
-
Previous Article
Loss-averse supply chain decisions with a capital constrained retailer
- JIMO Home
- This Issue
-
Next Article
Note on $ Z $-eigenvalue inclusion theorems for tensors
Robust multi-period and multi-objective portfolio selection
Department of Mathematics and Statistics, Curtin University, GPO Box U1987, Perth, WA 6845, Australia |
In this paper, a multi-period multi-objective portfolio selection problem with uncertainty is studied. Under the assumption that the uncertainty set is ellipsoidal, the robust counterpart of the proposed problem can be transformed into a standard multi-objective optimization problem. A weighted-sum approach is then introduced to obtain Pareto front of the problem. Numerical examples will be presented to illustrate the proposed method and validate the effectiveness and efficiency of the model developed.
References:
[1] |
A. Ben-Tal and A. Nemirovski,
Robust optimization-methodology and applications, Math. Program., 92 (2002), 453-480.
doi: 10.1007/s101070100286. |
[2] |
X. Cui, X. Sun and D. Sha,
An empirical study on discrete optimization models for portfolio selection, J. Ind. Manag. Optim., 5 (2009), 33-46.
doi: 10.3934/jimo.2009.5.33. |
[3] |
K. Deb, A. Pratap, S. Agarwal and T. A. Meyarivan,
A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Comput., 6 (2002), 182-197.
doi: 10.1109/4235.996017. |
[4] |
D. Goldfarb and G. Iyengar,
Robust portfolio selection problems, Math. Oper. Res., 28 (2003), 1-38.
doi: 10.1287/moor.28.1.1.14260. |
[5] |
D. Huang, S. Zhu, F. J. Fabozzi and M. Fukushima,
Portfolio selection under distributional uncertainty: A relative robust CVaR approach, European J. Oper. Res., 203 (2010), 185-194.
doi: 10.1016/j.ejor.2009.07.010. |
[6] |
K. Khalili-Damghani and M. Amiri,
Solving binary-state multi-objective reliability redundancy allocation series-parallel problem using efficient epsilon-constraint, multi-start partial bound enumeration algorithm, and DEA, Reliability Engineering and System Safety, 103 (2012), 35-44.
doi: 10.1016/j.ress.2012.03.006. |
[7] |
C. C. Lin and Y. T. Liu,
Genetic algorithms for portfolio selection problems with minimum transaction lots, European J. Oper. Res., 185 (2008), 393-404.
doi: 10.1016/j.ejor.2006.12.024. |
[8] |
H. Markowitz, Portfolio Selection: Efficient Diversification of Investments, John Wiley & Sons, Inc., New York, 1959. |
[9] |
R. T. Marler and J. S. Arora,
The weighted sum method for multi-objective optimization: New insights, Struct. Multidiscip. Optim., 41 (2010), 853-862.
doi: 10.1007/s00158-009-0460-7. |
[10] |
K. Ruan and M. Fukushima,
Robust portfolio selection with a combined WCVaR and factor model, J. Ind. Manag. Optim., 8 (2012), 343-362.
doi: 10.3934/jimo.2012.8.343. |
[11] |
K. Schottle and R. Werner,
Robustness properties of mean-variance portfolios, Optimization, 58 (2009), 641-663.
doi: 10.1080/02331930902819220. |
[12] |
H. Soleimani, H. R. Golmakani and M. H. Salimi,
Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm, Expert Systems with Appl., 36 (2009), 5058-5063.
doi: 10.1016/j.eswa.2008.06.007. |
[13] |
Q. Wang and H. Sun,
Sparse Markowitz portfolio selection by using stochastic linear complementarity approach, J. Ind. Manag. Optim., 14 (2018), 541-559.
doi: 10.3934/jimo.2017059. |
[14] |
Z. Wang and S. Liu,
Multi-period mean-variance portfolio selection with fixed and proportional transaction costs, J. Ind. Manag. Optim., 9 (2013), 643-657.
doi: 10.3934/jimo.2013.9.643. |
[15] |
C. Wu, K. L. Teo and S. Wu,
Min-max optimal control of linear systems with uncertainty and terminal state constraints, Automatica J. IFAC, 49 (2013), 1809-1815.
doi: 10.1016/j.automatica.2013.02.052. |
[16] |
P. Xidonas, G. Mavrotas, C. Hassapis and C. Zopounidis,
Robust multiobjective portfolio optimization: A minimax regret approach, European J. Oper. Res., 262 (2017), 299-305.
