
-
Previous Article
Designing prorated lifetime warranty strategy for high-value and durable products under two-dimensional warranty
- JIMO Home
- This Issue
-
Next Article
A non-zero-sum reinsurance-investment game with delay and asymmetric information
Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin
1. | School of Finance, Nanjing University of Finance and Economics, Nanjing 210023, China |
2. | China Institute for Actuarial Science, Central University of Finance and Economics, Beijing 100081, China |
Robust portfolio selection has become a popular problem in recent years. In this paper, we study the optimal investment problem for an individual who carries a constant consumption rate but worries about the model ambiguity of the financial market. Instead of using a conventional value function such as the utility of terminal wealth maximization, here, we focus on the purpose of risk control and seek to minimize the probability of lifetime ruin. This study is motivated by the work of [
References:
[1] |
E. Anderson, L. P. Hansen and T. J. Sargent, A quartet of semigroups for model specification, robustness, prices of risk, and model detection, Journal of the European Economic Association, 1 (2003), 68-123. Google Scholar |
[2] |
E. Bayraktar and V. R. Young,
Correspondence between lifetime minimum wealth and utility of consumption, Finance Stochastics, 11 (2007), 213-236.
doi: 10.1007/s00780-007-0035-7. |
[3] |
E. Bayraktar and Y. Zhang,
Minimizing the probability of lifetime ruin under ambiguity aversion, SIAM Journal on Control and Optimization, 53 (2015), 58-90.
doi: 10.1137/140955999. |
[4] |
S. Browne,
Risk-constrained dynamic active portfolio management, World Scientific Handbook in Financial Economics Series, 3 (2011), 373-354.
doi: 10.1142/9789814293501_0026. |
[5] |
W. H. Fleming and M. Soner, Controlled Markov Processes and Viscosity Solutions, 2nd edition, Springer, New York, 2006. |
[6] |
L. P. Hansen and T. J. Sargent, Robust control and model uncertainty, American Economic Review, 91 (2001), 60-66. Google Scholar |
[7] |
L. P. Hansen and T. J. Sargent, Robustness, Princeton University Press, Princeton, NJ, 2008.
doi: 10.1515/9781400829385.![]() ![]() |
[8] |
L. P. Hansen, T. J. Sargent, G. Turmuhambetova and N. Williams,
Robust control and model misspecification, Journal of Economic Theory, 128 (2006), 45-90.
doi: 10.1016/j.jet.2004.12.006. |
[9] |
F. C. Klebaner, Introduction to Stochastic Calculus with Applications, 2 edition, Imperial College Press, 2005.
doi: 10.1142/p386.![]() ![]() |
[10] |
P. J. Maenhout,
Robust portfolio rules and asset pricing, Review of Financial Studies, 17 (2004), 951-983.
doi: 10.1093/rfs/hhh003. |
[11] |
H. Meng, F. L. Yuen, K. T. Siu and H. L. Yang,
Optimal portfolio in a continuous-time self-exciting threshold model, Journal of Industrial and Management Optimization, 9 (2013), 487-504.
doi: 10.3934/jimo.2013.9.487. |
[12] |
R. C. Merton,
Lifetime portfolio selection under uncertainty: The continuous-time case, The Review of Economics and Statistics, 51 (1969), 247-257.
doi: 10.2307/1926560. |
[13] |
R. C. Merton,
Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.
doi: 10.1016/0022-0531(71)90038-X. |
[14] |
S. E. Shreve and H. M. Soner,
Optimal investment and consumption with transaction costs, Annals of Applied Probability, 4 (1994), 609-692.
doi: 10.1214/aoap/1177004966. |
[15] |
L. Sun and L. H. Zhang,
Optimal consumption and investment under irrational beliefs, Journal of Industrial and Management Optimization, 7 (2011), 139-156.
doi: 10.3934/jimo.2011.7.139. |
[16] |
R. Uppal and T. Wang,
Model misspecification and underdiversification, The Journal of Finance, 58 (2003), 2465-2486.
