March  2021, 17(2): 601-631. doi: 10.3934/jimo.2019125

Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours

1. 

Business School, Beijing Technology and Business University, Beijing 100048, China

2. 

State Grid Beijing Logistic Supply Company, State Grid Beijing Electric Power Company, Beijing 100054, China

3. 

School of Management, Capital Normal University, Beijing 100048, China

* Corresponding author: Hongxia Sun

Received  October 2018 Revised  May 2019 Published  March 2021 Early access  October 2019

We study competition in a dual-channel supply chain in which a single supplier sells a single product through its own direct channel and through two different duopolistic retailers. The two retailers have three competitive behaviour patterns: Cournot, Collusion and Stackelberg. Three models are respectively constructed for these patterns, and the optimal decisions for the three patterns are obtained. These optimal solutions are compared, and the effects of certain parameters on the optimal solutions are examined for the three patterns by considering two scenarios: a special case and a general case. In the special case, the equilibrium supply chain structures are analysed, and the optimal quantity and profit are compared for the three different competitive behaviours. Furthermore, both parametric and numerical analyses are presented, and some managerial insights are obtained. We find that in the special case, the Stackelberg game allows the supplier to earn the highest profit, the retailer playing the Collusion game makes the supplier earn the lowest profit, and the Stackelberg leader can gain a first-mover advantage as to the follower. In the general case, the supplier can achieve a higher profit by raising the maximum retail price or holding down the self-price sensitivity factor.

Citation: Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial and Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125
References:
[1]

E. Adida and V. DeMiguel, Supply chain competition with multiple manufacturers and retailers, Oper. Res., 59 (2011), 156-172.  doi: 10.1287/opre.1100.0863.

[2]

S. Balasubramanian, Mail versus mall: A strategic analysis of competition between direct marketers and conventional retailers, Marketing Science, 17 (1998), 181-195.  doi: 10.1287/mksc.17.3.181.

[3]

E. BrynjolfssonY. Hu and M. Rahman, Battle of the retail channels: How product selection and geography drive cross-channel competition, Management Science, 55 (2009), 1755-1765.  doi: 10.1287/mnsc.1090.1062.

[4]

K. Chen and T. Xiao, Pricing and replenishment policies in a supply chain with competing retailers under different retail behaviors, Computers and Industrial Engineering, 103 (2017), 145-157.  doi: 10.1016/j.cie.2016.11.018.

[5]

W. ChiangD. Chhajed and J. Hess, Direct marketing, indirect profits: A strategic analysis of dual-channel supply-chain design, Management Science, 49 (2003), 1-20.  doi: 10.1287/mnsc.49.1.1.12749.

[6]

A. David and E. Adida, Competition and coordination in a two-channel supply chain, Prod. and Oper. Management, 24 (2015), 1358-1370.  doi: 10.1111/poms.12327.

[7]

A. Dumrongsiri, M. Fan and A. Jain, et al., A supply chain model with direct and retail channels, European J. Oper. Res., 187 (2008), 691–718. doi: 10.1016/j.ejor.2006.05.044.

[8]

X. Han, H. Wu and Q. Yang, et al., Reverse channel selection under remanufacturing risks: Balancing profitability and robustness, International J. of Production Economics, 182 (2016), 63–72. doi: 10.1016/j.ijpe.2016.08.013.

[9]

H. HuangH. Ke and L. Wang, Equilibrium analysis of pricing competition and cooperation in supply chain with one common manufacturer and duopoly retailers, International J. of Production Economics, 178 (2016), 12-21.  doi: 10.1016/j.ijpe.2016.04.022.

[10]

C. Ingene and M. Parry, Channel coordination when retailers compete, Marketing Science, 14 (1995), 360-377.  doi: 10.1287/mksc.14.4.360.

[11]

M. Lai, H. Yang and E. Cao, et al., Optimal decisions for a dual-channel supply chain under information asymmetry, J. Ind. Manag. Optim., 14 (2018), 1023–1040. doi: 10.3934/jimo.2017088.

[12]

N. ModakS. Panda and S. Sana, Three-echelon supply chain coordination considering duopolistic retailers with perfect quality products, International J. of Production Economics, 182 (2016), 564-578.  doi: 10.1016/j.ijpe.2015.05.021.

[13]

I. Moon and X. Feng, Supply chain coordination with a single supplier and multiple retailers considering customer arrival times and route selection, Transportation Research Part E: Logistics and Transportation Review, 106 (2017), 78-97.  doi: 10.1016/j.tre.2017.08.004.

[14]

R. Sadeghi, A. Taleizadeh and F. Chan, et al., Coordinating and pricing decisions in two competitive reverse supply chains with different channel structures, International J. of Production Research, 57 (2019), 2601–2625. doi: 10.1080/00207543.2018.1551637.

[15]

A. Sadigh, S. Chaharsooghi and M. Sheikhmohammady, A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain, J. Ind. Manag. Optim., 12 (2016), 337-355. doi: 10.3934/jimo.2016.12.337.

[16]

A. Vinhas and E. Anderson, How potential conflict drives channel structure: Concurrent (direct and indirect) channels, Journal of Marketing Research, 42 (2005), 507-515.  doi: 10.1509/jmkr.2005.42.4.507.

