• Previous Article
    Designing prorated lifetime warranty strategy for high-value and durable products under two-dimensional warranty
  • JIMO Home
  • This Issue
  • Next Article
    A non-zero-sum reinsurance-investment game with delay and asymmetric information
March  2021, 17(2): 937-952. doi: 10.3934/jimo.2020005

Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin

1. 

School of Finance, Nanjing University of Finance and Economics, Nanjing 210023, China

2. 

China Institute for Actuarial Science, Central University of Finance and Economics, Beijing 100081, China

* Corresponding author: Ming Zhou

Received  August 2018 Revised  June 2019 Published  January 2020

Fund Project: This research is supported by by the National Natural Science Foundation of China (11971506, 11571388), Beijing Social Science Foundation (15JGB046), the MOE Project of Key Research Institute of Humanities and Social Science at Universities (15JJD790036), and the 111 Project (B17050)

Robust portfolio selection has become a popular problem in recent years. In this paper, we study the optimal investment problem for an individual who carries a constant consumption rate but worries about the model ambiguity of the financial market. Instead of using a conventional value function such as the utility of terminal wealth maximization, here, we focus on the purpose of risk control and seek to minimize the probability of lifetime ruin. This study is motivated by the work of [3], except that we use a standardized penalty for ambiguity aversion. The reason for taking a standardized penalty is to convert the penalty to units of the value function, which makes the difference meaningful in the definition of the value function. The advantage of taking a standardized penalty is that the closed-form solutions to both the robust investment policy and the value function can be obtained. More interestingly, we use the "Ambiguity Derived Ratio" to characterize the existence of model ambiguity which significantly affects the optimal investment policy. Finally, several numerical examples are given to illustrate our results.

Citation: Bing Liu, Ming Zhou. Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin. Journal of Industrial & Management Optimization, 2021, 17 (2) : 937-952. doi: 10.3934/jimo.2020005
References:
[1]

E. AndersonL. P. Hansen and T. J. Sargent, A quartet of semigroups for model specification, robustness, prices of risk, and model detection, Journal of the European Economic Association, 1 (2003), 68-123.   Google Scholar

[2]

E. Bayraktar and V. R. Young, Correspondence between lifetime minimum wealth and utility of consumption, Finance Stochastics, 11 (2007), 213-236.  doi: 10.1007/s00780-007-0035-7.  Google Scholar

[3]

E. Bayraktar and Y. Zhang, Minimizing the probability of lifetime ruin under ambiguity aversion, SIAM Journal on Control and Optimization, 53 (2015), 58-90.  doi: 10.1137/140955999.  Google Scholar

[4]

S. Browne, Risk-constrained dynamic active portfolio management, World Scientific Handbook in Financial Economics Series, 3 (2011), 373-354.  doi: 10.1142/9789814293501_0026.  Google Scholar

[5]

W. H. Fleming and M. Soner, Controlled Markov Processes and Viscosity Solutions, 2nd edition, Springer, New York, 2006.  Google Scholar

[6]

L. P. Hansen and T. J. Sargent, Robust control and model uncertainty, American Economic Review, 91 (2001), 60-66.   Google Scholar

[7] L. P. Hansen and T. J. Sargent, Robustness, Princeton University Press, Princeton, NJ, 2008.  doi: 10.1515/9781400829385.  Google Scholar
[8]

L. P. HansenT. J. SargentG. Turmuhambetova and N. Williams, Robust control and model misspecification, Journal of Economic Theory, 128 (2006), 45-90.  doi: 10.1016/j.jet.2004.12.006.  Google Scholar

[9] F. C. Klebaner, Introduction to Stochastic Calculus with Applications, 2 edition, Imperial College Press, 2005.  doi: 10.1142/p386.  Google Scholar
[10]

P. J. Maenhout, Robust portfolio rules and asset pricing, Review of Financial Studies, 17 (2004), 951-983.  doi: 10.1093/rfs/hhh003.  Google Scholar

[11]

H. MengF. L. YuenK. T. Siu and H. L. Yang, Optimal portfolio in a continuous-time self-exciting threshold model, Journal of Industrial and Management Optimization, 9 (2013), 487-504.  doi: 10.3934/jimo.2013.9.487.  Google Scholar

[12]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, The Review of Economics and Statistics, 51 (1969), 247-257.  doi: 10.2307/1926560.  Google Scholar

[13]

R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.  doi: 10.1016/0022-0531(71)90038-X.  Google Scholar