doi: 10.1046/j.1540-6261.2003.00612.x. |
[17] |
B. Yi, Z. Li, F. G. Viens and Y. Zeng,
Robust optimal control for an insurer with reinsurance and investment under heston's stochastic volatility model, Insurance: Mathematics and Economics, 53 (2013), 601-614.
doi: 10.1016/j.insmatheco.2013.08.011. |
[18] |
C. C. Yin and Y. Z. Wen,
An extension of Paulsen-Gjessing's risk model with stochastic return on investments, Insurance: Mathematics and Economics, 52 (2013), 469-476.
doi: 10.1016/j.insmatheco.2013.02.014. |
[19] |
V. R. Young,
Optimal investment strategy to minimize the probability of lifetime ruin, North American Actuarial Journal, 8 (2004), 105-126.
doi: 10.1080/10920277.2004.10596174. |
[20] |
T. Zariphopoulou,
Consumption-investment models with constraints, SIAM Journal on Control and Optimization, 32 (1994), 59-85.
doi: 10.1137/S0363012991218827. |
[21] |
X. Zhang, T. K. Siu and Q. B. Meng,
Portfolio selection in the enlarged Markovian regime-switching market, SIAM Journal on Control and Optimization, 48 (2010), 3368-3388.
doi: 10.1137/080736351. |
[22] |
M. Zhou and K. C. Yuen,
Portfolio selection by minimizing the present value of capital injection costs, Astin Bulletin, 45 (2015), 207-238.
doi: 10.1017/asb.2014.22. |
[23] |
M. Zhou, K. C. Yuen and C. C. Yin,
Optimal investment and premium control for insurers with a nonlinear diffusion model, Acta Mathematicae Applicatae Sinica (English Series), 33 (2017), 945-958.
doi: 10.1007/s10255-017-0709-7. |
show all references
References:
[1] |
E. Anderson, L. P. Hansen and T. J. Sargent, A quartet of semigroups for model specification, robustness, prices of risk, and model detection, Journal of the European Economic Association, 1 (2003), 68-123. Google Scholar |
[2] |
E. Bayraktar and V. R. Young,
Correspondence between lifetime minimum wealth and utility of consumption, Finance Stochastics, 11 (2007), 213-236.
doi: 10.1007/s00780-007-0035-7. |
[3] |
E. Bayraktar and Y. Zhang,
Minimizing the probability of lifetime ruin under ambiguity aversion, SIAM Journal on Control and Optimization, 53 (2015), 58-90.
doi: 10.1137/140955999. |
[4] |
S. Browne,
Risk-constrained dynamic active portfolio management, World Scientific Handbook in Financial Economics Series, 3 (2011), 373-354.
doi: 10.1142/9789814293501_0026. |
[5] |
W. H. Fleming and M. Soner, Controlled Markov Processes and Viscosity Solutions, 2nd edition, Springer, New York, 2006. |
[6] |
L. P. Hansen and T. J. Sargent, Robust control and model uncertainty, American Economic Review, 91 (2001), 60-66. Google Scholar |
[7] |
L. P. Hansen and T. J. Sargent, Robustness, Princeton University Press, Princeton, NJ, 2008.
doi: 10.1515/9781400829385.![]() ![]() |
[8] |
L. P. Hansen, T. J. Sargent, G. Turmuhambetova and N. Williams,
Robust control and model misspecification, Journal of Economic Theory, 128 (2006), 45-90.
doi: 10.1016/j.jet.2004.12.006. |
[9] |
F. C. Klebaner, Introduction to Stochastic Calculus with Applications, 2 edition, Imperial College Press, 2005.
doi: 10.1142/p386.![]() ![]() |
[10] |
P. J. Maenhout,
Robust portfolio rules and asset pricing, Review of Financial Studies, 17 (2004), 951-983.
doi: 10.1093/rfs/hhh003. |
[11] |
H. Meng, F. L. Yuen, K. T. Siu and H. L. Yang,
Optimal portfolio in a continuous-time self-exciting threshold model, Journal of Industrial and Management Optimization, 9 (2013), 487-504.