[17]

L. Wang, H. Song and D. Zhang, et al., Pricing decisions for complementary products in a fuzzy dual-channel supply chain, J. Ind. Manag. Optim., 15 (2019), 343–364. doi: 10.3934/jimo.2018046.

[18]

S. WangJ. Wang and Y. Zhou, Channel coordination with different competitive duopolistic retail behaviour and non-linear demand function, International J. of Manag. Science and Engineering Manag., 7 (2012), 119-127.  doi: 10.1080/17509653.2012.10671214.

[19]

S. Wang, Y. Zhou and J. Min, et al., Coordination of cooperative advertising models in a one-manufacturer two-retailer supply chain system, Computers and Industrial Engineering, 61 (2011), 1053–1071. doi: 10.1016/j.cie.2011.06.020.

[20]

W. WangG. Li and T. Cheng, Channel selection in a supply chain with a multi-channel retailer: The role of channel operating costs, International J. of Production Economics, 173 (2016), 54-65.  doi: 10.1016/j.ijpe.2015.12.004.

[21]

W. Wang, P. Zhang and J. Ding, et al., Closed-loop supply chain network equilibrium model with retailer-collection under legislation, J. Ind. Manag. Optim., 15 (2019), 199–219. doi: 10.3934/jimo.2018039.

[22]

D. WuB. Zhang and O. Baron, A trade credit model with asymmetric competing retailers, Production and Oper. Manag., 28 (2019), 206-231.  doi: 10.1111/poms.12882.

[23]

T. XiaoT. Choi and T. Cheng, Product variety and channel structure strategy for a retailer-Stackelberg supply chain, European J. Oper. Res., 233 (2014), 114-124.  doi: 10.1016/j.ejor.2013.08.038.

[24]

G. Xu, B. Dan and X. Zhang, et al., Coordinating a dual-channel supply chain with riskaverse under a two-way revenue sharing contract, International J. of Production Economics, 147 (2014), 171–179. doi: 10.1016/j.ijpe.2013.09.012.

[25]

L. YangJ. Ji and K. Chen, Advertising games on national brand and store brand in a dual-channel supply chain, J. Ind. Manag. Optim., 14 (2018), 105-134.  doi: 10.3934/jimo.2017039.

[26]

S. Yang and Y. Zhou, Two-echelon supply chain models: Considering duopolistic retailers' different competitive behaviors, International J. of Production Economics, 103 (2006), 104-116.  doi: 10.1016/j.ijpe.2005.06.001.

[27]

Z. YaoS. Leung and K. Lai, Manufacturer's revenue-sharing contract and retail competition, European J. Oper. Res., 186 (2008), 637-651.  doi: 10.1016/j.ejor.2007.01.049.

show all references

References:
[1]

E. Adida and V. DeMiguel, Supply chain competition with multiple manufacturers and retailers, Oper. Res., 59 (2011), 156-172.  doi: 10.1287/opre.1100.0863.

[2]

S. Balasubramanian, Mail versus mall: A strategic analysis of competition between direct marketers and conventional retailers, Marketing Science, 17 (1998), 181-195.  doi: 10.1287/mksc.17.3.181.

[3]

E. BrynjolfssonY. Hu and M. Rahman, Battle of the retail channels: How product selection and geography drive cross-channel competition, Management Science, 55 (2009), 1755-1765.  doi: 10.1287/mnsc.1090.1062.

[4]

K. Chen and T. Xiao, Pricing and replenishment policies in a supply chain with competing retailers under different retail behaviors, Computers and Industrial Engineering, 103 (2017), 145-157.  doi: 10.1016/j.cie.2016.11.018.

[5]

W. ChiangD. Chhajed and J. Hess, Direct marketing, indirect profits: A strategic analysis of dual-channel supply-chain design, Management Science, 49 (2003), 1-20.  doi: 10.1287/mnsc.49.1.1.12749.

[6]

A. David and E. Adida, Competition and coordination in a two-channel supply chain, Prod. and Oper. Management, 24 (2015), 1358-1370.  doi: 10.1111/poms.12327.

[7]

A. Dumrongsiri, M. Fan and A. Jain, et al., A supply chain model with direct and retail channels, European J. Oper. Res., 187 (2008), 691–718. doi: 10.1016/j.ejor.2006.05.044.

[8]

X. Han, H. Wu and Q. Yang, et al., Reverse channel selection under remanufacturing risks: Balancing profitability and robustness, International J. of Production Economics, 182 (2016), 63–72. doi: 10.1016/j.ijpe.2016.08.013.

[9]

H. HuangH. Ke and L. Wang, Equilibrium analysis of pricing competition and cooperation in supply chain with one common manufacturer and duopoly retailers, International J. of Production Economics, 178 (2016), 12-21.  doi: 10.1016/j.ijpe.2016.04.022.

[10]

C. Ingene and M. Parry, Channel coordination when retailers compete, Marketing Science, 14 (1995), 360-377.  doi: 10.1287/mksc.14.4.360.

[11]

M. Lai, H. Yang and E. Cao, et al., Optimal decisions for a dual-channel supply chain under information asymmetry, J. Ind. Manag. Optim., 14 (2018), 1023–1040. doi: 10.3934/jimo.2017088.

