
-
Previous Article
Loss-averse supply chain decisions with a capital constrained retailer
- JIMO Home
- This Issue
-
Next Article
Note on $ Z $-eigenvalue inclusion theorems for tensors
Robust multi-period and multi-objective portfolio selection
Department of Mathematics and Statistics, Curtin University, GPO Box U1987, Perth, WA 6845, Australia |
In this paper, a multi-period multi-objective portfolio selection problem with uncertainty is studied. Under the assumption that the uncertainty set is ellipsoidal, the robust counterpart of the proposed problem can be transformed into a standard multi-objective optimization problem. A weighted-sum approach is then introduced to obtain Pareto front of the problem. Numerical examples will be presented to illustrate the proposed method and validate the effectiveness and efficiency of the model developed.
References:
[1] |
A. Ben-Tal and A. Nemirovski,
Robust optimization-methodology and applications, Math. Program., 92 (2002), 453-480.
doi: 10.1007/s101070100286. |
[2] |
X. Cui, X. Sun and D. Sha,
An empirical study on discrete optimization models for portfolio selection, J. Ind. Manag. Optim., 5 (2009), 33-46.
doi: 10.3934/jimo.2009.5.33. |
[3] |
K. Deb, A. Pratap, S. Agarwal and T. A. Meyarivan,
A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Comput., 6 (2002), 182-197.
doi: 10.1109/4235.996017. |
[4] |
D. Goldfarb and G. Iyengar,
Robust portfolio selection problems, Math. Oper. Res., 28 (2003), 1-38.
doi: 10.1287/moor.28.1.1.14260. |
[5] |
D. Huang, S. Zhu, F. J. Fabozzi and M. Fukushima,
Portfolio selection under distributional uncertainty: A relative robust CVaR approach, European J. Oper. Res., 203 (2010), 185-194.
doi: 10.1016/j.ejor.2009.07.010. |
[6] |
K. Khalili-Damghani and M. Amiri,
Solving binary-state multi-objective reliability redundancy allocation series-parallel problem using efficient epsilon-constraint, multi-start partial bound enumeration algorithm, and DEA, Reliability Engineering and System Safety, 103 (2012), 35-44.
doi: 10.1016/j.ress.2012.03.006. |
[7] |
C. C. Lin and Y. T. Liu,
Genetic algorithms for portfolio selection problems with minimum transaction lots, European J. Oper. Res., 185 (2008), 393-404.
doi: 10.1016/j.ejor.2006.12.024. |
[8] |
H. Markowitz, Portfolio Selection: Efficient Diversification of Investments, John Wiley & Sons, Inc., New York, 1959. |
[9] |
R. T. Marler and J. S. Arora,
The weighted sum method for multi-objective optimization: New insights, Struct. Multidiscip. Optim., 41 (2010), 853-862.
doi: 10.1007/s00158-009-0460-7. |
[10] |
K. Ruan and M. Fukushima,
Robust portfolio selection with a combined WCVaR and factor model, J. Ind. Manag. Optim., 8 (2012), 343-362.
doi: 10.3934/jimo.2012.8.343. |
[11] |
K. Schottle and R. Werner,
Robustness properties of mean-variance portfolios, Optimization, 58 (2009), 641-663.
doi: 10.1080/02331930902819220. |
[12] |
H. Soleimani, H. R. Golmakani and M. H. Salimi,
Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm, Expert Systems with Appl., 36 (2009), 5058-5063.
doi: 10.1016/j.eswa.2008.06.007. |
[13] |
Q. Wang and H. Sun,
Sparse Markowitz portfolio selection by using stochastic linear complementarity approach, J. Ind. Manag. Optim., 14 (2018), 541-559.
doi: 10.3934/jimo.2017059. |
[14] |
Z. Wang and S. Liu,
Multi-period mean-variance portfolio selection with fixed and proportional transaction costs, J. Ind. Manag. Optim., 9 (2013), 643-657.
doi: 10.3934/jimo.2013.9.643. |
[15] |
C. Wu, K. L. Teo and S. Wu,
Min-max optimal control of linear systems with uncertainty and terminal state constraints, Automatica J. IFAC, 49 (2013), 1809-1815.
doi: 10.1016/j.automatica.2013.02.052. |
[16] |
P. Xidonas, G. Mavrotas, C. Hassapis and C. Zopounidis,
Robust multiobjective portfolio optimization: A minimax regret approach, European J. Oper. Res., 262 (2017), 299-305.
doi: 10.1016/j.ejor.2017.03.041. |
[17] |
L. Yi, Z. F. Li and D. Li,
Multi-period portfolio selection for asset-liability management with uncertain investment horizon, J. Ind. Manag. Optim., 4 (2008), 535-552.
