frac{2\beta}{2\theta+\beta}<\delta<\frac{\theta_0}{\beta} $ $ \delta\geq\frac{\theta_0}{\beta} $
$ q^{co}_0 $ - $ \frac{2\beta(a-c)-a_0(2\theta+\beta)}{2[2\beta^2-\theta_0(2\theta+\beta)]} $ $ \frac{a_0}{2\theta_0} $
$ q^{co}_1 $ $ \frac{a-c}{2(2\theta+\beta)} $ $ \frac{V}{2[2\beta^2-\theta_0(2\theta+\beta)]} $ -
$ q^{co}_2 $ $ \frac{a-c}{2(2\theta+\beta)} $ $ \frac{V}{2[2\beta^2-\theta_0(2\theta+\beta)]} $ -
$ w^{co} $ $ \frac{a+c}{2} $ $ \frac{a+c}{2} $ -
$ p_0^{co} $ - $ \frac{a_0}{2} $ $ \frac{a_0}{2} $
$ p_1^{co} $ $ \frac{(a+c)(\theta+\beta)+2a\theta}{2(2\theta+\beta)} $ $ \frac{a+c}{2}+\frac{V\theta}{2[2\beta^2-\theta_0(2\theta+\beta)]} $ -
$ p_2^{co} $ $ \frac{(a+c)(\theta+\beta)+2a\theta}{2(2\theta+\beta)} $ $ \frac{a+c}{2}+\frac{V\theta}{2[2\beta^2-\theta_0(2\theta+\beta)]} $ -
$ \Pi_0^{co} $ $ \frac{(a-c)^2}{2(2\theta+\beta)} $ $ \frac{2(a-c)(a_0\beta+V)-a_0^2(2\theta+\beta)}{4[2\beta^2-\theta_0(2\theta+\beta)]} $ $ \frac{a_0^2}{4\theta_0} $
$ \Pi_{1}^{co} $ $ \frac{\theta(a-c)^2}{4(2\theta+\beta)^2} $ $ \frac{\theta V^2}{4[2\beta^2-\theta_0(2\theta+\beta)]^2} $ -
$ \Pi_{2}^{co} $ $ \frac{\theta(a-c)^2}{4(2\theta+\beta)^2} $ $ \frac{\theta V^2}{4[2\beta^2-\theta_0(2\theta+\beta)]^2} $ -
Collusion $ \delta\leq\frac{\beta}{\theta+\beta} $ $ \frac{\beta}{\theta+\beta}<\delta<\frac{\theta_0}{\beta} $ $ \delta\geq\frac{\theta_0}{\beta} $
$ q^{cn}_0 $ - $ \frac{a_0(\theta+\beta)-\beta(a-c)}{2[\theta_0(\theta+\beta)-\beta^2]} $ $ \frac{a_0}{2\theta_0} $
$ q^{cn}_1 $ $ \frac{a-c}{4(\theta+\beta)} $ $ \frac{V}{4[\beta^2-\theta_0(\theta+\beta)]} $ -
$ q^{cn}_2 $ $ \frac{a-c}{4(\theta+\beta)} $ $ \frac{V}{4[\beta^2-\theta_0(\theta+\beta)]} $ -
$ w^{cn} $ $ \frac{a+c}{2} $ $ \frac{a+c}{2} $ -
$ p_0^{cn} $ - $ \frac{a_0}{2} $ $ \frac{a_0}{2} $
$ p_1^{cn} $ $ \frac{3a+c}{4} $ $ \frac{a+c}{2}+\frac{(\theta+\beta)V}{4[\beta^2-\theta_0(\theta+\beta)]} $ -
$ p_2^{cn} $ $ \frac{3a+c}{4} $ $ \frac{a+c}{2}+\frac{(\theta+\beta)V}{4[\beta^2-\theta_0(\theta+\beta)]} $ -
$ \Pi_0^{cn} $ $ \frac{(a-c)^2}{4(\theta+\beta)} $ $ \frac{(a-c)(V+a_0\beta)-a_0^2(\theta+\beta)}{4[\beta^2-\theta_0(\theta+\beta)]} $ $ \frac{a_0^2}{4\theta_0} $
$ \Pi_{1}^{cn} $ $ \frac{(a-c)^2}{16(\theta+\beta)} $ $ \frac{V^2(\theta+\beta)}{16[\beta^2-\theta_0(\theta+\beta)]^2} $ -