[12]

N. ModakS. Panda and S. Sana, Three-echelon supply chain coordination considering duopolistic retailers with perfect quality products, International J. of Production Economics, 182 (2016), 564-578.  doi: 10.1016/j.ijpe.2015.05.021.

[13]

I. Moon and X. Feng, Supply chain coordination with a single supplier and multiple retailers considering customer arrival times and route selection, Transportation Research Part E: Logistics and Transportation Review, 106 (2017), 78-97.  doi: 10.1016/j.tre.2017.08.004.

[14]

R. Sadeghi, A. Taleizadeh and F. Chan, et al., Coordinating and pricing decisions in two competitive reverse supply chains with different channel structures, International J. of Production Research, 57 (2019), 2601–2625. doi: 10.1080/00207543.2018.1551637.

[15]

A. Sadigh, S. Chaharsooghi and M. Sheikhmohammady, A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain, J. Ind. Manag. Optim., 12 (2016), 337-355. doi: 10.3934/jimo.2016.12.337.

[16]

A. Vinhas and E. Anderson, How potential conflict drives channel structure: Concurrent (direct and indirect) channels, Journal of Marketing Research, 42 (2005), 507-515.  doi: 10.1509/jmkr.2005.42.4.507.

[17]

L. Wang, H. Song and D. Zhang, et al., Pricing decisions for complementary products in a fuzzy dual-channel supply chain, J. Ind. Manag. Optim., 15 (2019), 343–364. doi: 10.3934/jimo.2018046.

[18]

S. WangJ. Wang and Y. Zhou, Channel coordination with different competitive duopolistic retail behaviour and non-linear demand function, International J. of Manag. Science and Engineering Manag., 7 (2012), 119-127.  doi: 10.1080/17509653.2012.10671214.

[19]

S. Wang, Y. Zhou and J. Min, et al., Coordination of cooperative advertising models in a one-manufacturer two-retailer supply chain system, Computers and Industrial Engineering, 61 (2011), 1053–1071. doi: 10.1016/j.cie.2011.06.020.

[20]

W. WangG. Li and T. Cheng, Channel selection in a supply chain with a multi-channel retailer: The role of channel operating costs, International J. of Production Economics, 173 (2016), 54-65.  doi: 10.1016/j.ijpe.2015.12.004.

[21]

W. Wang, P. Zhang and J. Ding, et al., Closed-loop supply chain network equilibrium model with retailer-collection under legislation, J. Ind. Manag. Optim., 15 (2019), 199–219. doi: 10.3934/jimo.2018039.

[22]

D. WuB. Zhang and O. Baron, A trade credit model with asymmetric competing retailers, Production and Oper. Manag., 28 (2019), 206-231.  doi: 10.1111/poms.12882.

[23]

T. XiaoT. Choi and T. Cheng, Product variety and channel structure strategy for a retailer-Stackelberg supply chain, European J. Oper. Res., 233 (2014), 114-124.  doi: 10.1016/j.ejor.2013.08.038.

[24]

G. Xu, B. Dan and X. Zhang, et al., Coordinating a dual-channel supply chain with riskaverse under a two-way revenue sharing contract, International J. of Production Economics, 147 (2014), 171–179. doi: 10.1016/j.ijpe.2013.09.012.

[25]

L. YangJ. Ji and K. Chen, Advertising games on national brand and store brand in a dual-channel supply chain, J. Ind. Manag. Optim., 14 (2018), 105-134.  doi: 10.3934/jimo.2017039.

[26]

S. Yang and Y. Zhou, Two-echelon supply chain models: Considering duopolistic retailers' different competitive behaviors, International J. of Production Economics, 103 (2006), 104-116.  doi: 10.1016/j.ijpe.2005.06.001.

[27]

Z. YaoS. Leung and K. Lai, Manufacturer's revenue-sharing contract and retail competition, European J. Oper. Res., 186 (2008), 637-651.  doi: 10.1016/j.ejor.2007.01.049.