doi: 10.1016/j.ejor.2017.03.041. |
[17] |
L. Yi, Z. F. Li and D. Li,
Multi-period portfolio selection for asset-liability management with uncertain investment horizon, J. Ind. Manag. Optim., 4 (2008), 535-552.
doi: 10.3934/jimo.2008.4.535. |
[18] |
N. Zhang, A symmetric Gauss-Seidel based method for a class of multi-period mean-variance portfolio selection problems, J. Ind. Manag. Optim., (2018).
doi: 10.3934/jimo.2018189. |
[19] |
P. Zhang,
Chance-constrained multiperiod mean absolute deviation uncertain portfolio selection, J. Ind. Manag. Optim., 15 (2019), 537-564.
doi: 10.3934/jimo.2018056. |
[20] |
C. Zhao, C. Wu, J. Chai, X. Wang, X. Yang, J. M. Lee and M. J. Kim,
Decomposition-based multi-objective firefly algorithm for RFID network planning with uncertainty, Appl. Soft Comput., 55 (2017), 549-564.
doi: 10.1016/j.asoc.2017.02.009. |
show all references
References:
[1] |
A. Ben-Tal and A. Nemirovski,
Robust optimization-methodology and applications, Math. Program., 92 (2002), 453-480.
doi: 10.1007/s101070100286. |
[2] |
X. Cui, X. Sun and D. Sha,
An empirical study on discrete optimization models for portfolio selection, J. Ind. Manag. Optim., 5 (2009), 33-46.
doi: 10.3934/jimo.2009.5.33. |
[3] |
K. Deb, A. Pratap, S. Agarwal and T. A. Meyarivan,
A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Comput., 6 (2002), 182-197.
doi: 10.1109/4235.996017. |
[4] |
D. Goldfarb and G. Iyengar,
Robust portfolio selection problems, Math. Oper. Res., 28 (2003), 1-38.
doi: 10.1287/moor.28.1.1.14260. |
[5] |
D. Huang, S. Zhu, F. J. Fabozzi and M. Fukushima,
Portfolio selection under distributional uncertainty: A relative robust CVaR approach, European J. Oper. Res., 203 (2010), 185-194.
doi: 10.1016/j.ejor.2009.07.010. |
[6] |
K. Khalili-Damghani and M. Amiri,
Solving binary-state multi-objective reliability redundancy allocation series-parallel problem using efficient epsilon-constraint, multi-start partial bound enumeration algorithm, and DEA, Reliability Engineering and System Safety, 103 (2012), 35-44.
doi: 10.1016/j.ress.2012.03.006. |
[7] |
C. C. Lin and Y. T. Liu,
Genetic algorithms for portfolio selection problems with minimum transaction lots, European J. Oper. Res., 185 (2008), 393-404.
doi: 10.1016/j.ejor.2006.12.024. |
[8] |
H. Markowitz, Portfolio Selection: Efficient Diversification of Investments, John Wiley & Sons, Inc., New York, 1959. |
[9] |
R. T. Marler and J. S. Arora,
The weighted sum method for multi-objective optimization: New insights, Struct. Multidiscip. Optim., 41 (2010), 853-862.
doi: 10.1007/s00158-009-0460-7. |
[10] |
K. Ruan and M. Fukushima,
Robust portfolio selection with a combined WCVaR and factor model, J. Ind. Manag. Optim., 8 (2012), 343-362.
doi: 10.3934/jimo.2012.8.343. |
[11] |
K. Schottle and R. Werner,
Robustness properties of mean-variance portfolios, Optimization, 58 (2009), 641-663.
doi: 10.1080/02331930902819220. |
[12] |
H. Soleimani, H. R. Golmakani and M. H. Salimi,
Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm, Expert Systems with Appl., 36 (2009), 5058-5063.
doi: 10.1016/j.eswa.2008.06.007. |
[13] |
Q. Wang and H. Sun,
Sparse Markowitz portfolio selection by using stochastic linear complementarity approach, J. Ind. Manag. Optim., 14 (2018), 541-559.
doi: 10.3934/jimo.2017059. |
[14] |
Z. Wang and S. Liu,
Multi-period mean-variance portfolio selection with fixed and proportional transaction costs, J. Ind. Manag. Optim., 9 (2013), 643-657.