$ \Pi_{2}^{cn} $ $ \frac{(a-c)^2}{16(\theta+\beta)} $ $ \frac{V^2(\theta+\beta)}{16[\beta^2-\theta_0(\theta+\beta)]^2} $ -
Stackelberg $ \delta\leq\frac{\beta U}{T} $ $ \frac{\beta U}{T}<\delta<\frac{\theta_0}{\beta} $ $ \delta\geq\frac{\theta_0}{\beta} $
$ q^{st}_0 $ - $ \frac{\beta U(a-c)-a_0T}{2(\beta^2 U-\theta_0T)} $ $ \frac{a_0}{2\theta_0} $
$ q^{st}_1 $ $ \frac{\theta(a-c)(2\theta-\beta)}{T} $ $ \frac{\theta V(2\theta-\beta)}{\beta^2 U-\theta_0T} $ -
$ q^{st}_2 $ $ \frac{(a-c)(4\theta^2-\beta^2-2\theta\beta)}{2T} $ $ \frac{V(4\theta^2-\beta^2-2\theta\beta)}{2(\beta^2 U-\theta_0T)} $ -
$ w^{st} $ $ \frac{a+c}{2} $ $ \frac{a+c}{2} $ -
$ p_0^{st} $ - $ \frac{a_0}{2} $ $ \frac{a_0}{2} $
$ p_1^{st} $ $ a-\frac{(a-c)(4\theta^3+2\theta^2\beta-\beta^3-2\theta\beta^2)}{2T} $ $ \frac{a+c}{2}+\frac{V(2\theta^2-\beta^2)(2\theta-\beta)}{2(\beta^2 U-\theta_0T)} $ -
$ p_2^{st} $ $ a-\frac{\theta(a-c)(4\theta^2+2\theta\beta-3\beta^2)}{2T} $ $ \frac{a+c}{2}+\frac{\theta V(4\theta^2-\beta^2-2\theta\beta)}{2(\beta^2 U-\theta_0T)} $ -
$ \Pi_0^{st} $ $ \frac{U(a-c)^2}{4T} $ $ \frac{U(a-c)(a_0\beta+V)-a_0^2T}{4(\beta^2 U-\theta_0T)} $ $ \frac{a_0^2}{4\theta_0} $
$ \Pi_{1}^{st} $ $ \frac{\theta(a-c)^2(2\theta-\beta)(4\theta^3-2\theta^2\beta+\beta^3-2\theta\beta^2)}{2T^2} $ $ \frac{T(2\theta-\beta)^2V^2}{8(\beta^2 U-\theta_0T)^2} $ -
$ \Pi_{2}^{st} $ $ \frac{\theta(a-c)^2(4\theta^2-\beta^2-2\theta\beta)^2}{4T^2} $ $ \frac{\theta V^2(4\theta^2-2\theta\beta-\beta^2)^2}{4(\beta^2 U-\theta_0T)^2} $ -
where $ T = 4\theta(2\theta^2-\beta^2) $, $ U = 8\theta^2-4\theta\beta-\beta^2 $, $ V = a_0\beta-\theta_0(a-c) $
Structure Wholesale supplier Dual-channel Monopoly retailer
Cournot $ \delta\leq\frac{2\beta}{2\theta+\beta} $ $ \frac{2\beta}{2\theta+\beta}<\delta<\frac{\theta_0}{\beta} $ $ \delta\geq\frac{\theta_0}{\beta} $
$ q^{co}_0 $ - $ \frac{2\beta(a-c)-a_0(2\theta+\beta)}{2[2\beta^2-\theta_0(2\theta+\beta)]} $ $ \frac{a_0}{2\theta_0} $
$ q^{co}_1 $ $ \frac{a-c}{2(2\theta+\beta)} $ $ \frac{V}{2[2\beta^2-\theta_0(2\theta+\beta)]} $ -
$ q^{co}_2 $ $ \frac{a-c}{2(2\theta+\beta)} $ $ \frac{V}{2[2\beta^2-\theta_0(2\theta+\beta)]} $ -
$ w^{co} $ $ \frac{a+c}{2} $ $ \frac{a+c}{2} $ -
$ p_0^{co} $ - $ \frac{a_0}{2} $ $ \frac{a_0}{2} $
$ p_1^{co} $ $ \frac{(a+c)(\theta+\beta)+2a\theta}{2(2\theta+\beta)} $ $ \frac{a+c}{2}+\frac{V\theta}{2[2\beta^2-\theta_0(2\theta+\beta)]} $ -