Figure 1.  Supply chain structure
Figure 2.  Effect of $a_k$ on $\Pi_0$ and ($\Pi_1$-$\Pi_2$) in three patterns
Figure 3.  Effect of $\theta_k$ on $q_0$ and $ \Pi_0$ in three patterns
Figure 4.  Effect of $\theta_k$ on $q_1$ and $\Pi_1$ in three patterns
Figure 5.  Effect of $\theta_k$ on $q_2$ and $\Pi_2$ in three patterns
Figure 6.  Effect of $\theta_k$ or $\beta$ on ($\Pi_1$-$\Pi_2$) in three patterns
Figure 7.  Effect of $\beta$ on $q_k$ or $\Pi_k$ in three patterns
Table 1.  The equilibrium supply chain structure about the three different competitive behaviors
Structure Wholesale supplier Dual-channel Monopoly retailer
Cournot $ \delta\leq\frac{2\beta}{2\theta+\beta} $ $ \frac{2\beta}{2\theta+\beta}<\delta<\frac{\theta_0}{\beta} $ $ \delta\geq\frac{\theta_0}{\beta} $
$ q^{co}_0 $ - $ \frac{2\beta(a-c)-a_0(2\theta+\beta)}{2[2\beta^2-\theta_0(2\theta+\beta)]} $ $ \frac{a_0}{2\theta_0} $
$ q^{co}_1 $ $ \frac{a-c}{2(2\theta+\beta)} $ $ \frac{V}{2[2\beta^2-\theta_0(2\theta+\beta)]} $ -
$ q^{co}_2 $ $ \frac{a-c}{2(2\theta+\beta)} $ $ \frac{V}{2[2\beta^2-\theta_0(2\theta+\beta)]} $ -
$ w^{co} $ $ \frac{a+c}{2} $ $ \frac{a+c}{2} $ -
$ p_0^{co} $ - $ \frac{a_0}{2} $ $ \frac{a_0}{2} $
$ p_1^{co} $ $ \frac{(a+c)(\theta+\beta)+2a\theta}{2(2\theta+\beta)} $ $ \frac{a+c}{2}+\frac{V\theta}{2[2\beta^2-\theta_0(2\theta+\beta)]} $ -
$ p_2^{co} $ $ \frac{(a+c)(\theta+\beta)+2a\theta}{2(2\theta+\beta)} $ $ \frac{a+c}{2}+\frac{V\theta}{2[2\beta^2-\theta_0(2\theta+\beta)]} $ -
$ \Pi_0^{co} $ $ \frac{(a-c)^2}{2(2\theta+\beta)} $ $ \frac{2(a-c)(a_0\beta+V)-a_0^2(2\theta+\beta)}{4[2\beta^2-\theta_0(2\theta+\beta)]} $ $ \frac{a_0^2}{4\theta_0} $
$ \Pi_{1}^{co} $ $ \frac{\theta(a-c)^2}{4(2\theta+\beta)^2} $ $ \frac{\theta V^2}{4[2\beta^2-\theta_0(2\theta+\beta)]^2} $ -
$ \Pi_{2}^{co} $ $ \frac{\theta(a-c)^2}{4(2\theta+\beta)^2} $ $ \frac{\theta V^2}{4[2\beta^2-\theta_0(2\theta+\beta)]^2} $ -
Collusion $ \delta\leq\frac{\beta}{\theta+\beta} $ $ \frac{\beta}{\theta+\beta}<\delta<\frac{\theta_0}{\beta} $ $ \delta\geq\frac{\theta_0}{\beta} $
$ q^{cn}_0 $ - $ \frac{a_0(\theta+\beta)-\beta(a-c)}{2[\theta_0(\theta+\beta)-\beta^2]} $ $ \frac{a_0}{2\theta_0} $
$ q^{cn}_1 $ $ \frac{a-c}{4(\theta+\beta)} $ $ \frac{V}{4[\beta^2-\theta_0(\theta+\beta)]} $ -
$ q^{cn}_2 $ $ \frac{a-c}{4(\theta+\beta)} $ $ \frac{V}{4[\beta^2-\theta_0(\theta+\beta)]} $ -
$ w^{cn} $ $ \frac{a+c}{2} $ $ \frac{a+c}{2} $ -
$ p_0^{cn} $ - $ \frac{a_0}{2} $ $ \frac{a_0}{2} $
$ p_1^{cn} $ $ \frac{3a+c}{4} $ $ \frac{a+c}{2}+\frac{(\theta+\beta)V}{4[\beta^2-\theta_0(\theta+\beta)]} $ -
$ p_2^{cn} $ $ \frac{3a+c}{4} $ $ \frac{a+c}{2}+\frac{(\theta+\beta)V}{4[\beta^2-\theta_0(\theta+\beta)]} $ -
$ \Pi_0^{cn} $ $ \frac{(a-c)^2}{4(\theta+\beta)} $ $ \frac{(a-c)(V+a_0\beta)-a_0^2(\theta+\beta)}{4[\beta^2-\theta_0(\theta+\beta)]} $ $ \frac{a_0^2}{4\theta_0} $
$ \Pi_{1}^{cn} $ $ \frac{(a-c)^2}{16(\theta+\beta)} $ $ \frac{V^2(\theta+\beta)}{16[\beta^2-\theta_0(\theta+\beta)]^2} $ -
$ \Pi_{2}^{cn} $ $ \frac{(a-c)^2}{16(\theta+\beta)} $ $ \frac{V^2(\theta+\beta)}{16[\beta^2-\theta_0(\theta+\beta)]^2} $ -
Stackelberg $ \delta\leq\frac{\beta U}{T} $ $ \frac{\beta U}{T}<\delta<\frac{\theta_0}{\beta} $ $ \delta\geq\frac{\theta_0}{\beta} $
