March  2021, 17(2): 869-887. doi: 10.3934/jimo.2020002

On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set

College of Mathematics and Statistics, Chongqing JiaoTong University, Chongqing 400074, China

* Corresponding author: Zaiyun Peng

Received  June 2018 Revised  March 2019 Published  January 2020

Fund Project: The first and the fourth authors are supported by the Graduate Innovation Foundation of Chongqing Jiaotong University (2019S0123). The second author is supported by the National Natural Science Foundation of China (11301571), the Basic and Advanced Research Project of Chongqing (cstc2018jcyjAX0337), the Program for University Innovation Team of Chongqing (CXTDX201601022), the Innovation Project for Returned Overseas Scholars in Chongqing (cx2019148), the open project funded by the Chongqing Key Lab on ORSE (CSSXKFKTZ201801) and the Education Committee Project Foundation of Bayu Scholar. The third author is supported by the National Natural Science Foundation of China (11271389)

In this paper, we mainly discuss the stability of generalized vector quasi-equilibrium problems (GVQEPs) where the ordering relations are defined by free-disposal set. Firstly, by virtue of the oriented distance function $ (\triangle) $, gap functions for (GVQEPs) are given and some properties of them are studied. Then, under some types of continuity assumption, the sufficient conditions of the upper semicontinuity and the upper Painlevé-Kuratowski convergence of solutions for (GVQEPs) are talked about. Moreover, sufficient and necessary conditions of the lower semicontinuity and the lower Painlevé-Kuratowski convergence of solutions for (GVQEPs) are obtained in normed linear spaces. Some examples are given to illustrate the results, and our results are new and extend some known results in the literature.

Citation: Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002
References:
[1]

L. Q. Anh and N. V. Hung, Gap function and Hausdorff continuity of solution mappings to parametric strong vector quasiequilibrium problems, Journal of Industrial and Management Optimization, 14 (2018), 65-79.  doi: 10.3934/jimo.2017037.  Google Scholar

[2]

L. Q. AnhT. Bantaojai and N. V. Hung, Painlevé-Kuratowski convergences of the solution sets for generalized vector quasi-equilibrium problems, Computational and Applied Mathematics, 37 (2018), 3832-3845.  doi: 10.1007/s40314-017-0548-4.  Google Scholar

[3]

J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984.  Google Scholar

[4]

C. Berge, Topological Spaces, Oliver and Boyd, London, 1963. Google Scholar

[5]

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, The Mathematics Student, 63 (1994), 123-145.   Google Scholar

[6]

C. R. ChenX. ZuoF. Lu and S. J. Li, Vector equilibrium problems under improvement sets and linear scalarization with stability applications, Optimization Methods and Software, 31 (2016), 1240-1257.  doi: 10.1080/10556788.2016.1200043.  Google Scholar

[7]

J. C. Chen and X. H. Gong, The stability of set of solutions for symmetric vector quasi-equilibrium problems, Journal of Optimization Theory and Applications, 136 (2008), 359-374.  doi: 10.1007/s10957-007-9309-7.  Google Scholar

[8]

X. H. Gong, Lower semicontinuity of the efficient solution mapping in semi-infinite vector optimization, Journal of Systems Science and Complexity, 28 (2015), 1312-1325.  doi: 10.1007/s11424-015-3058-8.  Google Scholar

[9]

J. B. Hiriart-Urruty, New concepts in nondifferentiable programming, Mémoires de la Société Mathématique de France, 60 (1979), 57-85.   Google Scholar

[10]

S. H. HouX. H. Gong and X. M. Yang, Existence and stability of solutions for generalized Ky Fan inequality problems with trifunctions, Journal of Optimization Theory and Applications, 146 (2010), 387-398.  doi: 10.1007/s10957-010-9656-7.  Google Scholar

[11]

C. S. Lalitha and P. Chatterjee, Stability and scalarization in vector optimization using improvement sets, Journal of Optimization Theory and Applications, 166 (2015), 825-843.  doi: 10.1007/s10957-014-0686-4.  Google Scholar