$ p_2^{co} $ $ \frac{(a+c)(\theta+\beta)+2a\theta}{2(2\theta+\beta)} $ $ \frac{a+c}{2}+\frac{V\theta}{2[2\beta^2-\theta_0(2\theta+\beta)]} $ -
$ \Pi_0^{co} $ $ \frac{(a-c)^2}{2(2\theta+\beta)} $ $ \frac{2(a-c)(a_0\beta+V)-a_0^2(2\theta+\beta)}{4[2\beta^2-\theta_0(2\theta+\beta)]} $ $ \frac{a_0^2}{4\theta_0} $
$ \Pi_{1}^{co} $ $ \frac{\theta(a-c)^2}{4(2\theta+\beta)^2} $ $ \frac{\theta V^2}{4[2\beta^2-\theta_0(2\theta+\beta)]^2} $ -
$ \Pi_{2}^{co} $ $ \frac{\theta(a-c)^2}{4(2\theta+\beta)^2} $ $ \frac{\theta V^2}{4[2\beta^2-\theta_0(2\theta+\beta)]^2} $ -
Collusion $ \delta\leq\frac{\beta}{\theta+\beta} $ $ \frac{\beta}{\theta+\beta}<\delta<\frac{\theta_0}{\beta} $ $ \delta\geq\frac{\theta_0}{\beta} $
$ q^{cn}_0 $ - $ \frac{a_0(\theta+\beta)-\beta(a-c)}{2[\theta_0(\theta+\beta)-\beta^2]} $ $ \frac{a_0}{2\theta_0} $
$ q^{cn}_1 $ $ \frac{a-c}{4(\theta+\beta)} $ $ \frac{V}{4[\beta^2-\theta_0(\theta+\beta)]} $ -
$ q^{cn}_2 $ $ \frac{a-c}{4(\theta+\beta)} $ $ \frac{V}{4[\beta^2-\theta_0(\theta+\beta)]} $ -
$ w^{cn} $ $ \frac{a+c}{2} $ $ \frac{a+c}{2} $ -
$ p_0^{cn} $ - $ \frac{a_0}{2} $ $ \frac{a_0}{2} $
$ p_1^{cn} $ $ \frac{3a+c}{4} $ $ \frac{a+c}{2}+\frac{(\theta+\beta)V}{4[\beta^2-\theta_0(\theta+\beta)]} $ -
$ p_2^{cn} $ $ \frac{3a+c}{4} $ $ \frac{a+c}{2}+\frac{(\theta+\beta)V}{4[\beta^2-\theta_0(\theta+\beta)]} $ -
$ \Pi_0^{cn} $ $ \frac{(a-c)^2}{4(\theta+\beta)} $ $ \frac{(a-c)(V+a_0\beta)-a_0^2(\theta+\beta)}{4[\beta^2-\theta_0(\theta+\beta)]} $ $ \frac{a_0^2}{4\theta_0} $
$ \Pi_{1}^{cn} $ $ \frac{(a-c)^2}{16(\theta+\beta)} $ $ \frac{V^2(\theta+\beta)}{16[\beta^2-\theta_0(\theta+\beta)]^2} $ -
$ \Pi_{2}^{cn} $ $ \frac{(a-c)^2}{16(\theta+\beta)} $ $ \frac{V^2(\theta+\beta)}{16[\beta^2-\theta_0(\theta+\beta)]^2} $ -
Stackelberg $ \delta\leq\frac{\beta U}{T} $ $ \frac{\beta U}{T}<\delta<\frac{\theta_0}{\beta} $ $ \delta\geq\frac{\theta_0}{\beta} $
$ q^{st}_0 $ - $ \frac{\beta U(a-c)-a_0T}{2(\beta^2 U-\theta_0T)} $ $ \frac{a_0}{2\theta_0} $
$ q^{st}_1 $ $ \frac{\theta(a-c)(2\theta-\beta)}{T} $ $ \frac{\theta V(2\theta-\beta)}{\beta^2 U-\theta_0T} $ -
$ q^{st}_2 $ $ \frac{(a-c)(4\theta^2-\beta^2-2\theta\beta)}{2T} $ $ \frac{V(4\theta^2-\beta^2-2\theta\beta)}{2(\beta^2 U-\theta_0T)} $ -