$ q^{st}_0 $ - $ \frac{\beta U(a-c)-a_0T}{2(\beta^2 U-\theta_0T)} $ $ \frac{a_0}{2\theta_0} $
$ q^{st}_1 $ $ \frac{\theta(a-c)(2\theta-\beta)}{T} $ $ \frac{\theta V(2\theta-\beta)}{\beta^2 U-\theta_0T} $ -
$ q^{st}_2 $ $ \frac{(a-c)(4\theta^2-\beta^2-2\theta\beta)}{2T} $ $ \frac{V(4\theta^2-\beta^2-2\theta\beta)}{2(\beta^2 U-\theta_0T)} $ -
$ w^{st} $ $ \frac{a+c}{2} $ $ \frac{a+c}{2} $ -
$ p_0^{st} $ - $ \frac{a_0}{2} $ $ \frac{a_0}{2} $
$ p_1^{st} $ $ a-\frac{(a-c)(4\theta^3+2\theta^2\beta-\beta^3-2\theta\beta^2)}{2T} $ $ \frac{a+c}{2}+\frac{V(2\theta^2-\beta^2)(2\theta-\beta)}{2(\beta^2 U-\theta_0T)} $ -
$ p_2^{st} $ $ a-\frac{\theta(a-c)(4\theta^2+2\theta\beta-3\beta^2)}{2T} $ $ \frac{a+c}{2}+\frac{\theta V(4\theta^2-\beta^2-2\theta\beta)}{2(\beta^2 U-\theta_0T)} $ -
$ \Pi_0^{st} $ $ \frac{U(a-c)^2}{4T} $ $ \frac{U(a-c)(a_0\beta+V)-a_0^2T}{4(\beta^2 U-\theta_0T)} $ $ \frac{a_0^2}{4\theta_0} $
$ \Pi_{1}^{st} $ $ \frac{\theta(a-c)^2(2\theta-\beta)(4\theta^3-2\theta^2\beta+\beta^3-2\theta\beta^2)}{2T^2} $ $ \frac{T(2\theta-\beta)^2V^2}{8(\beta^2 U-\theta_0T)^2} $ -
$ \Pi_{2}^{st} $ $ \frac{\theta(a-c)^2(4\theta^2-\beta^2-2\theta\beta)^2}{4T^2} $ $ \frac{\theta V^2(4\theta^2-2\theta\beta-\beta^2)^2}{4(\beta^2 U-\theta_0T)^2} $ -
where $ T = 4\theta(2\theta^2-\beta^2) $, $ U = 8\theta^2-4\theta\beta-\beta^2 $, $ V = a_0\beta-\theta_0(a-c) $
Structure Wholesale supplier Dual-channel Monopoly retailer
Cournot $ \delta\leq\frac{2\beta}{2\theta+\beta} $ $ \frac{2\beta}{2\theta+\beta}<\delta<\frac{\theta_0}{\beta} $ $ \delta\geq\frac{\theta_0}{\beta} $
$ q^{co}_0 $ - $ \frac{2\beta(a-c)-a_0(2\theta+\beta)}{2[2\beta^2-\theta_0(2\theta+\beta)]} $ $ \frac{a_0}{2\theta_0} $
$ q^{co}_1 $ $ \frac{a-c}{2(2\theta+\beta)} $ $ \frac{V}{2[2\beta^2-\theta_0(2\theta+\beta)]} $ -
$ q^{co}_2 $ $ \frac{a-c}{2(2\theta+\beta)} $ $ \frac{V}{2[2\beta^2-\theta_0(2\theta+\beta)]} $ -
$ w^{co} $ $ \frac{a+c}{2} $ $ \frac{a+c}{2} $ -
$ p_0^{co} $ - $ \frac{a_0}{2} $ $ \frac{a_0}{2} $
$ p_1^{co} $ $ \frac{(a+c)(\theta+\beta)+2a\theta}{2(2\theta+\beta)} $ $ \frac{a+c}{2}+\frac{V\theta}{2[2\beta^2-\theta_0(2\theta+\beta)]} $ -
$ p_2^{co} $ $ \frac{(a+c)(\theta+\beta)+2a\theta}{2(2\theta+\beta)} $ $ \frac{a+c}{2}+\frac{V\theta}{2[2\beta^2-\theta_0(2\theta+\beta)]} $ -
$ \Pi_0^{co} $ $ \frac{(a-c)^2}{2(2\theta+\beta)} $ $ \frac{2(a-c)(a_0\beta+V)-a_0^2(2\theta+\beta)}{4[2\beta^2-\theta_0(2\theta+\beta)]} $ $ \frac{a_0^2}{4\theta_0} $
$ \Pi_{1}^{co} $ $ \frac{\theta(a-c)^2}{4(2\theta+\beta)^2} $ $ \frac{\theta V^2}{4[2\beta^2-\theta_0(2\theta+\beta)]^2} $ -
$ \Pi_{2}^{co} $ $ \frac{\theta(a-c)^2}{4(2\theta+\beta)^2} $ $ \frac{\theta V^2}{4[2\beta^2-\theta_0(2\theta+\beta)]^2} $ -
Collusion $ \delta\leq\frac{\beta}{\theta+\beta} $ $ \frac{\beta}{\theta+\beta}<\delta<\frac{\theta_0}{\beta} $ $ \delta\geq\frac{\theta_0}{\beta} $
$ q^{cn}_0 $ - $ \frac{a_0(\theta+\beta)-\beta(a-c)}{2[\theta_0(\theta+\beta)-\beta^2]} $ $ \frac{a_0}{2\theta_0} $
$ q^{cn}_1 $ $ \frac{a-c}{4(\theta+\beta)} $ $ \frac{V}{4[\beta^2-\theta_0(\theta+\beta)]} $ -
