• Previous Article
    Optimal reinsurance-investment and dividends problem with fixed transaction costs
  • JIMO Home
  • This Issue
  • Next Article
    Designing prorated lifetime warranty strategy for high-value and durable products under two-dimensional warranty
March  2021, 17(2): 971-979. doi: 10.3934/jimo.2020007

An efficient low complexity algorithm for box-constrained weighted maximin dispersion problem

Department of Mathematics, College of Sciences, Shanghai University, 200444 Shanghai, China

* Corresponding author: Zi Xu

Received  September 2018 Revised  August 2019 Published  January 2020

Fund Project: The first author is supported by National Natural Science Foundation of China under the grant 11571221 and 11771208

The box-constrained weighted maximin dispersion problem is to find a point in an $ n $-dimensional box such that the minimum of the weighted Euclidean distance from given $ m $ points is maximized. In this paper, we first propose a two-phase method to solve it. In the first phase, we adopt a block successive upper bound minimization (BSUM) algorithm framework and choose a special piecewise linear upper bound function for the weighted maximin dispersion problem. The per-iteration complexity of our algorithm is very low, since the subproblem is a one-dimensional piecewise linear minimax problem over the box constraints, or eqivalently, a two-dimensional linear programming problem which can be solved in at most $ O(m) $ time by existing algorithms. In the second phase, a useful rounding is employed to enhance the solution. Moreover, we propose another strengthened two-phase algorithm, which employs a maximum improvement successive upper-bound minimization (MISUM) algorithm instead of BSUM algorithm in the first phase. At each step, only the block that provides the maximum improvement of the upper bound function is updated. Then, it can be proved that every limit point of the iterate generated by this strengthened algorithm is a stationary point. Numerical results show that the proposed algorithms are efficient.

Citation: Zi Xu, Siwen Wang, Jinjin Huang. An efficient low complexity algorithm for box-constrained weighted maximin dispersion problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 971-979. doi: 10.3934/jimo.2020007
References:
[1]

B. ChenS. HeZ. Li and S. Zhang, Maximum block improvement and polynomial optimization, SIAM J. Optim., 22 (2012), 87-107.  doi: 10.1137/110834524.  Google Scholar

[2]

B. Dasarthy and L. White, A maximin location problem, Oper. Res., 28 (1980), 1385-1401.  doi: 10.1287/opre.28.6.1385.  Google Scholar

[3]

M. Grant and S. Boyd, CVX User's guide: For CVX version 1.21, User's Guide, (2010), 24–75. Google Scholar

[4]

S. HainesJ. LoeppkyP. Tseng and X. Wang, Convex relaxations of the weighted maxmin dispersion problem, SIAM J. Optim., 23 (2013), 2264-2294.  doi: 10.1137/120888880.  Google Scholar

[5]

M. JohbsonL. Moore and D. Ylvisaker, Maximin Distance Designs, Statist. Plann. J., 26 (1990), 131-148.  doi: 10.1016/0378-3758(90)90122-B.  Google Scholar

[6]

A. Konar and N. Sidiropoulos, Fast approximation algorithms for a class of nonconvex QCQP problems using first-order methods, IEEE Trans. Signal Process, 65 (2017), 3494-3509.  doi: 10.1109/TSP.2017.2690386.  Google Scholar

[7]

N. Megiddo, Linear-time algorithms for linear programming in $\mathbb{R}^3$ and related problems, SIAM J. Comput., 12 (1983), 759-776.  doi: 10.1137/0212052.  Google Scholar

[8]

R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ. 1970.  Google Scholar

[9]

S. RaviD. Rosenkrantz and G. Tayi, Heuristic and special case algorithms for dispersion problems, Oper. Res., 42 (1994), 299-310.  doi: 10.1287/opre.42.2.299.  Google Scholar

[10]

M. RazaviyaynM. Hong and Z.-Q. Luo, A unified convergence analysis of block successive minimization methods for nonsmooth optimization, SIAM J. Optim., 23 (2013), 1126-1153.  doi: 10.1137/120891009.  Google Scholar

[11]

S. Wang and Y. Xia, On the ball-constrained weighted maximin dispersion problem, SIAM J. Optim., 26 (2016), 1565-1588.  doi: 10.1137/15M1047167.  Google Scholar