doi: 10.3934/jimo.2008.4.535. |
[18] |
N. Zhang, A symmetric Gauss-Seidel based method for a class of multi-period mean-variance portfolio selection problems, J. Ind. Manag. Optim., (2018).
doi: 10.3934/jimo.2018189. |
[19] |
P. Zhang,
Chance-constrained multiperiod mean absolute deviation uncertain portfolio selection, J. Ind. Manag. Optim., 15 (2019), 537-564.
doi: 10.3934/jimo.2018056. |
[20] |
C. Zhao, C. Wu, J. Chai, X. Wang, X. Yang, J. M. Lee and M. J. Kim,
Decomposition-based multi-objective firefly algorithm for RFID network planning with uncertainty, Appl. Soft Comput., 55 (2017), 549-564.
doi: 10.1016/j.asoc.2017.02.009. |
show all references
References:
[1] |
A. Ben-Tal and A. Nemirovski,
Robust optimization-methodology and applications, Math. Program., 92 (2002), 453-480.
doi: 10.1007/s101070100286. |
[2] |
X. Cui, X. Sun and D. Sha,
An empirical study on discrete optimization models for portfolio selection, J. Ind. Manag. Optim., 5 (2009), 33-46.
doi: 10.3934/jimo.2009.5.33. |
[3] |
K. Deb, A. Pratap, S. Agarwal and T. A. Meyarivan,
A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Comput., 6 (2002), 182-197.
doi: 10.1109/4235.996017. |
[4] |
D. Goldfarb and G. Iyengar,
Robust portfolio selection problems, Math. Oper. Res., 28 (2003), 1-38.
doi: 10.1287/moor.28.1.1.14260. |
[5] |
D. Huang, S. Zhu, F. J. Fabozzi and M. Fukushima,
Portfolio selection under distributional uncertainty: A relative robust CVaR approach, European J. Oper. Res., 203 (2010), 185-194.
doi: 10.1016/j.ejor.2009.07.010. |
[6] |
K. Khalili-Damghani and M. Amiri,
Solving binary-state multi-objective reliability redundancy allocation series-parallel problem using efficient epsilon-constraint, multi-start partial bound enumeration algorithm, and DEA, Reliability Engineering and System Safety, 103 (2012), 35-44.
doi: 10.1016/j.ress.2012.03.006. |
[7] |
C. C. Lin and Y. T. Liu,
Genetic algorithms for portfolio selection problems with minimum transaction lots, European J. Oper. Res., 185 (2008), 393-404.
doi: 10.1016/j.ejor.2006.12.024. |
[8] |
H. Markowitz, Portfolio Selection: Efficient Diversification of Investments, John Wiley & Sons, Inc., New York, 1959. |
[9] |
R. T. Marler and J. S. Arora,
The weighted sum method for multi-objective optimization: New insights, Struct. Multidiscip. Optim., 41 (2010), 853-862.
doi: 10.1007/s00158-009-0460-7. |
[10] |
K. Ruan and M. Fukushima,
Robust portfolio selection with a combined WCVaR and factor model, J. Ind. Manag. Optim., 8 (2012), 343-362.
doi: 10.3934/jimo.2012.8.343. |
[11] |
K. Schottle and R. Werner,
Robustness properties of mean-variance portfolios, Optimization, 58 (2009), 641-663.
doi: 10.1080/02331930902819220. |
[12] |
H. Soleimani, H. R. Golmakani and M. H. Salimi,
Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm, Expert Systems with Appl., 36 (2009), 5058-5063.
doi: 10.1016/j.eswa.2008.06.007. |
[13] |
Q. Wang and H. Sun,
Sparse Markowitz portfolio selection by using stochastic linear complementarity approach, J. Ind. Manag. Optim., 14 (2018), 541-559.
doi: 10.3934/jimo.2017059. |
[14] |
Z. Wang and S. Liu,
Multi-period mean-variance portfolio selection with fixed and proportional transaction costs, J. Ind. Manag. Optim., 9 (2013), 643-657.
doi: 10.3934/jimo.2013.9.643. |
[15] |
C. Wu, K. L. Teo and S. Wu,
Min-max optimal control of linear systems with uncertainty and terminal state constraints, Automatica J. IFAC, 49 (2013), 1809-1815.
doi: 10.1016/j.automatica.2013.02.052. |
[16] |
P. Xidonas, G. Mavrotas, C. Hassapis and C. Zopounidis,
Robust multiobjective portfolio optimization: A minimax regret approach, European J. Oper. Res., 262 (2017), 299-305.
doi: 10.1016/j.ejor.2017.03.041. |
[17] |
L. Yi, Z. F. Li and D. Li,
Multi-period portfolio selection for asset-liability management with uncertain investment horizon, J. Ind. Manag. Optim., 4 (2008), 535-552.