$ q^{cn}_2 $ $ \frac{a-c}{4(\theta+\beta)} $ $ \frac{V}{4[\beta^2-\theta_0(\theta+\beta)]} $ -
$ w^{cn} $ $ \frac{a+c}{2} $ $ \frac{a+c}{2} $ -
$ p_0^{cn} $ - $ \frac{a_0}{2} $ $ \frac{a_0}{2} $
$ p_1^{cn} $ $ \frac{3a+c}{4} $ $ \frac{a+c}{2}+\frac{(\theta+\beta)V}{4[\beta^2-\theta_0(\theta+\beta)]} $ -
$ p_2^{cn} $ $ \frac{3a+c}{4} $ $ \frac{a+c}{2}+\frac{(\theta+\beta)V}{4[\beta^2-\theta_0(\theta+\beta)]} $ -
$ \Pi_0^{cn} $ $ \frac{(a-c)^2}{4(\theta+\beta)} $ $ \frac{(a-c)(V+a_0\beta)-a_0^2(\theta+\beta)}{4[\beta^2-\theta_0(\theta+\beta)]} $ $ \frac{a_0^2}{4\theta_0} $
$ \Pi_{1}^{cn} $ $ \frac{(a-c)^2}{16(\theta+\beta)} $ $ \frac{V^2(\theta+\beta)}{16[\beta^2-\theta_0(\theta+\beta)]^2} $ -
$ \Pi_{2}^{cn} $ $ \frac{(a-c)^2}{16(\theta+\beta)} $ $ \frac{V^2(\theta+\beta)}{16[\beta^2-\theta_0(\theta+\beta)]^2} $ -
Stackelberg $ \delta\leq\frac{\beta U}{T} $ $ \frac{\beta U}{T}<\delta<\frac{\theta_0}{\beta} $ $ \delta\geq\frac{\theta_0}{\beta} $
$ q^{st}_0 $ - $ \frac{\beta U(a-c)-a_0T}{2(\beta^2 U-\theta_0T)} $ $ \frac{a_0}{2\theta_0} $
$ q^{st}_1 $ $ \frac{\theta(a-c)(2\theta-\beta)}{T} $ $ \frac{\theta V(2\theta-\beta)}{\beta^2 U-\theta_0T} $ -
$ q^{st}_2 $ $ \frac{(a-c)(4\theta^2-\beta^2-2\theta\beta)}{2T} $ $ \frac{V(4\theta^2-\beta^2-2\theta\beta)}{2(\beta^2 U-\theta_0T)} $ -
$ w^{st} $ $ \frac{a+c}{2} $ $ \frac{a+c}{2} $ -
$ p_0^{st} $ - $ \frac{a_0}{2} $ $ \frac{a_0}{2} $
$ p_1^{st} $ $ a-\frac{(a-c)(4\theta^3+2\theta^2\beta-\beta^3-2\theta\beta^2)}{2T} $ $ \frac{a+c}{2}+\frac{V(2\theta^2-\beta^2)(2\theta-\beta)}{2(\beta^2 U-\theta_0T)} $ -
$ p_2^{st} $ $ a-\frac{\theta(a-c)(4\theta^2+2\theta\beta-3\beta^2)}{2T} $ $ \frac{a+c}{2}+\frac{\theta V(4\theta^2-\beta^2-2\theta\beta)}{2(\beta^2 U-\theta_0T)} $ -
$ \Pi_0^{st} $ $ \frac{U(a-c)^2}{4T} $ $ \frac{U(a-c)(a_0\beta+V)-a_0^2T}{4(\beta^2 U-\theta_0T)} $ $ \frac{a_0^2}{4\theta_0} $
$ \Pi_{1}^{st} $ $ \frac{\theta(a-c)^2(2\theta-\beta)(4\theta^3-2\theta^2\beta+\beta^3-2\theta\beta^2)}{2T^2} $ $ \frac{T(2\theta-\beta)^2V^2}{8(\beta^2 U-\theta_0T)^2} $ -
$ \Pi_{2}^{st} $ $ \frac{\theta(a-c)^2(4\theta^2-\beta^2-2\theta\beta)^2}{4T^2} $ $ \frac{\theta V^2(4\theta^2-2\theta\beta-\beta^2)^2}{4(\beta^2 U-\theta_0T)^2} $ -
where $ T = 4\theta(2\theta^2-\beta^2) $, $ U = 8\theta^2-4\theta\beta-\beta^2 $, $ V = a_0\beta-\theta_0(a-c) $
Table 2.  Partial derivatives of optimal quantity with respect to $a_k$ in three patterns
Cournot $a_0$ $a_1$ $a_2$
$q^{co}_0$ $\frac{-E}{2P}$ $\frac{\beta(2\theta_2-\beta)}{2P}$ $\frac{\beta(2\theta_1-\beta)}{2P}$
$q^{co}_1$ $\frac{-\beta(\beta-2\theta_2)}{2P}$ $\frac{P(2\theta_2D+E)-\beta^2(2\theta_2-\beta)^2D}{2PDE}$ $\frac{-P(\beta D+E)-\beta^2(2\theta_1-\beta)(2\theta_2-\beta)D}{2PDE}$
$q^{co}_2$ $\frac{-\beta(\beta-2\theta_1)}{2P}$ $\frac{-P(\beta D+E)-\beta^2(2\theta_1-\beta)(2\theta_2-\beta)D}{2PDE}$ $\frac{P(2\theta_1D+E)-\beta^2(2\theta_1-\beta)^2D}{2PDE}$
Collusion $a_0$ $a_1$ $a_2$
$q^{cn}_0$ $\frac{\theta_1\theta_2-\beta^2}{Q}$ $\frac{-\beta(\theta_2-\beta)}{2Q}$ $\frac{-\beta(\theta_1-\beta)}{2Q}$
$q^{cn}_1$ $\frac{\beta(\beta-\theta_2)}{2Q}$ $\frac{Q(2\theta_2G+H)+2G\beta^2(\theta_2-\beta)^2}{4QGH}$ $\frac{-Q(2\beta G+H)+2G\beta^2(\theta_1-\beta)(\theta_2-\beta)}{4QGH}$