[12]

D. J. White, A heuristic approach to a weighted maxmin disperation problem, IMA J. Math. Appl. Bus. Indust., 7 (1996), 219-231.  doi: 10.1093/imaman/7.3.219.  Google Scholar

[13]

Z. WuY. Xia and S. Wang, Approximating the weighted maximin dispersion problem over an $\ell_{p}-$ball: SDP relaxation is misleading, Optim. Lett., 12 (2018), 875-883.  doi: 10.1007/s11590-017-1177-y.  Google Scholar

show all references

References:
[1]

B. ChenS. HeZ. Li and S. Zhang, Maximum block improvement and polynomial optimization, SIAM J. Optim., 22 (2012), 87-107.  doi: 10.1137/110834524.  Google Scholar

[2]

B. Dasarthy and L. White, A maximin location problem, Oper. Res., 28 (1980), 1385-1401.  doi: 10.1287/opre.28.6.1385.  Google Scholar

[3]

M. Grant and S. Boyd, CVX User's guide: For CVX version 1.21, User's Guide, (2010), 24–75. Google Scholar

[4]

S. HainesJ. LoeppkyP. Tseng and X. Wang, Convex relaxations of the weighted maxmin dispersion problem, SIAM J. Optim., 23 (2013), 2264-2294.  doi: 10.1137/120888880.  Google Scholar

[5]

M. JohbsonL. Moore and D. Ylvisaker, Maximin Distance Designs, Statist. Plann. J., 26 (1990), 131-148.  doi: 10.1016/0378-3758(90)90122-B.  Google Scholar

[6]

A. Konar and N. Sidiropoulos, Fast approximation algorithms for a class of nonconvex QCQP problems using first-order methods, IEEE Trans. Signal Process, 65 (2017), 3494-3509.  doi: 10.1109/TSP.2017.2690386.  Google Scholar

[7]

N. Megiddo, Linear-time algorithms for linear programming in $\mathbb{R}^3$ and related problems, SIAM J. Comput., 12 (1983), 759-776.  doi: 10.1137/0212052.  Google Scholar

[8]

R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ. 1970.  Google Scholar

[9]

S. RaviD. Rosenkrantz and G. Tayi, Heuristic and special case algorithms for dispersion problems, Oper. Res., 42 (1994), 299-310.  doi: 10.1287/opre.42.2.299.  Google Scholar

[10]

M. RazaviyaynM. Hong and Z.-Q. Luo, A unified convergence analysis of block successive minimization methods for nonsmooth optimization, SIAM J. Optim., 23 (2013), 1126-1153.  doi: 10.1137/120891009.  Google Scholar

[11]

S. Wang and Y. Xia, On the ball-constrained weighted maximin dispersion problem, SIAM J. Optim., 26 (2016), 1565-1588.  doi: 10.1137/15M1047167.  Google Scholar

[12]

D. J. White, A heuristic approach to a weighted maxmin disperation problem, IMA J. Math. Appl. Bus. Indust., 7 (1996), 219-231.  doi: 10.1093/imaman/7.3.219.  Google Scholar

[13]

Z. WuY. Xia and S. Wang, Approximating the weighted maximin dispersion problem over an $\ell_{p}-$ball: SDP relaxation is misleading, Optim. Lett., 12 (2018), 875-883.  doi: 10.1007/s11590-017-1177-y.  Google Scholar