[14]

S. E. Shreve and H. M. Soner, Optimal investment and consumption with transaction costs, Annals of Applied Probability, 4 (1994), 609-692.  doi: 10.1214/aoap/1177004966.  Google Scholar

[15]

L. Sun and L. H. Zhang, Optimal consumption and investment under irrational beliefs, Journal of Industrial and Management Optimization, 7 (2011), 139-156.  doi: 10.3934/jimo.2011.7.139.  Google Scholar

[16]

R. Uppal and T. Wang, Model misspecification and underdiversification, The Journal of Finance, 58 (2003), 2465-2486.  doi: 10.1046/j.1540-6261.2003.00612.x.  Google Scholar

[17]

B. YiZ. LiF. G. Viens and Y. Zeng, Robust optimal control for an insurer with reinsurance and investment under heston's stochastic volatility model, Insurance: Mathematics and Economics, 53 (2013), 601-614.  doi: 10.1016/j.insmatheco.2013.08.011.  Google Scholar

[18]

C. C. Yin and Y. Z. Wen, An extension of Paulsen-Gjessing's risk model with stochastic return on investments, Insurance: Mathematics and Economics, 52 (2013), 469-476.  doi: 10.1016/j.insmatheco.2013.02.014.  Google Scholar

[19]

V. R. Young, Optimal investment strategy to minimize the probability of lifetime ruin, North American Actuarial Journal, 8 (2004), 105-126.  doi: 10.1080/10920277.2004.10596174.  Google Scholar

[20]

T. Zariphopoulou, Consumption-investment models with constraints, SIAM Journal on Control and Optimization, 32 (1994), 59-85.  doi: 10.1137/S0363012991218827.  Google Scholar

[21]

X. ZhangT. K. Siu and Q. B. Meng, Portfolio selection in the enlarged Markovian regime-switching market, SIAM Journal on Control and Optimization, 48 (2010), 3368-3388.  doi: 10.1137/080736351.  Google Scholar

[22]

M. Zhou and K. C. Yuen, Portfolio selection by minimizing the present value of capital injection costs, Astin Bulletin, 45 (2015), 207-238.  doi: 10.1017/asb.2014.22.  Google Scholar

[23]

M. ZhouK. C. Yuen and C. C. Yin, Optimal investment and premium control for insurers with a nonlinear diffusion model, Acta Mathematicae Applicatae Sinica (English Series), 33 (2017), 945-958.  doi: 10.1007/s10255-017-0709-7.  Google Scholar

show all references

References:
[1]

E. AndersonL. P. Hansen and T. J. Sargent, A quartet of semigroups for model specification, robustness, prices of risk, and model detection, Journal of the European Economic Association, 1 (2003), 68-123.   Google Scholar

[2]

E. Bayraktar and V. R. Young, Correspondence between lifetime minimum wealth and utility of consumption, Finance Stochastics, 11 (2007), 213-236.  doi: 10.1007/s00780-007-0035-7.  Google Scholar

[3]

E. Bayraktar and Y. Zhang, Minimizing the probability of lifetime ruin under ambiguity aversion, SIAM Journal on Control and Optimization, 53 (2015), 58-90.  doi: 10.1137/140955999.  Google Scholar

[4]

S. Browne, Risk-constrained dynamic active portfolio management, World Scientific Handbook in Financial Economics Series, 3 (2011), 373-354.  doi: 10.1142/9789814293501_0026.  Google Scholar

[5]

W. H. Fleming and M. Soner, Controlled Markov Processes and Viscosity Solutions, 2nd edition, Springer, New York, 2006.  Google Scholar

[6]

L. P. Hansen and T. J. Sargent, Robust control and model uncertainty, American Economic Review, 91 (2001), 60-66.   Google Scholar

[7] L. P. Hansen and T. J. Sargent, Robustness, Princeton University Press, Princeton, NJ, 2008.  doi: 10.1515/9781400829385.  Google Scholar
[8]

L. P. HansenT. J. SargentG. Turmuhambetova and N. Williams, Robust control and model misspecification, Journal of Economic Theory, 128 (2006), 45-90.  doi: 10.1016/j.jet.2004.12.006.  Google Scholar

[9] F. C. Klebaner, Introduction to Stochastic Calculus with Applications, 2 edition, Imperial College Press, 2005.  doi: 10.1142/p386.  Google Scholar
[10]

