-
Previous Article
Robust multi-period and multi-objective portfolio selection
- JIMO Home
- This Issue
-
Next Article
A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure
Note on $ Z $-eigenvalue inclusion theorems for tensors
School of Mathematics and Statistics, Yunnan University, Kunming 650091, China |
Wang et al. gave four $ Z $-eigenvalue inclusion intervals for tensors in [Discrete and Continuous Dynamical Systems Series B, 1 (2017), 187-198]. However, these intervals always include zero, and hence could not be used to identify the positive definiteness of a homogeneous polynomial form. In this note, we present a new $ Z $-eigenvalue inclusion interval with parameters for even-order tensors, which not only overcomes the above shortcomings under certain conditions, but also provides a checkable sufficient condition for the positive definiteness of homogeneous polynomial forms, as well as the asymptotically stability of time-invariant polynomial systems.
References:
[1] |
K. C. Chang, K. J. Pearson and T. Zhang,
Some variational principles for Z-eigenvalues of nonnegative tensors, Linear Algebra Appl., 438 (2013), 4166-4182.
doi: 10.1016/j.laa.2013.02.013. |
[2] |
C. Deng, H. Li and C. Bu,
Brauer-type eigenvalue inclusion sets of stochastic/irreducible tensors and positive definiteness of tensors, Linear Algebra Appl., 556 (2018), 55-69.
doi: 10.1016/j.laa.2018.06.032. |
[3] |
P. V. D. Driessche,
Reproduction numbers of infectious disease models., Infectious Disease Model., 2 (2017), 288-303.
doi: 10.1016/j.idm.2017.06.002. |
[4] |
O. Duchenne, F. Bach and I. S. Kweon, et al, A tensor-based algorithm for high-order graph matching, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2011), 2383-2395.
doi: 10.1109/CVPR.2009.5206619. |
[5] |
J. He,
Bounds for the largest eigenvalue of nonnegative tensors, J. Comput. Anal. Appl., 20 (2016), 1290-1301.
|
[6] |
J. He and T. Huang,
Upper bound for the largest Z-eigenvalue of positive tensors, Appl. Math. Lett., 38 (2014), 110-114.
doi: 10.1016/j.aml.2014.07.012. |
[7] |
J. He, Y. Liu and H. Ke, et al, Bounds for the Z-spectral radius of nonnegative tensors, SpringerPlus, 5 (2016).
doi: 10.1186/s40064-016-3338-3. |
[8] |
J. He, Y. Liu, J. Tian and Z. Zhang,
New sufficient condition for the positive definiteness of fourth order tensors, Mathematics, 303 (2018), 1-10.
doi: 10.3390/math6120303. |
[9] |
E. Kofidis and P. Regalia,
On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix Anal. Appl., 23 (2002), 863-884.
doi: 10.1137/S0895479801387413. |
[10] |
T. Kolda and J. Mayo,
Shifted power method for computing tensor eigenpairs, SIAM J. Matrix Anal. Appl., 32 (2011), 1095-1124.
doi: 10.1137/100801482. |
[11] |
C. Li, Y. Li and X. Kong,
New eigenvalue inclusion sets for tensors, Numer. Linear Algebra Appl., 21 (2014), 39-50.
doi: 10.1002/nla.1858. |
[12] |
C. Li, F. Wang, J. Zhao, Y. Zhu and Y. Li,
Criterions for the positive definiteness of real supersymmetric tensors, J. Comput. Appl. Math., 255 (2014), 1-14.
doi: 10.1016/j.cam.2013.04.022. |
[13] |
G. Li, L. Qi and G. Yu,
The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory, Numer. Linear Algebra Appl., 20 (2013), 1001-1029.
doi: 10.1002/nla.1877. |
[14] |
W. Li, D. Liu and S. W. Vong,
Z-eigenpair bounds for an irreducible nonnegative tensor, Linear Algebra Appl., 483 (2015), 182-199.
doi: 10.1016/j.laa.2015.05.033. |
[15] |
M. Ng, L. Qi and G. Zhou,
Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl., 31 (2009), 1090-1099.
doi: 10.1137/09074838X. |
[16] |
Q. Ni, L. Qi and F. Wang,
An eigenvalue method for testing positive definiteness of a multivariate form, IEEE Trans. Automat. Control, 53 (2008), 1096-1107.
doi: 10.1109/TAC.2008.923679. |
[17] |
L. Qi,
Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007. |
[18] |
L. Qi,
Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines, J. Symbolic Comput., 41 (2006), 1309-1327.
doi: 10.1016/j.jsc.2006.02.011. |
[19] |
L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, Society for Industrial and Applied Mathematics, Philadelphia, 2017.