Table 1.  Numerical results for Algorithm 2, Algorithm 4 and a randomized algorithm in [13]
$ n $ $ m $ CR Algorithm in [13] Algorithm 2 Algorithm 4
max min ave time(s) $ f(\bar{x}) $ $ f(\tilde{x}) $ time(s) $ f(\bar{x}) $ $ f(\tilde{x}) $ time(s)
10 5 27.23 24.46 9.12 15.41 0.17 25.26 24.46 0.30 25.06 24.62 0.11
10 18.84 17.24 5.53 10.38 0.16 15.75 15.73 0.07 16.65 15.99 0.08
15 20.70 18.58 4.88 10.12 0.19 16.98 16.98 0.10 18.23 17.68 0.16
20 19.61 16.58 4.27 9.07 0.19 12.76 12.30 0.08 14.91 12.75 0.24
50 25 125.01 100.04 64.56 82.91 0.36 100.11 98.81 0.65 100.83 97.12 1.45
50 119.37 97.73 58.83 78.78 0.46 102.54 102.52 0.51 96.28 96.24 1.93
75 116.26 91.54 61.52 77.06 0.65 93.45 91.85 0.56 93.50 92.08 2.00
100 111.27 90.98 57.09 74.20 0.80 87.20 85.38 0.56 90.22 88.04 2.40
100 50 248.61 203.88 149.11 179.52 0.64 205.35 203.69 1.11 206.61 206.25 5.57
100 237.30 201.19 148.41 174.23 0.91 194.10 198.58 1.14 198.03 195.88 5.19
150 229.82 189.37 143.86 169.15 1.60 190.54 189.85 1.17 191.68 191.02 6.89
200 225.29 186.59 141.19 166.47 1.88 182.12 182.01 1.09 192.98 190.41 5.13
200 100 486.61 415.95 330.52 381.25 1.35 414.23 411.46 2.18 418.68 418.04 11.48
200 470.68 407.27 339.75 373.47 1.92 400.76 398.18 2.17 408.94 406.36 17.38
300 458.86 392.36 327.42 364.31 3.00 390.41 389.97 2.30 396.74 394.95 20.16
400 455.93 386.82 327.51 362.83 3.88 387.63 389.83 2.36 390.20 388.69 13.95
500 250 1195.38 1057.93 949.65 1007.69 3.25 1062.99 1065.15 8.05 1067.74 1067.13 58.52
500 1170.13 1038.79 927.82 991.64 6.95 1037.89 1036.55 6.67 1045.27 1040.02 69.19
750 1158.40 1036.04 921.19 990.71 10.56 1043.01 1043.29 8.53 1041.21 1039.92 72.33
1000 1153.98 1026.42 918.45 985.13 14.17 1029.30 1028.34 9.71 1043.27 1040.64 88.20
1000 500 2372.10 2155.47 1979.65 2090.65 10.81 2153.46 2153.81 13.66 2169.29 2167.92 151.93
1000 2338.73 2130.04 1965.58 2075.21 20.56 2133.01 2132.86 19.45 2146.65 2145.80 186.37
1500 2323.82 2124.92 1973.03 2063.91 30.24 2116.10 2112.71 26.33 2125.68 2123.82 306.66
2000 2315.50 2115.62 1991.24 2061.12 40.06 2129.96 2130.49 34.37 2139.15 2137.68 355.30
2000 1000 4725.17 4386.88 4168.28 4299.25 37.99 4396.60 4398.16 42.95 4413.11 4413.68 437.40
2000 4676.85 4358.33 4151.69 4279.57 65.00 4375.92 4379.46 69.17 4379.41 4377.45 820.25
3000 4653.55 4344.27 4142.43 4266.76 99.39 4343.23 4345.99 98.43 4370.00 4365.32 1135.90
4000 4637.74 4334.58 4109.75 4256.80 132.17 4336.27 4334.29 129.59 4361.70 4361.22 1797.67
$ n $ $ m $ CR Algorithm in [13] Algorithm 2 Algorithm 4
max min ave time(s) $ f(\bar{x}) $ $ f(\tilde{x}) $ time(s) $ f(\bar{x}) $ $ f(\tilde{x}) $ time(s)
10 5 27.23 24.46 9.12 15.41 0.17 25.26 24.46 0.30 25.06 24.62 0.11
10 18.84 17.24 5.53 10.38 0.16 15.75 15.73 0.07 16.65 15.99 0.08
15 20.70 18.58 4.88 10.12 0.19 16.98 16.98 0.10 18.23 17.68 0.16
20 19.61 16.58 4.27 9.07 0.19 12.76 12.30 0.08 14.91 12.75 0.24
50 25 125.01 100.04 64.56 82.91 0.36 100.11 98.81 0.65 100.83 97.12 1.45
50 119.37 97.73 58.83 78.78 0.46 102.54 102.52 0.51 96.28 96.24 1.93
75 116.26 91.54 61.52 77.06 0.65 93.45 91.85 0.56 93.50 92.08 2.00
100 111.27 90.98 57.09 74.20 0.80 87.20 85.38 0.56 90.22 88.04 2.40
100 50 248.61 203.88 149.11 179.52 0.64 205.35 203.69 1.11 206.61 206.25 5.57
100 237.30 201.19 148.41 174.23 0.91 194.10 198.58 1.14 198.03 195.88 5.19
150 229.82 189.37 143.86 169.15 1.60 190.54 189.85 1.17 191.68 191.02 6.89
200 225.29 186.59 141.19 166.47 1.88 182.12 182.01 1.09 192.98 190.41 5.13
200 100 486.61 415.95 330.52 381.25 1.35 414.23 411.46 2.18 418.68 418.04 11.48
200 470.68 407.27 339.75 373.47 1.92 400.76 398.18 2.17 408.94 406.36 17.38
300 458.86 392.36 327.42 364.31 3.00 390.41 389.97 2.30 396.74 394.95 20.16
400 455.93 386.82 327.51 362.83 3.88 387.63 389.83 2.36 390.20 388.69 13.95
500 250 1195.38 1057.93 949.65 1007.69 3.25 1062.99 1065.15 8.05 1067.74 1067.13 58.52
500 1170.13 1038.79 927.82 991.64 6.95 1037.89 1036.55 6.67 1045.27 1040.02 69.19
750 1158.40 1036.04 921.19 990.71 10.56 1043.01 1043.29 8.53 1041.21 1039.92 72.33
1000 1153.98 1026.42 918.45 985.13 14.17 1029.30 1028.34 9.71 1043.27 1040.64 88.20
1000 500 2372.10 2155.47 1979.65 2090.65 10.81 2153.46 2153.81 13.66 2169.29 2167.92 151.93
1000 2338.73 2130.04 1965.58 2075.21 20.56 2133.01 2132.86 19.45 2146.65 2145.80 186.37
1500 2323.82 2124.92 1973.03 2063.91 30.24 2116.10 2112.71 26.33 2125.68 2123.82 306.66
2000 2315.50 2115.62 1991.24 2061.12 40.06 2129.96 2130.49 34.37 2139.15 2137.68 355.30
2000 1000 4725.17 4386.88 4168.28 4299.25 37.99 4396.60 4398.16 42.95 4413.11 4413.68 437.40
2000 4676.85 4358.33 4151.69 4279.57 65.00 4375.92 4379.46 69.17 4379.41 4377.45 820.25
3000 4653.55 4344.27 4142.43 4266.76 99.39 4343.23 4345.99 98.43 4370.00 4365.32 1135.90
4000 4637.74 4334.58 4109.75 4256.80 132.17 4336.27 4334.29 129.59 4361.70 4361.22 1797.67
[1]

Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems & Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067

[2]

Helin Guo, Huan-Song Zhou. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1023-1050. doi: 10.3934/dcds.2020308

[3]

Weinan E, Weiguo Gao. Orbital minimization with localization. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 249-264. doi: 10.3934/dcds.2009.23.249

[4]

Gaojun Luo, Xiwang Cao. Two classes of near-optimal codebooks with respect to the Welch bound. Advances in Mathematics of Communications, 2021, 15 (2) : 279-289. doi: 10.3934/amc.2020066

[5]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[6]

Joan Carles Tatjer, Arturo Vieiro. Dynamics of the QR-flow for upper Hessenberg real matrices. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1359-1403. doi: 10.3934/dcdsb.2020166

[7]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[8]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[9]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[10]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021001

[11]

Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136

[12]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[13]

Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A SOCP relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104

[14]

Bao Wang, Alex Lin, Penghang Yin, Wei Zhu, Andrea L. Bertozzi, Stanley J. Osher. Adversarial defense via the data-dependent activation, total variation minimization, and adversarial training. Inverse Problems & Imaging, 2021, 15 (1) : 129-145. doi: 10.3934/ipi.2020046

[15]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[16]

Yanjun He, Wei Zeng, Minghui Yu, Hongtao Zhou, Delie Ming. Incentives for production capacity improvement in construction supplier development. Journal of Industrial & Management Optimization, 2021, 17 (1) : 409-426. doi: 10.3934/jimo.2019118

[17]

Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127

[18]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[19]

Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021003

[20]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020389

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (72)
  • HTML views (380)
  • Cited by (1)

Other articles
by authors

[Back to Top]