doi: 10.3934/jimo.2013.9.487. |
[12] |
R. C. Merton,
Lifetime portfolio selection under uncertainty: The continuous-time case, The Review of Economics and Statistics, 51 (1969), 247-257.
doi: 10.2307/1926560. |
[13] |
R. C. Merton,
Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.
doi: 10.1016/0022-0531(71)90038-X. |
[14] |
S. E. Shreve and H. M. Soner,
Optimal investment and consumption with transaction costs, Annals of Applied Probability, 4 (1994), 609-692.
doi: 10.1214/aoap/1177004966. |
[15] |
L. Sun and L. H. Zhang,
Optimal consumption and investment under irrational beliefs, Journal of Industrial and Management Optimization, 7 (2011), 139-156.
doi: 10.3934/jimo.2011.7.139. |
[16] |
R. Uppal and T. Wang,
Model misspecification and underdiversification, The Journal of Finance, 58 (2003), 2465-2486.
doi: 10.1046/j.1540-6261.2003.00612.x. |
[17] |
B. Yi, Z. Li, F. G. Viens and Y. Zeng,
Robust optimal control for an insurer with reinsurance and investment under heston's stochastic volatility model, Insurance: Mathematics and Economics, 53 (2013), 601-614.
doi: 10.1016/j.insmatheco.2013.08.011. |
[18] |
C. C. Yin and Y. Z. Wen,
An extension of Paulsen-Gjessing's risk model with stochastic return on investments, Insurance: Mathematics and Economics, 52 (2013), 469-476.
doi: 10.1016/j.insmatheco.2013.02.014. |
[19] |
V. R. Young,
Optimal investment strategy to minimize the probability of lifetime ruin, North American Actuarial Journal, 8 (2004), 105-126.
doi: 10.1080/10920277.2004.10596174. |
[20] |
T. Zariphopoulou,
Consumption-investment models with constraints, SIAM Journal on Control and Optimization, 32 (1994), 59-85.
doi: 10.1137/S0363012991218827. |
[21] |
X. Zhang, T. K. Siu and Q. B. Meng,
Portfolio selection in the enlarged Markovian regime-switching market, SIAM Journal on Control and Optimization, 48 (2010), 3368-3388.
doi: 10.1137/080736351. |
[22] |
M. Zhou and K. C. Yuen,
Portfolio selection by minimizing the present value of capital injection costs, Astin Bulletin, 45 (2015), 207-238.
doi: 10.1017/asb.2014.22. |
[23] |
M. Zhou, K. C. Yuen and C. C. Yin,
Optimal investment and premium control for insurers with a nonlinear diffusion model, Acta Mathematicae Applicatae Sinica (English Series), 33 (2017), 945-958.
doi: 10.1007/s10255-017-0709-7. |





[1] |
Yu Yuan, Zhibin Liang, Xia Han. Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021003 |
[2] |
Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114 |
[3] |
Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008 |
[4] |
Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020053 |
[5] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[6] |
Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373 |
[7] |
Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264 |
[8] |
Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150 |
[9] |
Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021018 |
[10] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[11] |
Gi-Chan Bae, Christian Klingenberg, Marlies Pirner, Seok-Bae Yun. BGK model of the multi-species Uehling-Uhlenbeck equation. Kinetic & Related Models, 2021, 14 (1) : 25-44. doi: 10.3934/krm.2020047 |
[12] |
Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030 |
[13] |
Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020347 |
[14] |
Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043 |
[15] |
Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020117 |
[16] |
Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2020032 |
[17] |
Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385 |
[18] |
Tong Peng. Designing prorated lifetime warranty strategy for high-value and durable products under two-dimensional warranty. Journal of Industrial & Management Optimization, 2021, 17 (2) : 953-970. doi: 10.3934/jimo.2020006 |
[19] |
Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127 |
[20] |
Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020175 |
2019 Impact Factor: 1.366
Tools
Article outline
Figures and Tables
[Back to Top]