P. J. Maenhout, Robust portfolio rules and asset pricing, Review of Financial Studies, 17 (2004), 951-983.  doi: 10.1093/rfs/hhh003.  Google Scholar

[11]

H. MengF. L. YuenK. T. Siu and H. L. Yang, Optimal portfolio in a continuous-time self-exciting threshold model, Journal of Industrial and Management Optimization, 9 (2013), 487-504.  doi: 10.3934/jimo.2013.9.487.  Google Scholar

[12]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, The Review of Economics and Statistics, 51 (1969), 247-257.  doi: 10.2307/1926560.  Google Scholar

[13]

R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.  doi: 10.1016/0022-0531(71)90038-X.  Google Scholar

[14]

S. E. Shreve and H. M. Soner, Optimal investment and consumption with transaction costs, Annals of Applied Probability, 4 (1994), 609-692.  doi: 10.1214/aoap/1177004966.  Google Scholar

[15]

L. Sun and L. H. Zhang, Optimal consumption and investment under irrational beliefs, Journal of Industrial and Management Optimization, 7 (2011), 139-156.  doi: 10.3934/jimo.2011.7.139.  Google Scholar

[16]

R. Uppal and T. Wang, Model misspecification and underdiversification, The Journal of Finance, 58 (2003), 2465-2486.  doi: 10.1046/j.1540-6261.2003.00612.x.  Google Scholar

[17]

B. YiZ. LiF. G. Viens and Y. Zeng, Robust optimal control for an insurer with reinsurance and investment under heston's stochastic volatility model, Insurance: Mathematics and Economics, 53 (2013), 601-614.  doi: 10.1016/j.insmatheco.2013.08.011.  Google Scholar

[18]

C. C. Yin and Y. Z. Wen, An extension of Paulsen-Gjessing's risk model with stochastic return on investments, Insurance: Mathematics and Economics, 52 (2013), 469-476.  doi: 10.1016/j.insmatheco.2013.02.014.  Google Scholar

[19]

V. R. Young, Optimal investment strategy to minimize the probability of lifetime ruin, North American Actuarial Journal, 8 (2004), 105-126.  doi: 10.1080/10920277.2004.10596174.  Google Scholar

[20]

T. Zariphopoulou, Consumption-investment models with constraints, SIAM Journal on Control and Optimization, 32 (1994), 59-85.  doi: 10.1137/S0363012991218827.  Google Scholar

[21]

X. ZhangT. K. Siu and Q. B. Meng, Portfolio selection in the enlarged Markovian regime-switching market, SIAM Journal on Control and Optimization, 48 (2010), 3368-3388.  doi: 10.1137/080736351.  Google Scholar

[22]

M. Zhou and K. C. Yuen, Portfolio selection by minimizing the present value of capital injection costs, Astin Bulletin, 45 (2015), 207-238.  doi: 10.1017/asb.2014.22.  Google Scholar

[23]

M. ZhouK. C. Yuen and C. C. Yin, Optimal investment and premium control for insurers with a nonlinear diffusion model, Acta Mathematicae Applicatae Sinica (English Series), 33 (2017), 945-958.  doi: 10.1007/s10255-017-0709-7.  Google Scholar

Figure 1.  Optimal investment policies with respect to the wealth and the model ambiguity
Figure 5.  Ambiguity Derived Ratio with respect to model ambiguity
Figure 2.  Optimal investment policies with respect to the lifetime
Figure 3.  The value function with respect to model ambiguity
Figure 4.  Return rate of the risky asset under robust risk measure ($ \mu = 0.1 $)
[1]

Yu Yuan, Zhibin Liang, Xia Han. Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021003

[2]

Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114

[3]

Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008

[4]

Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020053

[5]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[6]

Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373

[7]

Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264

[8]

Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150

[9]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[10]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[11]

Gi-Chan Bae, Christian Klingenberg, Marlies Pirner, Seok-Bae Yun. BGK model of the multi-species Uehling-Uhlenbeck equation. Kinetic & Related Models, 2021, 14 (1) : 25-44. doi: 10.3934/krm.2020047

[12]

Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030

[13]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[14]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

[15]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[16]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[17]

Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385

[18]

Tong Peng. Designing prorated lifetime warranty strategy for high-value and durable products under two-dimensional warranty. Journal of Industrial & Management Optimization, 2021, 17 (2) : 953-970. doi: 10.3934/jimo.2020006

[19]

Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127

[20]

Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020175

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (103)
  • HTML views (383)
  • Cited by (0)

Other articles
by authors

[Back to Top]