$q^{cn}_2$ $\frac{\beta(\beta-\theta_1)}{2Q}$ $\frac{-Q(2\beta G+H)+2G\beta^2(\theta_1-\beta)(\theta_2-\beta)}{4QGH}$ $\frac{Q(2\theta_1G+H)+2G\beta^2(\theta_2-\beta)^2}{4QGH}$
Stackelberg $a_0$ $a_1$ $a_2$
$q^{st}_0$ $\frac{2M\theta_2}{R}$ $\frac{-\theta_2\beta(2\theta_2-\beta)}{R}$ $\frac{-\beta S}{2R}$
$q^{st}_1$ $\frac{\theta_2\beta(\beta-2\theta_2)}{R}$ $\frac{R(\theta_2 N+2\theta_2M)+\theta_2\beta^2(2\theta_2-\beta)^2N}{2RMN}$ $\frac{-R(4M\theta_2+\beta N)+\beta^2(2\theta_2-\beta)SN}{4RMN}$
$q^{st}_2$ $\frac{\beta(2\theta_2\beta-E)}{2R}$ $\frac{-R(4M\theta_2+\beta N)+\beta^2(2\theta_2-\beta)SN}{4RMN}$ $\frac{RNE+S^2(\beta^2N-2M\theta_0\theta_2)}{4\theta_2RMN}$
where $P=\beta^2D-\theta_0E$, $Q=\theta_0H-\beta^2G$, $R=4M\theta_0\theta_2-\beta^2N$, $S=E-2\theta_2\beta$.
Cournot $a_0$ $a_1$ $a_2$
$q^{co}_0$ $\frac{-E}{2P}$ $\frac{\beta(2\theta_2-\beta)}{2P}$ $\frac{\beta(2\theta_1-\beta)}{2P}$
$q^{co}_1$ $\frac{-\beta(\beta-2\theta_2)}{2P}$ $\frac{P(2\theta_2D+E)-\beta^2(2\theta_2-\beta)^2D}{2PDE}$ $\frac{-P(\beta D+E)-\beta^2(2\theta_1-\beta)(2\theta_2-\beta)D}{2PDE}$
$q^{co}_2$ $\frac{-\beta(\beta-2\theta_1)}{2P}$ $\frac{-P(\beta D+E)-\beta^2(2\theta_1-\beta)(2\theta_2-\beta)D}{2PDE}$ $\frac{P(2\theta_1D+E)-\beta^2(2\theta_1-\beta)^2D}{2PDE}$
Collusion $a_0$ $a_1$ $a_2$
$q^{cn}_0$ $\frac{\theta_1\theta_2-\beta^2}{Q}$ $\frac{-\beta(\theta_2-\beta)}{2Q}$ $\frac{-\beta(\theta_1-\beta)}{2Q}$
$q^{cn}_1$ $\frac{\beta(\beta-\theta_2)}{2Q}$ $\frac{Q(2\theta_2G+H)+2G\beta^2(\theta_2-\beta)^2}{4QGH}$ $\frac{-Q(2\beta G+H)+2G\beta^2(\theta_1-\beta)(\theta_2-\beta)}{4QGH}$
$q^{cn}_2$ $\frac{\beta(\beta-\theta_1)}{2Q}$ $\frac{-Q(2\beta G+H)+2G\beta^2(\theta_1-\beta)(\theta_2-\beta)}{4QGH}$ $\frac{Q(2\theta_1G+H)+2G\beta^2(\theta_2-\beta)^2}{4QGH}$
Stackelberg $a_0$ $a_1$ $a_2$
$q^{st}_0$ $\frac{2M\theta_2}{R}$ $\frac{-\theta_2\beta(2\theta_2-\beta)}{R}$ $\frac{-\beta S}{2R}$
$q^{st}_1$ $\frac{\theta_2\beta(\beta-2\theta_2)}{R}$ $\frac{R(\theta_2 N+2\theta_2M)+\theta_2\beta^2(2\theta_2-\beta)^2N}{2RMN}$ $\frac{-R(4M\theta_2+\beta N)+\beta^2(2\theta_2-\beta)SN}{4RMN}$
$q^{st}_2$ $\frac{\beta(2\theta_2\beta-E)}{2R}$ $\frac{-R(4M\theta_2+\beta N)+\beta^2(2\theta_2-\beta)SN}{4RMN}$ $\frac{RNE+S^2(\beta^2N-2M\theta_0\theta_2)}{4\theta_2RMN}$
where $P=\beta^2D-\theta_0E$, $Q=\theta_0H-\beta^2G$, $R=4M\theta_0\theta_2-\beta^2N$, $S=E-2\theta_2\beta$.
Table 3.  The optimal solutions for three different competitive behaviors
Optimal $q_0$ $q_1 $ $q_2 $ $w$ $p_0$ $p_1$ $p_2$ $\Pi_0$ $\Pi_1$ $\Pi_2$
Cournot $4.83$ $3.44$ $2.90$ $14.25$ $8.00$ $17.69$ $20.06$ $116.36$ $11.85$ $16.86$
Collusion $5.29$ $2.81$ $2.60$ $14.13$ $8.00$ $18.24$ $20.74$ $108.01$ $11.57$ $17.23$
Stackelberg $4.76$ $3.58$ $2.90$ $14.23$ $8.00$ $17.59$ $20.03$ $117.35$ $12.04$ $16.82$
Optimal $q_0$ $q_1 $ $q_2 $ $w$ $p_0$ $p_1$ $p_2$ $\Pi_0$ $\Pi_1$ $\Pi_2$
Cournot $4.83$ $3.44$ $2.90$ $14.25$ $8.00$ $17.69$ $20.06$ $116.36$ $11.85$ $16.86$
Collusion $5.29$ $2.81$ $2.60$ $14.13$ $8.00$ $18.24$ $20.74$ $108.01$ $11.57$ $17.23$
Stackelberg $4.76$ $3.58$ $2.90$ $14.23$ $8.00$ $17.59$ $20.03$ $117.35$ $12.04$ $16.82$
[1]