doi: 10.1137/1.9781611974751.ch1. |
[20] |
L. Qi, F. Wang and Y. Wang,
Z-eigenvalue methods for a global polynomial optimization problem., Math. Program., 118 (2009), 301-316.
doi: 10.1007/s10107-007-0193-6. |
[21] |
C. Sang,
A new Brauer-type Z-eigenvalue inclusion set for tensors, Numer. Algorithms, 80 (2019), 781-794.
doi: 10.1007/s11075-018-0506-2. |
[22] |
Y. Song and L. Qi,
Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM J. Matrix Anal. Appl., 34 (2013), 1581-1595.
doi: 10.1137/130909135. |
[23] |
G. Wang, G. Zhou and L. Caccetta,
Z-eigenvalue inclusion theorems for tensors, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 187-198.
doi: 10.3934/dcdsb.2017009. |
show all references
References:
[1] |
K. C. Chang, K. J. Pearson and T. Zhang,
Some variational principles for Z-eigenvalues of nonnegative tensors, Linear Algebra Appl., 438 (2013), 4166-4182.
doi: 10.1016/j.laa.2013.02.013. |
[2] |
C. Deng, H. Li and C. Bu,
Brauer-type eigenvalue inclusion sets of stochastic/irreducible tensors and positive definiteness of tensors, Linear Algebra Appl., 556 (2018), 55-69.
doi: 10.1016/j.laa.2018.06.032. |
[3] |
P. V. D. Driessche,
Reproduction numbers of infectious disease models., Infectious Disease Model., 2 (2017), 288-303.
doi: 10.1016/j.idm.2017.06.002. |
[4] |
O. Duchenne, F. Bach and I. S. Kweon, et al, A tensor-based algorithm for high-order graph matching, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2011), 2383-2395.
doi: 10.1109/CVPR.2009.5206619. |
[5] |
J. He,
Bounds for the largest eigenvalue of nonnegative tensors, J. Comput. Anal. Appl., 20 (2016), 1290-1301.
|
[6] |
J. He and T. Huang,
Upper bound for the largest Z-eigenvalue of positive tensors, Appl. Math. Lett., 38 (2014), 110-114.
doi: 10.1016/j.aml.2014.07.012. |
[7] |
J. He, Y. Liu and H. Ke, et al, Bounds for the Z-spectral radius of nonnegative tensors, SpringerPlus, 5 (2016).
doi: 10.1186/s40064-016-3338-3. |
[8] |
J. He, Y. Liu, J. Tian and Z. Zhang,
New sufficient condition for the positive definiteness of fourth order tensors, Mathematics, 303 (2018), 1-10.
doi: 10.3390/math6120303. |
[9] |
E. Kofidis and P. Regalia,
On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix Anal. Appl., 23 (2002), 863-884.
doi: 10.1137/S0895479801387413. |
[10] |
T. Kolda and J. Mayo,
Shifted power method for computing tensor eigenpairs, SIAM J. Matrix Anal. Appl., 32 (2011), 1095-1124.
doi: 10.1137/100801482. |
[11] |
C. Li, Y. Li and X. Kong,
New eigenvalue inclusion sets for tensors, Numer. Linear Algebra Appl., 21 (2014), 39-50.
doi: 10.1002/nla.1858. |
[12] |
C. Li, F. Wang, J. Zhao, Y. Zhu and Y. Li,
Criterions for the positive definiteness of real supersymmetric tensors, J. Comput. Appl. Math., 255 (2014), 1-14.
doi: 10.1016/j.cam.2013.04.022. |
[13] |
G. Li, L. Qi and G. Yu,
The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory, Numer. Linear Algebra Appl., 20 (2013), 1001-1029.
doi: 10.1002/nla.1877. |
[14] |
W. Li, D. Liu and S. W. Vong,
Z-eigenpair bounds for an irreducible nonnegative tensor, Linear Algebra Appl., 483 (2015), 182-199.
doi: 10.1016/j.laa.2015.05.033. |
[15] |
M. Ng, L. Qi and G. Zhou,
Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl., 31 (2009), 1090-1099.
doi: 10.1137/09074838X. |
[16] |
Q. Ni, L. Qi and F. Wang,
An eigenvalue method for testing positive definiteness of a multivariate form, IEEE Trans. Automat. Control, 53 (2008), 1096-1107.
doi: 10.1109/TAC.2008.923679. |
[17] |
L. Qi,
Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007. |
[18] |
L. Qi,
Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines, J. Symbolic Comput., 41 (2006), 1309-1327.
doi: 10.1016/j.jsc.2006.02.011. |
[19] |
L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, Society for Industrial and Applied Mathematics, Philadelphia, 2017.