$ w^{st} $ $ \frac{a+c}{2} $ $ \frac{a+c}{2} $ -
$ p_0^{st} $ - $ \frac{a_0}{2} $ $ \frac{a_0}{2} $
$ p_1^{st} $ $ a-\frac{(a-c)(4\theta^3+2\theta^2\beta-\beta^3-2\theta\beta^2)}{2T} $ $ \frac{a+c}{2}+\frac{V(2\theta^2-\beta^2)(2\theta-\beta)}{2(\beta^2 U-\theta_0T)} $ -
$ p_2^{st} $ $ a-\frac{\theta(a-c)(4\theta^2+2\theta\beta-3\beta^2)}{2T} $ $ \frac{a+c}{2}+\frac{\theta V(4\theta^2-\beta^2-2\theta\beta)}{2(\beta^2 U-\theta_0T)} $ -
$ \Pi_0^{st} $ $ \frac{U(a-c)^2}{4T} $ $ \frac{U(a-c)(a_0\beta+V)-a_0^2T}{4(\beta^2 U-\theta_0T)} $ $ \frac{a_0^2}{4\theta_0} $
$ \Pi_{1}^{st} $ $ \frac{\theta(a-c)^2(2\theta-\beta)(4\theta^3-2\theta^2\beta+\beta^3-2\theta\beta^2)}{2T^2} $ $ \frac{T(2\theta-\beta)^2V^2}{8(\beta^2 U-\theta_0T)^2} $ -
$ \Pi_{2}^{st} $ $ \frac{\theta(a-c)^2(4\theta^2-\beta^2-2\theta\beta)^2}{4T^2} $ $ \frac{\theta V^2(4\theta^2-2\theta\beta-\beta^2)^2}{4(\beta^2 U-\theta_0T)^2} $ -
where $ T = 4\theta(2\theta^2-\beta^2) $, $ U = 8\theta^2-4\theta\beta-\beta^2 $, $ V = a_0\beta-\theta_0(a-c) $
Table 2.  Partial derivatives of optimal quantity with respect to $a_k$ in three patterns
Cournot $a_0$ $a_1$ $a_2$
$q^{co}_0$ $\frac{-E}{2P}$ $\frac{\beta(2\theta_2-\beta)}{2P}$ $\frac{\beta(2\theta_1-\beta)}{2P}$
$q^{co}_1$ $\frac{-\beta(\beta-2\theta_2)}{2P}$ $\frac{P(2\theta_2D+E)-\beta^2(2\theta_2-\beta)^2D}{2PDE}$ $\frac{-P(\beta D+E)-\beta^2(2\theta_1-\beta)(2\theta_2-\beta)D}{2PDE}$
$q^{co}_2$ $\frac{-\beta(\beta-2\theta_1)}{2P}$ $\frac{-P(\beta D+E)-\beta^2(2\theta_1-\beta)(2\theta_2-\beta)D}{2PDE}$ $\frac{P(2\theta_1D+E)-\beta^2(2\theta_1-\beta)^2D}{2PDE}$
Collusion $a_0$ $a_1$ $a_2$
$q^{cn}_0$ $\frac{\theta_1\theta_2-\beta^2}{Q}$ $\frac{-\beta(\theta_2-\beta)}{2Q}$ $\frac{-\beta(\theta_1-\beta)}{2Q}$
$q^{cn}_1$ $\frac{\beta(\beta-\theta_2)}{2Q}$ $\frac{Q(2\theta_2G+H)+2G\beta^2(\theta_2-\beta)^2}{4QGH}$ $\frac{-Q(2\beta G+H)+2G\beta^2(\theta_1-\beta)(\theta_2-\beta)}{4QGH}$
$q^{cn}_2$ $\frac{\beta(\beta-\theta_1)}{2Q}$ $\frac{-Q(2\beta G+H)+2G\beta^2(\theta_1-\beta)(\theta_2-\beta)}{4QGH}$ $\frac{Q(2\theta_1G+H)+2G\beta^2(\theta_2-\beta)^2}{4QGH}$
Stackelberg $a_0$ $a_1$ $a_2$
$q^{st}_0$ $\frac{2M\theta_2}{R}$ $\frac{-\theta_2\beta(2\theta_2-\beta)}{R}$ $\frac{-\beta S}{2R}$
$q^{st}_1$ $\frac{\theta_2\beta(\beta-2\theta_2)}{R}$ $\frac{R(\theta_2 N+2\theta_2M)+\theta_2\beta^2(2\theta_2-\beta)^2N}{2RMN}$ $\frac{-R(4M\theta_2+\beta N)+\beta^2(2\theta_2-\beta)SN}{4RMN}$