Solaleh Sadat Kalantari, Maryam Esmaeili, Ata Allah Taleizadeh. Selling by clicks or leasing by bricks? A dynamic game for pricing durable products in a dual-channel supply chain. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021221

[2]

Haijiao Li, Kuan Yang, Guoqing Zhang. Optimal pricing strategy in a dual-channel supply chain: A two-period game analysis. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022072

[3]

Lisha Wang, Huaming Song, Ding Zhang, Hui Yang. Pricing decisions for complementary products in a fuzzy dual-channel supply chain. Journal of Industrial and Management Optimization, 2019, 15 (1) : 343-364. doi: 10.3934/jimo.2018046

[4]

Chong Zhang, Yaxian Wang, Ying Liu, Haiyan Wang. Coordination contracts for a dual-channel supply chain under capital constraints. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1485-1504. doi: 10.3934/jimo.2020031

[5]

Mingyong Lai, Hongzhao Yang, Erbao Cao, Duo Qiu, Jing Qiu. Optimal decisions for a dual-channel supply chain under information asymmetry. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1023-1040. doi: 10.3934/jimo.2017088

[6]

Wei Chen, Fuying Jing, Li Zhong. Coordination strategy for a dual-channel electricity supply chain with sustainability. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021139

[7]

Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial and Management Optimization, 2022, 18 (1) : 655-680. doi: 10.3934/jimo.2020173

[8]

Wanting Hu, Jingjing Ding, Pengzhen Yin, Liang Liang. Dynamic pricing and sales effort in dual-channel retailing for seasonal products. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022005

[9]

Lei Yang, Jingna Ji, Kebing Chen. Advertising games on national brand and store brand in a dual-channel supply chain. Journal of Industrial and Management Optimization, 2018, 14 (1) : 105-134. doi: 10.3934/jimo.2017039

[10]

Lianxia Zhao, Jianxin You, Shu-Cherng Fang. A dual-channel supply chain problem with resource-utilization penalty: Who can benefit from sales effort?. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2837-2853. doi: 10.3934/jimo.2020097

[11]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial and Management Optimization, 2022, 18 (1) : 541-560. doi: 10.3934/jimo.2020167

[12]

Chao Zhao, Jixiang Song. Coordination of dual-channel supply chain considering differential pricing and loss-aversion based on quality control. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022053

[13]

Ning Li, Zheng Wang. Optimal pricing and ordering strategies for dual-channel retailing with different shipping policies. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2021227

[14]

Tao Li, Suresh P. Sethi. A review of dynamic Stackelberg game models. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 125-159. doi: 10.3934/dcdsb.2017007

[15]

Tinggui Chen, Yanhui Jiang. Research on operating mechanism for creative products supply chain based on game theory. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1103-1112. doi: 10.3934/dcdss.2015.8.1103

[16]

Yadong Shu, Ying Dai, Zujun Ma. Evolutionary game theory analysis of supply chain with fairness concerns of retailers. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022098

[17]

Lianju Sun, Ziyou Gao, Yiju Wang. A Stackelberg game management model of the urban public transport. Journal of Industrial and Management Optimization, 2012, 8 (2) : 507-520. doi: 10.3934/jimo.2012.8.507

[18]

Yeong-Cheng Liou, Siegfried Schaible, Jen-Chih Yao. Supply chain inventory management via a Stackelberg equilibrium. Journal of Industrial and Management Optimization, 2006, 2 (1) : 81-94. doi: 10.3934/jimo.2006.2.81

[19]

Akio Matsumoto, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete and Continuous Dynamical Systems - B, 2021, 26 (11) : 5905-5923. doi: 10.3934/dcdsb.2021069

[20]

Ali Naimi Sadigh, S. Kamal Chaharsooghi, Majid Sheikhmohammady. A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain. Journal of Industrial and Management Optimization, 2016, 12 (1) : 337-355. doi: 10.3934/jimo.2016.12.337

2021 Impact Factor: 1.411

Article outline

Figures and Tables

[Back to Top]