doi: 10.3934/jimo.2008.4.535. |
[18] |
N. Zhang, A symmetric Gauss-Seidel based method for a class of multi-period mean-variance portfolio selection problems, J. Ind. Manag. Optim., (2018).
doi: 10.3934/jimo.2018189. |
[19] |
P. Zhang,
Chance-constrained multiperiod mean absolute deviation uncertain portfolio selection, J. Ind. Manag. Optim., 15 (2019), 537-564.
doi: 10.3934/jimo.2018056. |
[20] |
C. Zhao, C. Wu, J. Chai, X. Wang, X. Yang, J. M. Lee and M. J. Kim,
Decomposition-based multi-objective firefly algorithm for RFID network planning with uncertainty, Appl. Soft Comput., 55 (2017), 549-564.
doi: 10.1016/j.asoc.2017.02.009. |







1.6062540e+002 | 1.6005381e+002 | 1.5941714e+002 | 1.5883923e+002 | 1.5824019e+002 | |
-4.3718793e+001 | -4.3458314e+001 | -4.3193335e+001 | -4.2953594e+001 | -4.2647292e+001 | |
-1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | |
-1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | |
1.9724480e+003 | 1.9722713e+003 | 1.9720766e+003 | 1.9718941e+003 | 1.9717006e+003 | |
-1.3675740e+002 | -1.3651295e+002 | -1.3620477e+002 | -1.3596164e+002 | -1.3572250e+002 | |
-9.7855928e+002 | -9.7836228e+002 | -9.7827192e+002 | -9.7813905e+002 | -9.7802742e+002 | |
-4.6542445e+002 | -4.6521487e+002 | -4.6500508e+002 | -4.6479322e+002 | -4.6454631e+002 | |
1.5230230e+003 | 1.5227606e+003 | 1.5225158e+003 | 1.5222595e+003 | 1.5219708e+003 | |
-3.8955914e+001 | -3.8854705e+001 | -3.8649778e+001 | -3.8458643e+001 | -3.8279222e+001 |
1.6062540e+002 | 1.6005381e+002 | 1.5941714e+002 | 1.5883923e+002 | 1.5824019e+002 | |
-4.3718793e+001 | -4.3458314e+001 | -4.3193335e+001 | -4.2953594e+001 | -4.2647292e+001 | |
-1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | |
-1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | |
1.9724480e+003 | 1.9722713e+003 | 1.9720766e+003 | 1.9718941e+003 | 1.9717006e+003 | |
-1.3675740e+002 | -1.3651295e+002 | -1.3620477e+002 | -1.3596164e+002 | -1.3572250e+002 | |
-9.7855928e+002 | -9.7836228e+002 | -9.7827192e+002 | -9.7813905e+002 | -9.7802742e+002 | |
-4.6542445e+002 | -4.6521487e+002 | -4.6500508e+002 | -4.6479322e+002 | -4.6454631e+002 | |
1.5230230e+003 | 1.5227606e+003 | 1.5225158e+003 | 1.5222595e+003 | 1.5219708e+003 | |
-3.8955914e+001 | -3.8854705e+001 | -3.8649778e+001 | -3.8458643e+001 | -3.8279222e+001 |
2.1589291e-002 | -3.4351365e-002 | 5.7805964e-002 | 2.3686226e-003 | 1.0158904e-003 | |
-2.8283011e-001 | -2.7323758e-004 | 1.6033220e-003 | -3.5364786e-003 | -2.6401259e-004 | |
-3.3036266e+002 | -3.5623656e+002 | -2.4031564e+002 | -3.7257428e+002 | -3.4108233e+002 | |
-3.0865547e+002 | -2.8842569e+002 | -2.9824681e+002 | -2.6018254e+002 | -2.7533841e+002 | |
7.0391477e+002 | 6.9146259e+002 | 6.8271055e+002 | 6.6623463e+002 | 6.5626173e+002 | |
-2.7364462e-002 | -3.5663105e-002 | -4.9939414e-002 | 1.0528198e-003 | -3.5473078e-001 | |
-1.3859574e+002 | -1.1951280e+002 | -2.1609022e+002 | -1.0360357e+002 | -1.0937146e+002 | |
-1.1308908e-001 | -2.4663699e-003 | -2.2421419e-003 | -7.7830259e-003 | -1.7166429e-007 | |
2.1891752e-003 | 1.6847602e-007 | 5.8640523e-002 | 3.0980424e-003 | 7.3055641e-001 | |
-2.8203111e-007 | -3.2609527e-004 | -7.4650111e-008 | -1.1673710e-006 | -3.2439030e-003 |
2.1589291e-002 | -3.4351365e-002 | 5.7805964e-002 | 2.3686226e-003 | 1.0158904e-003 | |
-2.8283011e-001 | -2.7323758e-004 | 1.6033220e-003 | -3.5364786e-003 | -2.6401259e-004 | |
-3.3036266e+002 | -3.5623656e+002 | -2.4031564e+002 | -3.7257428e+002 | -3.4108233e+002 | |
-3.0865547e+002 | -2.8842569e+002 | -2.9824681e+002 | -2.6018254e+002 | -2.7533841e+002 | |
7.0391477e+002 | 6.9146259e+002 | 6.8271055e+002 | 6.6623463e+002 | 6.5626173e+002 | |
-2.7364462e-002 | -3.5663105e-002 | -4.9939414e-002 | 1.0528198e-003 | -3.5473078e-001 | |
