
-
Previous Article
On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set
- JIMO Home
- This Issue
-
Next Article
An adaptive dynamic programming method for torque ripple minimization of PMSM
Optimal stop-loss reinsurance with joint utility constraints
1. | Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, Shanghai 200241, China |
2. | Centre for Actuarial Studies, Department of Economics, The University of Melbourne, VIC 3010, Australia |
3. | Department of Financial Engineering, Ningbo University, 818 Fenghua Road, Ningbo 315211, China |
We investigate the optimal reinsurance problems in this paper, specifically, the stop-loss strategies that can bring mutual benefit to both the insurance company and the reinsurance company. The utility improvement constraints are adopted by both contracting parties to guarantee that a reinsurance contract will bring higher expected utilities of wealth to the two participants. We also introduce five risk criteria that reflect the interests of both parties. Under each optimality criterion, we obtain explicit expressions of optimal stop-loss retentions and the corresponding optimised value of objective functions. The upper and lower bounds of expected utility increments under the optimal stop-loss retentions are provided. In the numerical example, we analyse the expected utility improvements under the criterion of minimising total Value-at-Risk. Notable increases in the lower bound of total utility increments are observed after adopting the joint utility improvement constraints.
References:
[1] |
K. J. Arrow, Uncertainty and the welfare economics of medical care, Uncertainty in Economics, 1978, Pages 345,347–375.
doi: 10.1016/B978-0-12-214850-7.50028-0. |
[2] |
P. Artzner, F. Delbaen, J. M. Eber and D. Heath,
Coherent measures of risk, Mathematical Finance, 9 (1999), 203-228.
doi: 10.1111/1467-9965.00068. |
[3] |
L. Bai, J. Cai and M. Zhou,
Optimal reinsurance policies for an insurer with a bivariate reserve risk process in a dynamic setting, Insurance: Mathematics and Economics, 53 (2013), 664-670.
doi: 10.1016/j.insmatheco.2013.09.008. |
[4] |
A. Balbás, B. Balbás, R. Balbás and A. Heras,
Optimal reinsurance under risk and uncertainty, Insurance: Mathematics and Economics, 60 (2015), 61-74.
doi: 10.1016/j.insmatheco.2014.11.001. |
[5] |
I. D. Baltas, N. E. Frangos and A. N. Yannacopoulos,
Optimal investment and reinsurance policies in insurance markets under the effect of inside information, Applied Stochastic Models in Business & Industry, 28 (2013), 506-528.
doi: 10.1002/asmb.925. |
[6] |
A. P. Bazaz and A. T. P. Najafabadi,
An optimal reinsurance contract from insurer's and reinsurer's viewpoints, Applications and Applied Mathematics, 10 (2015), 970-982.
|
[7] |
R. E. Beard, T. Pentikainen and E. Pesonen, Risk Theory, second edition, Chapman and Hall, London, 1977. Google Scholar |
[8] |
K. Borch,
Reciprocal reinsurance treaties, ASTIN Bulletin, 1 (1960), 170-191.
doi: 10.1017/S0515036100009557. |
[9] |
K. Borch,
The optimal reinsurance treaty, ASTIN Bulletin, 5 (1969), 293-297.
doi: 10.1017/S051503610000814X. |
[10] |
J. Cai, Y. Fang, Z. Li and G. E. Willmot,
Optimal reciprocal reinsurance treaties under the joint survival probability and the joint profitable probability, Journal of Risk and Insurance, 80 (2013), 145-168.
doi: 10.1111/j.1539-6975.2012.01462.x. |
[11] |
J. Cai and T. Mao, Risk measures derived from a regulator's perspective on the regulatory capital requirements for insurers, SSRN, (2018), 39pp.
doi: 10.2139/ssrn.3127285. |
[12] |
J. Cai and K. S. Tan,
Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measures, ASTIN Bulletin, 37 (2007), 93-112.