$q^{st}_2$ $\frac{\beta(2\theta_2\beta-E)}{2R}$ $\frac{-R(4M\theta_2+\beta N)+\beta^2(2\theta_2-\beta)SN}{4RMN}$ $\frac{RNE+S^2(\beta^2N-2M\theta_0\theta_2)}{4\theta_2RMN}$
where $P=\beta^2D-\theta_0E$, $Q=\theta_0H-\beta^2G$, $R=4M\theta_0\theta_2-\beta^2N$, $S=E-2\theta_2\beta$.
Cournot $a_0$ $a_1$ $a_2$
$q^{co}_0$ $\frac{-E}{2P}$ $\frac{\beta(2\theta_2-\beta)}{2P}$ $\frac{\beta(2\theta_1-\beta)}{2P}$
$q^{co}_1$ $\frac{-\beta(\beta-2\theta_2)}{2P}$ $\frac{P(2\theta_2D+E)-\beta^2(2\theta_2-\beta)^2D}{2PDE}$ $\frac{-P(\beta D+E)-\beta^2(2\theta_1-\beta)(2\theta_2-\beta)D}{2PDE}$
$q^{co}_2$ $\frac{-\beta(\beta-2\theta_1)}{2P}$ $\frac{-P(\beta D+E)-\beta^2(2\theta_1-\beta)(2\theta_2-\beta)D}{2PDE}$ $\frac{P(2\theta_1D+E)-\beta^2(2\theta_1-\beta)^2D}{2PDE}$
Collusion $a_0$ $a_1$ $a_2$
$q^{cn}_0$ $\frac{\theta_1\theta_2-\beta^2}{Q}$ $\frac{-\beta(\theta_2-\beta)}{2Q}$ $\frac{-\beta(\theta_1-\beta)}{2Q}$
$q^{cn}_1$ $\frac{\beta(\beta-\theta_2)}{2Q}$ $\frac{Q(2\theta_2G+H)+2G\beta^2(\theta_2-\beta)^2}{4QGH}$ $\frac{-Q(2\beta G+H)+2G\beta^2(\theta_1-\beta)(\theta_2-\beta)}{4QGH}$
$q^{cn}_2$ $\frac{\beta(\beta-\theta_1)}{2Q}$ $\frac{-Q(2\beta G+H)+2G\beta^2(\theta_1-\beta)(\theta_2-\beta)}{4QGH}$ $\frac{Q(2\theta_1G+H)+2G\beta^2(\theta_2-\beta)^2}{4QGH}$
Stackelberg $a_0$ $a_1$ $a_2$
$q^{st}_0$ $\frac{2M\theta_2}{R}$ $\frac{-\theta_2\beta(2\theta_2-\beta)}{R}$ $\frac{-\beta S}{2R}$
$q^{st}_1$ $\frac{\theta_2\beta(\beta-2\theta_2)}{R}$ $\frac{R(\theta_2 N+2\theta_2M)+\theta_2\beta^2(2\theta_2-\beta)^2N}{2RMN}$ $\frac{-R(4M\theta_2+\beta N)+\beta^2(2\theta_2-\beta)SN}{4RMN}$
$q^{st}_2$ $\frac{\beta(2\theta_2\beta-E)}{2R}$ $\frac{-R(4M\theta_2+\beta N)+\beta^2(2\theta_2-\beta)SN}{4RMN}$ $\frac{RNE+S^2(\beta^2N-2M\theta_0\theta_2)}{4\theta_2RMN}$
where $P=\beta^2D-\theta_0E$, $Q=\theta_0H-\beta^2G$, $R=4M\theta_0\theta_2-\beta^2N$, $S=E-2\theta_2\beta$.
Table 3.  The optimal solutions for three different competitive behaviors
Optimal $q_0$ $q_1 $ $q_2 $ $w$ $p_0$ $p_1$ $p_2$ $\Pi_0$ $\Pi_1$ $\Pi_2$
Cournot $4.83$ $3.44$ $2.90$ $14.25$ $8.00$ $17.69$ $20.06$ $116.36$ $11.85$ $16.86$
Collusion $5.29$ $2.81$ $2.60$ $14.13$ $8.00$ $18.24$ $20.74$ $108.01$ $11.57$ $17.23$