[12]

S. J. Li and C. R. Chen, Stability of weak vector variational inequality, Nonlinear Analysis Theory Methods Applications, 70 (2009), 1528-1535.  doi: 10.1016/j.na.2008.02.032.  Google Scholar

[13]

X. J. LongN. J. Huang and K. L. Teo, Existence and stability of solutions for generalized strong vector quasi-equilibrium problem, Mathematical and Computer Modelling, 47 (2008), 445-451.  doi: 10.1016/j.mcm.2007.04.013.  Google Scholar

[14]

J. W. PengS. Y. Wu and Y. Wang, Levitin-Polyak well-posedness of generalized vector quasi-equilibrium problems with functional constraints, Journal of Global Optimization, 52 (2012), 779-795.  doi: 10.1007/s10898-011-9711-4.  Google Scholar

[15]

J. W. Peng and S. Y. Wu, The generalized Tykhonov well-posedness for system of vector quasi-equilibrium problems, Optimization Letters, 4 (2010), 501-512.  doi: 10.1007/s11590-010-0179-9.  Google Scholar

[16]

Z. Y. PengX. M. Yang and J. W. Peng, On the lower semicontinuity of the solution mappings to parametric weak generalized Ky Fan inequality, Journal of Optimization Theory and Applications, 152 (2012), 256-264.  doi: 10.1007/s10957-011-9883-6.  Google Scholar

[17]

Z. Y. PengJ. W. PengX. J. Long and J. C. Yao, On the stability of solutions for semi-infinite vector optimization problems, Journal of Global Optimization, 70 (2018), 55-69.  doi: 10.1007/s10898-017-0553-6.  Google Scholar

[18]

R. T. Rockafellar and R. J. Wets, Variational Analysis, Springer, Berlin, 1998. doi: 10.1007/978-3-642-02431-3.  Google Scholar

[19]

W. Takahashi and K. Zembayashi, Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, Nonlinear Analysis, 70 (2009), 45-57.  doi: 10.1016/j.na.2007.11.031.  Google Scholar

[20]

H. Yang and J. Yu, Essential components of the set of weakly Pareto-Nash equilibrium points, Applied Mathematics Letters, 15 (2002), 553-560.  doi: 10.1016/S0893-9659(02)80006-4.  Google Scholar

[21]

J. Yu, Essential weak efficient solution in multiobjective optimization problems, Journal of Mathematical Analysis and Applications, 166 (1992), 230-235.  doi: 10.1016/0022-247X(92)90338-E.  Google Scholar

[22]

J. YuZ. X. LiuD. T. PengD. Y. Xu and Y. H. Zhou, Existence and stability analysis of optimal control, Optimal Control Applications and Methods, 35 (2014), 721-729.  doi: 10.1002/oca.2096.  Google Scholar

[23]

A. Zaffaroni, Degrees of efficiency and degrees of minimality, SIAM Journal on Control and Optimization, 42 (2003), 1071-1086.  doi: 10.1137/S0363012902411532.  Google Scholar

[24]

J. ZengZ. Y. PengX. K. Sun and X. J. Long, Existence of solutions and Hadamard well-posedness for generalized strong vector quasi-equilibrium problems, Journal of Nonlinear Science and Applications, 9 (2016), 4104-4113.   Google Scholar

[25]

Y. ZhaoZ. Y. Peng and X. M. Yang, Semicontinuity and convergence for vector optimization problems with approximate equilibrium constraints, Optimization, 65 (2016), 1397-1415.  doi: 10.1080/02331934.2016.1149711.  Google Scholar

[26]

R. Y. Zhong and N. J. Huang, Lower semicontinuity for parametric weak vector variational inequalities in reflexive banach spaces, Journal of Optimization Theory and Applications, 150 (2011), 317-326.  doi: 10.1007/s10957-011-9843-1.  Google Scholar

[27]