doi: 10.1017/S0515036100014756. |
[13] |
Y. Chi and H. Meng,
Optimal reinsurance arrangements in the presence of two reinsurers, Scandinavian Actuarial Journal, 2014 (2014), 424-438.
doi: 10.1080/03461238.2012.723638. |
[14] |
Y. Chi and K. S. Tan,
Optimal reinsurance under VaR and CVaR risk measures: A simplified approach, ASTIN Bulletin, 41 (2011), 487-509.
|
[15] |
W. Cui and J. Yang,
Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles, Insurance: Mathematics and Economics, 53 (2013), 74-85.
doi: 10.1016/j.insmatheco.2013.03.007. |
[16] |
N. E. D'Ortona and G. Marcarelli,
Optimal proportional reinsurance from the point of view of cedent and reinsurer, Scandinavian Actuarial Journal, 2017 (2017), 366-375.
doi: 10.1080/03461238.2016.1148627. |
[17] |
European Parliament and the Council, Directive 2009/138/EC of the European Parliament and of the Council on the taking-up and pursuit of the business of Insurance and Reinsurance (Solvency Ⅱ), 2009., http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:335:0001:0155:en:PDF Google Scholar |
[18] |
Y. Fang and Z. Qu,
Optimal combination of quota-share and stop-loss reinsurance treaties under the joint survival probability, IMA Journal of Management Mathematics, 25 (2014), 89-103.
doi: 10.1093/imaman/dps029. |
[19] |
A. E. van. Heerwarden and R. Kaas, The dutch premium principle, Insurance: Mathematics and Economics, 11 (1992), 129-133. Google Scholar |
[20] |
X. Hu, H. Yang and L. Zhang,
Optimal retention for a stop-loss reinsurance with incomplete information, Insurance: Mathematics and Economics, 65 (2015), 15-21.
doi: 10.1016/j.insmatheco.2015.08.005. |
[21] |
Y. Huang and C. Yin,
Optimal reciprocal reinsurance under GlueVaR distortion risk measures, Journal of Mathematical Finance, 9 (2019), 11-24.
doi: 10.4236/jmf.2019.91002. |
[22] |
S. Kusuoka, On law invariant coherent risk measures, Advances in Mathematical Economics, Springer, 3 (2001), 83–95.
doi: 10.1007/978-4-431-67891-5_4. |
[23] |
P. Li, M. Zhou and C. Yin,
Optimal reinsurance with both proportional and fixed costs, Statistics and Probability Letters, 106 (2015), 134-141.
doi: 10.1016/j.spl.2015.06.024. |
[24] |
Z. Liang and J. Guo,
Optimal proportional reinsurance under two criteria: Maximizing the expected utility and minimizing the value at risk, The ANZIAM Journal, 51 (2010), 449-463.
doi: 10.1017/S1446181110000878. |
[25] |
Z. Liang and J. Guo,
Optimal combining quota-share and excess of loss reinsurance to maximize the expected utility, Journal of Applied Mathematics and Computing, 36 (2011), 11-25.
doi: 10.1007/s12190-010-0385-8. |
[26] |
H. Meng, T. K. Siu and H. Yang,
Optimal insurance risk control with multiple reinsurers, Journal of Computational and Applied Mathematics, 306 (2016a), 40-52.
doi: 10.1016/j.cam.2016.04.005. |
[27] |
H. Meng, M. Zhou and T. K. Siu,
Optimal dividend-reinsurance with two types of premium principles, Probability in the Engineering and Informational Sciences, 30 (2016b), 224-243.
doi: 10.1017/S0269964815000352. |
[28] |
H. Meng, M. Zhou and T. K. Siu,
Optimal reinsurance policies with two reinsurers in continuous time, Economic Modelling, 59 (2016c), 182-195.
doi: 10.1016/j.econmod.2016.07.009. |
[29] |
H. Schmidli,
On minimizing the ruin probability by investment and reinsurance, Annals of Applied Probability, 12 (2002), 890-907.