doi: 10.3934/jimo.2013.9.643. |
[15] |
C. Wu, K. L. Teo and S. Wu,
Min-max optimal control of linear systems with uncertainty and terminal state constraints, Automatica J. IFAC, 49 (2013), 1809-1815.
doi: 10.1016/j.automatica.2013.02.052. |
[16] |
P. Xidonas, G. Mavrotas, C. Hassapis and C. Zopounidis,
Robust multiobjective portfolio optimization: A minimax regret approach, European J. Oper. Res., 262 (2017), 299-305.
doi: 10.1016/j.ejor.2017.03.041. |
[17] |
L. Yi, Z. F. Li and D. Li,
Multi-period portfolio selection for asset-liability management with uncertain investment horizon, J. Ind. Manag. Optim., 4 (2008), 535-552.
doi: 10.3934/jimo.2008.4.535. |
[18] |
N. Zhang, A symmetric Gauss-Seidel based method for a class of multi-period mean-variance portfolio selection problems, J. Ind. Manag. Optim., (2018).
doi: 10.3934/jimo.2018189. |
[19] |
P. Zhang,
Chance-constrained multiperiod mean absolute deviation uncertain portfolio selection, J. Ind. Manag. Optim., 15 (2019), 537-564.
doi: 10.3934/jimo.2018056. |
[20] |
C. Zhao, C. Wu, J. Chai, X. Wang, X. Yang, J. M. Lee and M. J. Kim,
Decomposition-based multi-objective firefly algorithm for RFID network planning with uncertainty, Appl. Soft Comput., 55 (2017), 549-564.
doi: 10.1016/j.asoc.2017.02.009. |







1.6062540e+002 | 1.6005381e+002 | 1.5941714e+002 | 1.5883923e+002 | 1.5824019e+002 | |
-4.3718793e+001 | -4.3458314e+001 | -4.3193335e+001 | -4.2953594e+001 | -4.2647292e+001 | |
-1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | |
-1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | |
1.9724480e+003 | 1.9722713e+003 | 1.9720766e+003 | 1.9718941e+003 | 1.9717006e+003 | |
-1.3675740e+002 | -1.3651295e+002 | -1.3620477e+002 | -1.3596164e+002 | -1.3572250e+002 | |
-9.7855928e+002 | -9.7836228e+002 | -9.7827192e+002 | -9.7813905e+002 | -9.7802742e+002 | |
-4.6542445e+002 | -4.6521487e+002 | -4.6500508e+002 | -4.6479322e+002 | -4.6454631e+002 | |
1.5230230e+003 | 1.5227606e+003 | 1.5225158e+003 | 1.5222595e+003 | 1.5219708e+003 | |
-3.8955914e+001 | -3.8854705e+001 | -3.8649778e+001 | -3.8458643e+001 | -3.8279222e+001 |
1.6062540e+002 | 1.6005381e+002 | 1.5941714e+002 | 1.5883923e+002 | 1.5824019e+002 | |
-4.3718793e+001 | -4.3458314e+001 | -4.3193335e+001 | -4.2953594e+001 | -4.2647292e+001 | |
-1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | |
-1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | |
1.9724480e+003 | 1.9722713e+003 | 1.9720766e+003 | 1.9718941e+003 | 1.9717006e+003 | |
-1.3675740e+002 | -1.3651295e+002 | -1.3620477e+002 | -1.3596164e+002 | -1.3572250e+002 | |
-9.7855928e+002 | -9.7836228e+002 | -9.7827192e+002 | -9.7813905e+002 | -9.7802742e+002 | |
-4.6542445e+002 | -4.6521487e+002 | -4.6500508e+002 | -4.6479322e+002 | -4.6454631e+002 | |
1.5230230e+003 | 1.5227606e+003 | 1.5225158e+003 | 1.5222595e+003 | 1.5219708e+003 | |
-3.8955914e+001 | -3.8854705e+001 | -3.8649778e+001 | -3.8458643e+001 | -3.8279222e+001 |
2.1589291e-002 | -3.4351365e-002 | 5.7805964e-002 | 2.3686226e-003 | 1.0158904e-003 | |
-2.8283011e-001 | -2.7323758e-004 | 1.6033220e-003 | -3.5364786e-003 | -2.6401259e-004 | |
-3.3036266e+002 | -3.5623656e+002 | -2.4031564e+002 | -3.7257428e+002 | -3.4108233e+002 | |
-3.0865547e+002 | -2.8842569e+002 | -2.9824681e+002 | -2.6018254e+002 | -2.7533841e+002 | |
7.0391477e+002 | 6.9146259e+002 | 6.8271055e+002 | 6.6623463e+002 | 6.5626173e+002 | |
-2.7364462e-002 | -3.5663105e-002 | -4.9939414e-002 | 1.0528198e-003 | -3.5473078e-001 | |
-1.3859574e+002 | -1.1951280e+002 | -2.1609022e+002 | -1.0360357e+002 | -1.0937146e+002 | |