R. Y. Zhong and N. J. Huang, On the stability of solution mapping for parametric generalized vector quasiequilibrium problems, Computers and Mathematics with Applications, 63 (2012), 807-815.  doi: 10.1016/j.camwa.2011.11.046.  Google Scholar

[28]

Y. H. ZhongJ. Yu and S. W. Xiang, Essential stability in games with infinitely many 1pure strategies, International Journal of Game Theory, 35 (2007), 493-503.  doi: 10.1007/s00182-006-0063-0.  Google Scholar

show all references

References:
[1]

L. Q. Anh and N. V. Hung, Gap function and Hausdorff continuity of solution mappings to parametric strong vector quasiequilibrium problems, Journal of Industrial and Management Optimization, 14 (2018), 65-79.  doi: 10.3934/jimo.2017037.  Google Scholar

[2]

L. Q. AnhT. Bantaojai and N. V. Hung, Painlevé-Kuratowski convergences of the solution sets for generalized vector quasi-equilibrium problems, Computational and Applied Mathematics, 37 (2018), 3832-3845.  doi: 10.1007/s40314-017-0548-4.  Google Scholar

[3]

J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984.  Google Scholar

[4]

C. Berge, Topological Spaces, Oliver and Boyd, London, 1963. Google Scholar

[5]

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, The Mathematics Student, 63 (1994), 123-145.   Google Scholar

[6]

C. R. ChenX. ZuoF. Lu and S. J. Li, Vector equilibrium problems under improvement sets and linear scalarization with stability applications, Optimization Methods and Software, 31 (2016), 1240-1257.  doi: 10.1080/10556788.2016.1200043.  Google Scholar

[7]

J. C. Chen and X. H. Gong, The stability of set of solutions for symmetric vector quasi-equilibrium problems, Journal of Optimization Theory and Applications, 136 (2008), 359-374.  doi: 10.1007/s10957-007-9309-7.  Google Scholar

[8]

X. H. Gong, Lower semicontinuity of the efficient solution mapping in semi-infinite vector optimization, Journal of Systems Science and Complexity, 28 (2015), 1312-1325.  doi: 10.1007/s11424-015-3058-8.  Google Scholar

[9]

J. B. Hiriart-Urruty, New concepts in nondifferentiable programming, Mémoires de la Société Mathématique de France, 60 (1979), 57-85.   Google Scholar

[10]

S. H. HouX. H. Gong and X. M. Yang, Existence and stability of solutions for generalized Ky Fan inequality problems with trifunctions, Journal of Optimization Theory and Applications, 146 (2010), 387-398.  doi: 10.1007/s10957-010-9656-7.  Google Scholar

[11]

C. S. Lalitha and P. Chatterjee, Stability and scalarization in vector optimization using improvement sets, Journal of Optimization Theory and Applications, 166 (2015), 825-843.  doi: 10.1007/s10957-014-0686-4.  Google Scholar

[12]

S. J. Li and C. R. Chen, Stability of weak vector variational inequality, Nonlinear Analysis Theory Methods Applications, 70 (2009), 1528-1535.  doi: 10.1016/j.na.2008.02.032.  Google Scholar

[13]

X. J. LongN. J. Huang and K. L. Teo, Existence and stability of solutions for generalized strong vector quasi-equilibrium problem, Mathematical and Computer Modelling, 47 (2008), 445-451.  doi: 10.1016/j.mcm.2007.04.013.  Google Scholar

[14]

J. W. PengS. Y. Wu and Y. Wang, Levitin-Polyak well-posedness of generalized vector quasi-equilibrium problems with functional constraints, Journal of Global Optimization, 52 (2012), 779-795.  doi: 10.1007/s10898-011-9711-4.  Google Scholar

[15]

J. W. Peng and S. Y. Wu, The generalized Tykhonov well-posedness for system of vector quasi-equilibrium problems, Optimization Letters, 4 (2010), 501-512.  doi: 10.1007/s11590-010-0179-9.  Google Scholar

[16]

