[1]
|
A. Ben-Tal and A. Nemirovski, Robust optimization-methodology and applications, Math. Program., 92 (2002), 453-480.
doi: 10.1007/s101070100286.
|
[2]
|
X. Cui, X. Sun and D. Sha, An empirical study on discrete optimization models for portfolio selection, J. Ind. Manag. Optim., 5 (2009), 33-46.
doi: 10.3934/jimo.2009.5.33.
|
[3]
|
K. Deb, A. Pratap, S. Agarwal and T. A. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Comput., 6 (2002), 182-197.
doi: 10.1109/4235.996017.
|
[4]
|
D. Goldfarb and G. Iyengar, Robust portfolio selection problems, Math. Oper. Res., 28 (2003), 1-38.
doi: 10.1287/moor.28.1.1.14260.
|
[5]
|
D. Huang, S. Zhu, F. J. Fabozzi and M. Fukushima, Portfolio selection under distributional uncertainty: A relative robust CVaR approach, European J. Oper. Res., 203 (2010), 185-194.
doi: 10.1016/j.ejor.2009.07.010.
|
[6]
|
K. Khalili-Damghani and M. Amiri, Solving binary-state multi-objective reliability redundancy allocation series-parallel problem using efficient epsilon-constraint, multi-start partial bound enumeration algorithm, and DEA, Reliability Engineering and System Safety, 103 (2012), 35-44.
doi: 10.1016/j.ress.2012.03.006.
|
[7]
|
C. C. Lin and Y. T. Liu, Genetic algorithms for portfolio selection problems with minimum transaction lots, European J. Oper. Res., 185 (2008), 393-404.
doi: 10.1016/j.ejor.2006.12.024.
|
[8]
|
H. Markowitz, Portfolio Selection: Efficient Diversification of Investments, John Wiley & Sons, Inc., New York, 1959.
|
[9]
|
R. T. Marler and J. S. Arora, The weighted sum method for multi-objective optimization: New insights, Struct. Multidiscip. Optim., 41 (2010), 853-862.
doi: 10.1007/s00158-009-0460-7.
|
[10]
|
K. Ruan and M. Fukushima, Robust portfolio selection with a combined WCVaR and factor model, J. Ind. Manag. Optim., 8 (2012), 343-362.
doi: 10.3934/jimo.2012.8.343.
|
[11]
|
K. Schottle and R. Werner, Robustness properties of mean-variance portfolios, Optimization, 58 (2009), 641-663.
doi: 10.1080/02331930902819220.
|
[12]
|
H. Soleimani, H. R. Golmakani and M. H. Salimi, Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm, Expert Systems with Appl., 36 (2009), 5058-5063.
doi: 10.1016/j.eswa.2008.06.007.
|
[13]
|
Q. Wang and H. Sun, Sparse Markowitz portfolio selection by using stochastic linear complementarity approach, J. Ind. Manag. Optim., 14 (2018), 541-559.
doi: 10.3934/jimo.2017059.
|
[14]
|
Z. Wang and S. Liu, Multi-period mean-variance portfolio selection with fixed and proportional transaction costs, J. Ind. Manag. Optim., 9 (2013), 643-657.
doi: 10.3934/jimo.2013.9.643.
|
[15]
|
C. Wu, K. L. Teo and S. Wu, Min-max optimal control of linear systems with uncertainty and terminal state constraints, Automatica J. IFAC, 49 (2013), 1809-1815.
doi: 10.1016/j.automatica.2013.02.052.
|
[16]
|
P. Xidonas, G. Mavrotas, C. Hassapis and C. Zopounidis, Robust multiobjective portfolio optimization: A minimax regret approach, European J. Oper. Res., 262 (2017), 299-305.
doi: 10.1016/j.ejor.2017.03.041.
|
[17]
|
L. Yi, Z. F. Li and D. Li, Multi-period portfolio selection for asset-liability management with uncertain investment horizon, J. Ind. Manag. Optim., 4 (2008), 535-552.
doi: 10.3934/jimo.2008.4.535.
|
[18]
|
N. Zhang, A symmetric Gauss-Seidel based method for a class of multi-period mean-variance portfolio selection problems, J. Ind. Manag. Optim., (2018).
doi: 10.3934/jimo.2018189.
|
[19]
|
P. Zhang, Chance-constrained multiperiod mean absolute deviation uncertain portfolio selection, J. Ind. Manag. Optim., 15 (2019), 537-564.
doi: 10.3934/jimo.2018056.
|
[20]
|
C. Zhao, C. Wu, J. Chai, X. Wang, X. Yang, J. M. Lee and M. J. Kim, Decomposition-based multi-objective firefly algorithm for RFID network planning with uncertainty, Appl. Soft Comput., 55 (2017), 549-564.
doi: 10.1016/j.asoc.2017.02.009.
|