doi: 10.1214/aoap/1031863173. |
[30] |
K. S. Tan, C. Weng and Y. Zhang,
Optimality of general reinsurance contracts under CTE risk measure, Insurance: Mathematics and Economics, 49 (2011), 175-187.
doi: 10.1016/j.insmatheco.2011.03.002. |
[31] |
P. Vicig,
Financial risk measurement with imprecise probabilities, International Journal of Approximate Reasoning, 49 (2008), 159-174.
doi: 10.1016/j.ijar.2007.06.009. |
[32] |
D. Yao, H. Yang and R. Wang,
Optimal dividend and reinsurance strategies with financing and liquidation value, ASTIN Bulletin, 46 (2016), 365-399.
doi: 10.1017/10.1017/asb.2015.28. |
[33] |
K. C. Yuen, Z. Liang and M. Zhou,
Optimal proportional reinsurance with common shock dependence, Insurance: Mathematics and Economics, 64 (2015), 1-13.
doi: 10.1016/j.insmatheco.2015.04.009. |
[34] |
N. Zhang, Z. Jin, L. Qian and R. Wang,
Optimal quota-share reinsurance based on the mutual benefit of insurer and reinsurer, Journal of Computational and Applied Mathematics, 342 (2018), 337-351.
doi: 10.1016/j.cam.2018.04.030. |
[35] |
X. Zhang, H. Meng and Y. Zeng,
Optimal investment and reinsurance strategies for insurers with generalized mean–variance premium principle and no-short selling, Insurance: Mathematics and Economics, 67 (2016), 125-132.
doi: 10.1016/j.insmatheco.2016.01.001. |
[36] |
Y. Zhu, Y. Chi and C. Weng,
Multivariate reinsurance designs for minimizing an insurer's capital requirement, Insurance: Mathematics and Economics, 59 (2014), 144-155.
doi: 10.1016/j.insmatheco.2014.09.009. |
show all references
References:
[1] |
K. J. Arrow, Uncertainty and the welfare economics of medical care, Uncertainty in Economics, 1978, Pages 345,347–375.
doi: 10.1016/B978-0-12-214850-7.50028-0. |
[2] |
P. Artzner, F. Delbaen, J. M. Eber and D. Heath,
Coherent measures of risk, Mathematical Finance, 9 (1999), 203-228.
doi: 10.1111/1467-9965.00068. |
[3] |
L. Bai, J. Cai and M. Zhou,
Optimal reinsurance policies for an insurer with a bivariate reserve risk process in a dynamic setting, Insurance: Mathematics and Economics, 53 (2013), 664-670.
doi: 10.1016/j.insmatheco.2013.09.008. |
[4] |
A. Balbás, B. Balbás, R. Balbás and A. Heras,
Optimal reinsurance under risk and uncertainty, Insurance: Mathematics and Economics, 60 (2015), 61-74.
doi: 10.1016/j.insmatheco.2014.11.001. |
[5] |
I. D. Baltas, N. E. Frangos and A. N. Yannacopoulos,
Optimal investment and reinsurance policies in insurance markets under the effect of inside information, Applied Stochastic Models in Business & Industry, 28 (2013), 506-528.
doi: 10.1002/asmb.925. |
[6] |
A. P. Bazaz and A. T. P. Najafabadi,
An optimal reinsurance contract from insurer's and reinsurer's viewpoints, Applications and Applied Mathematics, 10 (2015), 970-982.
|
[7] |
R. E. Beard, T. Pentikainen and E. Pesonen, Risk Theory, second edition, Chapman and Hall, London, 1977. Google Scholar |
[8] |
K. Borch,
Reciprocal reinsurance treaties, ASTIN Bulletin, 1 (1960), 170-191.
doi: 10.1017/S0515036100009557. |
[9] |
K. Borch,
The optimal reinsurance treaty, ASTIN Bulletin, 5 (1969), 293-297.