doi: 10.1137/1.9781611974751.ch1. |
[20] |
L. Qi, F. Wang and Y. Wang,
Z-eigenvalue methods for a global polynomial optimization problem., Math. Program., 118 (2009), 301-316.
doi: 10.1007/s10107-007-0193-6. |
[21] |
C. Sang,
A new Brauer-type Z-eigenvalue inclusion set for tensors, Numer. Algorithms, 80 (2019), 781-794.
doi: 10.1007/s11075-018-0506-2. |
[22] |
Y. Song and L. Qi,
Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM J. Matrix Anal. Appl., 34 (2013), 1581-1595.
doi: 10.1137/130909135. |
[23] |
G. Wang, G. Zhou and L. Caccetta,
Z-eigenvalue inclusion theorems for tensors, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 187-198.
doi: 10.3934/dcdsb.2017009. |
[1] |
Gang Wang, Guanglu Zhou, Louis Caccetta. Z-Eigenvalue Inclusion Theorems for Tensors. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 187-198. doi: 10.3934/dcdsb.2017009 |
[2] |
Jun He, Guangjun Xu, Yanmin Liu. New Z-eigenvalue localization sets for tensors with applications. Journal of Industrial and Management Optimization, 2022, 18 (3) : 2095-2108. doi: 10.3934/jimo.2021058 |
[3] |
Caili Sang, Zhen Chen. Optimal $ Z $-eigenvalue inclusion intervals of tensors and their applications. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2435-2468. doi: 10.3934/jimo.2021075 |
[4] |
Jean-Claude Bajard, Jérémy Marrez, Thomas Plantard, Pascal Véron. On Polynomial Modular Number Systems over $ \mathbb{Z}/{p}\mathbb{Z} $. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022018 |
[5] |
Yang Xu, Zheng-Hai Huang. Pareto eigenvalue inclusion intervals for tensors. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022035 |
[6] |
M. W. Hirsch, Hal L. Smith. Asymptotically stable equilibria for monotone semiflows. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 385-398. doi: 10.3934/dcds.2006.14.385 |
[7] |
Yaotang Li, Suhua Li. Exclusion sets in the Δ-type eigenvalue inclusion set for tensors. Journal of Industrial and Management Optimization, 2019, 15 (2) : 507-516. doi: 10.3934/jimo.2018054 |
[8] |
Scipio Cuccagna. Orbitally but not asymptotically stable ground states for the discrete NLS. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 105-134. doi: 10.3934/dcds.2010.26.105 |
[9] |
Gang Wang, Yuan Zhang. $ Z $-eigenvalue exclusion theorems for tensors. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1987-1998. doi: 10.3934/jimo.2019039 |
[10] |
François Genoud. Orbitally stable standing waves for the asymptotically linear one-dimensional NLS. Evolution Equations and Control Theory, 2013, 2 (1) : 81-100. doi: 10.3934/eect.2013.2.81 |
[11] |
Kenneth R. Meyer, Jesús F. Palacián, Patricia Yanguas. Normally stable hamiltonian systems. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1201-1214. doi: 10.3934/dcds.2013.33.1201 |
[12] |
Romain Aimino, Huyi Hu, Matthew Nicol, Andrei Török, Sandro Vaienti. Polynomial loss of memory for maps of the interval with a neutral fixed point. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 793-806. doi: 10.3934/dcds.2015.35.793 |
[13] |
Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152 |
[14] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Homoclinic orbits for a class of asymptotically quadratic Hamiltonian systems. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2855-2878. doi: 10.3934/cpaa.2019128 |
[15] |
P.E. Kloeden, Desheng Li, Chengkui Zhong. Uniform attractors of periodic and asymptotically periodic dynamical systems. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 213-232. doi: 10.3934/dcds.2005.12.213 |
[16] |
Jinlong Bai, Xuewei Ju, Desheng Li, Xiulian Wang. On the eventual stability of asymptotically autonomous systems with constraints. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4457-4473. doi: 10.3934/dcdsb.2019127 |
[17] |
Chong Wang, Gang Wang, Lixia Liu. Sharp bounds on the minimum $M$-eigenvalue and strong ellipticity condition of elasticity $Z$-tensors-tensors. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021205 |
[18] |
Alain Jacquemard, Weber Flávio Pereira. On periodic orbits of polynomial relay systems. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 331-347. doi: 10.3934/dcds.2007.17.331 |
[19] |
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 |
[20] |
Kaiping Liu, Haitao Che, Haibin Chen, Meixia Li. Parameterized S-type M-eigenvalue inclusion intervals for fourth-order partially symmetric tensors and its applications. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022077 |
2020 Impact Factor: 1.801
Tools
Article outline
[Back to Top]