Z. Y. PengX. M. Yang and J. W. Peng, On the lower semicontinuity of the solution mappings to parametric weak generalized Ky Fan inequality, Journal of Optimization Theory and Applications, 152 (2012), 256-264.  doi: 10.1007/s10957-011-9883-6.  Google Scholar

[17]

Z. Y. PengJ. W. PengX. J. Long and J. C. Yao, On the stability of solutions for semi-infinite vector optimization problems, Journal of Global Optimization, 70 (2018), 55-69.  doi: 10.1007/s10898-017-0553-6.  Google Scholar

[18]

R. T. Rockafellar and R. J. Wets, Variational Analysis, Springer, Berlin, 1998. doi: 10.1007/978-3-642-02431-3.  Google Scholar

[19]

W. Takahashi and K. Zembayashi, Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, Nonlinear Analysis, 70 (2009), 45-57.  doi: 10.1016/j.na.2007.11.031.  Google Scholar

[20]

H. Yang and J. Yu, Essential components of the set of weakly Pareto-Nash equilibrium points, Applied Mathematics Letters, 15 (2002), 553-560.  doi: 10.1016/S0893-9659(02)80006-4.  Google Scholar

[21]

J. Yu, Essential weak efficient solution in multiobjective optimization problems, Journal of Mathematical Analysis and Applications, 166 (1992), 230-235.  doi: 10.1016/0022-247X(92)90338-E.  Google Scholar

[22]

J. YuZ. X. LiuD. T. PengD. Y. Xu and Y. H. Zhou, Existence and stability analysis of optimal control, Optimal Control Applications and Methods, 35 (2014), 721-729.  doi: 10.1002/oca.2096.  Google Scholar

[23]

A. Zaffaroni, Degrees of efficiency and degrees of minimality, SIAM Journal on Control and Optimization, 42 (2003), 1071-1086.  doi: 10.1137/S0363012902411532.  Google Scholar

[24]

J. ZengZ. Y. PengX. K. Sun and X. J. Long, Existence of solutions and Hadamard well-posedness for generalized strong vector quasi-equilibrium problems, Journal of Nonlinear Science and Applications, 9 (2016), 4104-4113.   Google Scholar

[25]

Y. ZhaoZ. Y. Peng and X. M. Yang, Semicontinuity and convergence for vector optimization problems with approximate equilibrium constraints, Optimization, 65 (2016), 1397-1415.  doi: 10.1080/02331934.2016.1149711.  Google Scholar

[26]

R. Y. Zhong and N. J. Huang, Lower semicontinuity for parametric weak vector variational inequalities in reflexive banach spaces, Journal of Optimization Theory and Applications, 150 (2011), 317-326.  doi: 10.1007/s10957-011-9843-1.  Google Scholar

[27]

R. Y. Zhong and N. J. Huang, On the stability of solution mapping for parametric generalized vector quasiequilibrium problems, Computers and Mathematics with Applications, 63 (2012), 807-815.  doi: 10.1016/j.camwa.2011.11.046.  Google Scholar

[28]

Y. H. ZhongJ. Yu and S. W. Xiang, Essential stability in games with infinitely many 1pure strategies, International Journal of Game Theory, 35 (2007), 493-503.  doi: 10.1007/s00182-006-0063-0.  Google Scholar

Figure 1.  the improvement set 1
Figure 2.  the improvement set 2
Figure 3.  the improvement set 3
[1]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[2]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[3]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[4]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[5]

Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386

[6]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[7]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[8]

Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021001

[9]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (2) : 697-735. doi: 10.3934/cpaa.2020286

[10]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[11]

Roderick S. C. Wong, H. Y. Zhang. On the connection formulas of the third Painlevé transcendent. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 541-560. doi: 10.3934/dcds.2009.23.541

[12]

Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021003

[13]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[14]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[15]

San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038

[16]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[17]

Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1

[18]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[19]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[20]

Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial & Management Optimization, 2021, 17 (1) : 29-50. doi: 10.3934/jimo.2019097

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (100)
  • HTML views (383)
  • Cited by (0)

Other articles
by authors

[Back to Top]