doi: 10.1017/S051503610000814X. |
[10] |
J. Cai, Y. Fang, Z. Li and G. E. Willmot,
Optimal reciprocal reinsurance treaties under the joint survival probability and the joint profitable probability, Journal of Risk and Insurance, 80 (2013), 145-168.
doi: 10.1111/j.1539-6975.2012.01462.x. |
[11] |
J. Cai and T. Mao, Risk measures derived from a regulator's perspective on the regulatory capital requirements for insurers, SSRN, (2018), 39pp.
doi: 10.2139/ssrn.3127285. |
[12] |
J. Cai and K. S. Tan,
Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measures, ASTIN Bulletin, 37 (2007), 93-112.
doi: 10.1017/S0515036100014756. |
[13] |
Y. Chi and H. Meng,
Optimal reinsurance arrangements in the presence of two reinsurers, Scandinavian Actuarial Journal, 2014 (2014), 424-438.
doi: 10.1080/03461238.2012.723638. |
[14] |
Y. Chi and K. S. Tan,
Optimal reinsurance under VaR and CVaR risk measures: A simplified approach, ASTIN Bulletin, 41 (2011), 487-509.
|
[15] |
W. Cui and J. Yang,
Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles, Insurance: Mathematics and Economics, 53 (2013), 74-85.
doi: 10.1016/j.insmatheco.2013.03.007. |
[16] |
N. E. D'Ortona and G. Marcarelli,
Optimal proportional reinsurance from the point of view of cedent and reinsurer, Scandinavian Actuarial Journal, 2017 (2017), 366-375.
doi: 10.1080/03461238.2016.1148627. |
[17] |
European Parliament and the Council, Directive 2009/138/EC of the European Parliament and of the Council on the taking-up and pursuit of the business of Insurance and Reinsurance (Solvency Ⅱ), 2009., http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:335:0001:0155:en:PDF Google Scholar |
[18] |
Y. Fang and Z. Qu,
Optimal combination of quota-share and stop-loss reinsurance treaties under the joint survival probability, IMA Journal of Management Mathematics, 25 (2014), 89-103.
doi: 10.1093/imaman/dps029. |
[19] |
A. E. van. Heerwarden and R. Kaas, The dutch premium principle, Insurance: Mathematics and Economics, 11 (1992), 129-133. Google Scholar |
[20] |
X. Hu, H. Yang and L. Zhang,
Optimal retention for a stop-loss reinsurance with incomplete information, Insurance: Mathematics and Economics, 65 (2015), 15-21.
doi: 10.1016/j.insmatheco.2015.08.005. |
[21] |
Y. Huang and C. Yin,
Optimal reciprocal reinsurance under GlueVaR distortion risk measures, Journal of Mathematical Finance, 9 (2019), 11-24.
doi: 10.4236/jmf.2019.91002. |
[22] |
S. Kusuoka, On law invariant coherent risk measures, Advances in Mathematical Economics, Springer, 3 (2001), 83–95.
doi: 10.1007/978-4-431-67891-5_4. |
[23] |
P. Li, M. Zhou and C. Yin,
Optimal reinsurance with both proportional and fixed costs, Statistics and Probability Letters, 106 (2015), 134-141.
doi: 10.1016/j.spl.2015.06.024. |
[24] |
Z. Liang and J. Guo,
Optimal proportional reinsurance under two criteria: Maximizing the expected utility and minimizing the value at risk, The ANZIAM Journal, 51 (2010), 449-463.
doi: 10.1017/S1446181110000878. |
[25] |
Z. Liang and J. Guo,
Optimal combining quota-share and excess of loss reinsurance to maximize the expected utility, Journal of Applied Mathematics and Computing, 36 (2011), 11-25.
doi: 10.1007/s12190-010-0385-8. |
[26] |
H. Meng, T. K. Siu and H. Yang,
Optimal insurance risk control with multiple reinsurers, Journal of Computational and Applied Mathematics, 306 (2016a), 40-52.