-1.1308908e-001 | -2.4663699e-003 | -2.2421419e-003 | -7.7830259e-003 | -1.7166429e-007 | |
2.1891752e-003 | 1.6847602e-007 | 5.8640523e-002 | 3.0980424e-003 | 7.3055641e-001 | |
-2.8203111e-007 | -3.2609527e-004 | -7.4650111e-008 | -1.1673710e-006 | -3.2439030e-003 |
2.1589291e-002 | -3.4351365e-002 | 5.7805964e-002 | 2.3686226e-003 | 1.0158904e-003 | |
-2.8283011e-001 | -2.7323758e-004 | 1.6033220e-003 | -3.5364786e-003 | -2.6401259e-004 | |
-3.3036266e+002 | -3.5623656e+002 | -2.4031564e+002 | -3.7257428e+002 | -3.4108233e+002 | |
-3.0865547e+002 | -2.8842569e+002 | -2.9824681e+002 | -2.6018254e+002 | -2.7533841e+002 | |
7.0391477e+002 | 6.9146259e+002 | 6.8271055e+002 | 6.6623463e+002 | 6.5626173e+002 | |
-2.7364462e-002 | -3.5663105e-002 | -4.9939414e-002 | 1.0528198e-003 | -3.5473078e-001 | |
-1.3859574e+002 | -1.1951280e+002 | -2.1609022e+002 | -1.0360357e+002 | -1.0937146e+002 | |
-1.1308908e-001 | -2.4663699e-003 | -2.2421419e-003 | -7.7830259e-003 | -1.7166429e-007 | |
2.1891752e-003 | 1.6847602e-007 | 5.8640523e-002 | 3.0980424e-003 | 7.3055641e-001 | |
-2.8203111e-007 | -3.2609527e-004 | -7.4650111e-008 | -1.1673710e-006 | -3.2439030e-003 |
-5.4467604e-002 | -7.0948978e-007 | -2.2561076e-004 | -1.0737564e-002 | -1.6291721e-004 | |
-1.6419802e-003 | -5.6357371e-007 | -7.4291123e-003 | 4.3365254e-003 | -2.9140832e-004 | |
-1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | |
-1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | |
1.7420318e+003 | 1.7397785e+003 | 1.7370980e+003 | 1.7349762e+003 | 1.7353447e+003 | |
-9.7249593e-008 | -3.9907242e-002 | -1.8502745e-007 | -4.0113434e-002 | -3.8173914e-004 | |
-7.9037071e+002 | -7.9581203e+002 | -7.9336516e+002 | -7.8689932e+002 | -7.9102920e+002 | |
-2.1545195e+002 | -2.0339581e+002 | -2.0451219e+002 | -2.0476930e+002 | -1.9763968e+002 | |
1.2043583e+003 | 1.2000782e+003 | 1.2014231e+003 | 1.1974970e+003 | 1.1941434e+003 | |
-3.4352764e-002 | -2.3689203e-007 | -1.2659914e-004 | -1.2481443e-007 | -2.0840295e-007 |
-5.4467604e-002 | -7.0948978e-007 | -2.2561076e-004 | -1.0737564e-002 | -1.6291721e-004 | |
-1.6419802e-003 | -5.6357371e-007 | -7.4291123e-003 | 4.3365254e-003 | -2.9140832e-004 | |
-1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | |
-1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | |
1.7420318e+003 | 1.7397785e+003 | 1.7370980e+003 | 1.7349762e+003 | 1.7353447e+003 | |
-9.7249593e-008 | -3.9907242e-002 | -1.8502745e-007 | -4.0113434e-002 | -3.8173914e-004 | |
-7.9037071e+002 | -7.9581203e+002 | -7.9336516e+002 | -7.8689932e+002 | -7.9102920e+002 | |
-2.1545195e+002 | -2.0339581e+002 | -2.0451219e+002 | -2.0476930e+002 | -1.9763968e+002 | |
1.2043583e+003 | 1.2000782e+003 | 1.2014231e+003 | 1.1974970e+003 | 1.1941434e+003 | |
-3.4352764e-002 | -2.3689203e-007 | -1.2659914e-004 | -1.2481443e-007 | -2.0840295e-007 |
[1] |
Han Yang, Jia Yue, Nan-jing Huang. Multi-objective robust cross-market mixed portfolio optimization under hierarchical risk integration. Journal of Industrial and Management Optimization, 2020, 16 (2) : 759-775. doi: 10.3934/jimo.2018177 |
[2] |
Zhongqiang Wu, Zongkui Xie. A multi-objective lion swarm optimization based on multi-agent. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022001 |
[3] |
Yuan-mei Xia, Xin-min Yang, Ke-quan Zhao. A combined scalarization method for multi-objective optimization problems. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2669-2683. doi: 10.3934/jimo.2020088 |
[4] |