Stackelberg $4.76$ $3.58$ $2.90$ $14.23$ $8.00$ $17.59$ $20.03$ $117.35$ $12.04$ $16.82$
Optimal $q_0$ $q_1 $ $q_2 $ $w$ $p_0$ $p_1$ $p_2$ $\Pi_0$ $\Pi_1$ $\Pi_2$
Cournot $4.83$ $3.44$ $2.90$ $14.25$ $8.00$ $17.69$ $20.06$ $116.36$ $11.85$ $16.86$
Collusion $5.29$ $2.81$ $2.60$ $14.13$ $8.00$ $18.24$ $20.74$ $108.01$ $11.57$ $17.23$
Stackelberg $4.76$ $3.58$ $2.90$ $14.23$ $8.00$ $17.59$ $20.03$ $117.35$ $12.04$ $16.82$
[1]

Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020173

[2]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[3]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[4]

Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020181

[5]

David W. K. Yeung, Yingxuan Zhang, Hongtao Bai, Sardar M. N. Islam. Collaborative environmental management for transboundary air pollution problems: A differential levies game. Journal of Industrial & Management Optimization, 2021, 17 (2) : 517-531. doi: 10.3934/jimo.2019121

[6]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[7]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165

[8]

Wenyan Zhuo, Honglin Yang, Leopoldo Eduardo Cárdenas-Barrón, Hong Wan. Loss-averse supply chain decisions with a capital constrained retailer. Journal of Industrial & Management Optimization, 2021, 17 (2) : 711-732. doi: 10.3934/jimo.2019131

[9]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[10]

Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025

[11]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[12]

Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004

[13]

Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020175

[14]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

[15]

Xiao-Xu Chen, Peng Xu, Jiao-Jiao Li, Thomas Walker, Guo-Qiang Yang. Decision-making in a retailer-led closed-loop supply chain involving a third-party logistics provider. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021014

[16]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

[17]

Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285

[18]

Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373

[19]

François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221

[20]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (133)
  • HTML views (484)
  • Cited by (0)

Other articles
by authors

[Back to Top]