doi: 10.1016/j.cam.2016.04.005. |
[27] |
H. Meng, M. Zhou and T. K. Siu,
Optimal dividend-reinsurance with two types of premium principles, Probability in the Engineering and Informational Sciences, 30 (2016b), 224-243.
doi: 10.1017/S0269964815000352. |
[28] |
H. Meng, M. Zhou and T. K. Siu,
Optimal reinsurance policies with two reinsurers in continuous time, Economic Modelling, 59 (2016c), 182-195.
doi: 10.1016/j.econmod.2016.07.009. |
[29] |
H. Schmidli,
On minimizing the ruin probability by investment and reinsurance, Annals of Applied Probability, 12 (2002), 890-907.
doi: 10.1214/aoap/1031863173. |
[30] |
K. S. Tan, C. Weng and Y. Zhang,
Optimality of general reinsurance contracts under CTE risk measure, Insurance: Mathematics and Economics, 49 (2011), 175-187.
doi: 10.1016/j.insmatheco.2011.03.002. |
[31] |
P. Vicig,
Financial risk measurement with imprecise probabilities, International Journal of Approximate Reasoning, 49 (2008), 159-174.
doi: 10.1016/j.ijar.2007.06.009. |
[32] |
D. Yao, H. Yang and R. Wang,
Optimal dividend and reinsurance strategies with financing and liquidation value, ASTIN Bulletin, 46 (2016), 365-399.
doi: 10.1017/10.1017/asb.2015.28. |
[33] |
K. C. Yuen, Z. Liang and M. Zhou,
Optimal proportional reinsurance with common shock dependence, Insurance: Mathematics and Economics, 64 (2015), 1-13.
doi: 10.1016/j.insmatheco.2015.04.009. |
[34] |
N. Zhang, Z. Jin, L. Qian and R. Wang,
Optimal quota-share reinsurance based on the mutual benefit of insurer and reinsurer, Journal of Computational and Applied Mathematics, 342 (2018), 337-351.
doi: 10.1016/j.cam.2018.04.030. |
[35] |
X. Zhang, H. Meng and Y. Zeng,
Optimal investment and reinsurance strategies for insurers with generalized mean–variance premium principle and no-short selling, Insurance: Mathematics and Economics, 67 (2016), 125-132.
doi: 10.1016/j.insmatheco.2016.01.001. |
[36] |
Y. Zhu, Y. Chi and C. Weng,
Multivariate reinsurance designs for minimizing an insurer's capital requirement, Insurance: Mathematics and Economics, 59 (2014), 144-155.
doi: 10.1016/j.insmatheco.2014.09.009. |






[1] |
Yu Yuan, Zhibin Liang, Xia Han. Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021003 |
[2] |
Yanjun He, Wei Zeng, Minghui Yu, Hongtao Zhou, Delie Ming. Incentives for production capacity improvement in construction supplier development. Journal of Industrial & Management Optimization, 2021, 17 (1) : 409-426. doi: 10.3934/jimo.2019118 |
[3] |
Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65 |
[4] |
Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127 |
[5] |
Bing Liu, Ming Zhou. Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin. Journal of Industrial & Management Optimization, 2021, 17 (2) : 937-952. doi: 10.3934/jimo.2020005 |
[6] |
Wenyan Zhuo, Honglin Yang, Leopoldo Eduardo Cárdenas-Barrón, Hong Wan. Loss-averse supply chain decisions with a capital constrained retailer. Journal of Industrial & Management Optimization, 2021, 17 (2) : 711-732. doi: 10.3934/jimo.2019131 |
[7] |
Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008 |
[8] |
Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013 |
[9] |
Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020053 |
[10] |
Shan Liu, Hui Zhao, Ximin Rong. Time-consistent investment-reinsurance strategy with a defaultable security under ambiguous environment. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021015 |
[11] |
Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004 |
2019 Impact Factor: 1.366
Tools
Article outline
Figures and Tables
[Back to Top]