-1.3859574e+002 | -1.1951280e+002 | -2.1609022e+002 | -1.0360357e+002 | -1.0937146e+002 | |
-1.1308908e-001 | -2.4663699e-003 | -2.2421419e-003 | -7.7830259e-003 | -1.7166429e-007 | |
2.1891752e-003 | 1.6847602e-007 | 5.8640523e-002 | 3.0980424e-003 | 7.3055641e-001 | |
-2.8203111e-007 | -3.2609527e-004 | -7.4650111e-008 | -1.1673710e-006 | -3.2439030e-003 |
-5.4467604e-002 | -7.0948978e-007 | -2.2561076e-004 | -1.0737564e-002 | -1.6291721e-004 | |
-1.6419802e-003 | -5.6357371e-007 | -7.4291123e-003 | 4.3365254e-003 | -2.9140832e-004 | |
-1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | |
-1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | |
1.7420318e+003 | 1.7397785e+003 | 1.7370980e+003 | 1.7349762e+003 | 1.7353447e+003 | |
-9.7249593e-008 | -3.9907242e-002 | -1.8502745e-007 | -4.0113434e-002 | -3.8173914e-004 | |
-7.9037071e+002 | -7.9581203e+002 | -7.9336516e+002 | -7.8689932e+002 | -7.9102920e+002 | |
-2.1545195e+002 | -2.0339581e+002 | -2.0451219e+002 | -2.0476930e+002 | -1.9763968e+002 | |
1.2043583e+003 | 1.2000782e+003 | 1.2014231e+003 | 1.1974970e+003 | 1.1941434e+003 | |
-3.4352764e-002 | -2.3689203e-007 | -1.2659914e-004 | -1.2481443e-007 | -2.0840295e-007 |
-5.4467604e-002 | -7.0948978e-007 | -2.2561076e-004 | -1.0737564e-002 | -1.6291721e-004 | |
-1.6419802e-003 | -5.6357371e-007 | -7.4291123e-003 | 4.3365254e-003 | -2.9140832e-004 | |
-1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | |
-1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | -1.0000000e+003 | |
1.7420318e+003 | 1.7397785e+003 | 1.7370980e+003 | 1.7349762e+003 | 1.7353447e+003 | |
-9.7249593e-008 | -3.9907242e-002 | -1.8502745e-007 | -4.0113434e-002 | -3.8173914e-004 | |
-7.9037071e+002 | -7.9581203e+002 | -7.9336516e+002 | -7.8689932e+002 | -7.9102920e+002 | |
-2.1545195e+002 | -2.0339581e+002 | -2.0451219e+002 | -2.0476930e+002 | -1.9763968e+002 | |
1.2043583e+003 | 1.2000782e+003 | 1.2014231e+003 | 1.1974970e+003 | 1.1941434e+003 | |
-3.4352764e-002 | -2.3689203e-007 | -1.2659914e-004 | -1.2481443e-007 | -2.0840295e-007 |
[1] |
Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial & Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009 |
[2] |
Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109 |
[3] |
Bing Liu, Ming Zhou. Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin. Journal of Industrial & Management Optimization, 2021, 17 (2) : 937-952. doi: 10.3934/jimo.2020005 |
[4] |
Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100 |
[5] |
Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017 |
[6] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021013 |
[7] |
Junkee Jeon. Finite horizon portfolio selection problems with stochastic borrowing constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 733-763. doi: 10.3934/jimo.2019132 |
[8] |
Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050 |
[9] |
Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020166 |
[10] |
Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133 |
[11] |
Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115 |
[12] |
Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098 |
[13] |
Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005 |
[14] |
Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020176 |
[15] |
Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381 |
[16] |
Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020031 |
[17] |
Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119 |
[18] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
[19] |
Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117 |
[20] |
Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139 |
2019 Impact Factor: 1.366
Tools
Article outline
Figures and Tables
[Back to Top]