Shungen Luo, Xiuping Guo. Multi-objective optimization of multi-microgrid power dispatch under uncertainties using interval optimization. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021208 |
[5] |
Xia Zhao, Jianping Dou. Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1263-1288. doi: 10.3934/jimo.2018095 |
[6] |
Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial and Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009 |
[7] |
Min Zhang, Gang Li. Multi-objective optimization algorithm based on improved particle swarm in cloud computing environment. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1413-1426. doi: 10.3934/dcdss.2019097 |
[8] |
Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1041-1054. doi: 10.3934/jimo.2017089 |
[9] |
Danthai Thongphiew, Vira Chankong, Fang-Fang Yin, Q. Jackie Wu. An on-line adaptive radiation therapy system for intensity modulated radiation therapy: An application of multi-objective optimization. Journal of Industrial and Management Optimization, 2008, 4 (3) : 453-475. doi: 10.3934/jimo.2008.4.453 |
[10] |
Yu Chen, Yonggang Li, Bei Sun, Chunhua Yang, Hongqiu Zhu. Multi-objective chance-constrained blending optimization of zinc smelter under stochastic uncertainty. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021169 |
[11] |
Xiliang Sun, Wanjie Hu, Xiaolong Xue, Jianjun Dong. Multi-objective optimization model for planning metro-based underground logistics system network: Nanjing case study. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021179 |
[12] |
Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1949-1977. doi: 10.3934/jimo.2021051 |
[13] |
Jian Xiong, Zhongbao Zhou, Ke Tian, Tianjun Liao, Jianmai Shi. A multi-objective approach for weapon selection and planning problems in dynamic environments. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1189-1211. doi: 10.3934/jimo.2016068 |
[14] |
Xueting Cui, Xiaoling Sun, Dan Sha. An empirical study on discrete optimization models for portfolio selection. Journal of Industrial and Management Optimization, 2009, 5 (1) : 33-46. doi: 10.3934/jimo.2009.5.33 |
[15] |
Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial and Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789 |
[16] |
Lin Jiang, Changzhi Wu, Song Wang. Distributionally robust multi-period portfolio selection subject to bankruptcy constraints. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021218 |
[17] |
Alireza Eydi, Rozhin Saedi. A multi-objective decision-making model for supplier selection considering transport discounts and supplier capacity constraints. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3581-3602. doi: 10.3934/jimo.2020134 |
[18] |
Maedeh Agahgolnezhad Gerdrodbari, Fatemeh Harsej, Mahboubeh Sadeghpour, Mohammad Molani Aghdam. A robust multi-objective model for managing the distribution of perishable products within a green closed-loop supply chain. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021107 |
[19] |
Alireza Goli, Hasan Khademi Zare, Reza Tavakkoli-Moghaddam, Ahmad Sadeghieh. Application of robust optimization for a product portfolio problem using an invasive weed optimization algorithm. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 187-209. doi: 10.3934/naco.2019014 |
[20] |
Masoud Mohammadzadeh, Alireza Arshadi Khamseh, Mohammad Mohammadi. A multi-objective integrated model for closed-loop supply chain configuration and supplier selection considering uncertain demand and different performance levels. Journal of Industrial and Management Optimization, 2017, 13 (2) : 1041-1064. doi: 10.3934/jimo.2016061 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]