
-
Previous Article
A reformulation-linearization based algorithm for the smallest enclosing circle problem
- JIMO Home
- This Issue
-
Next Article
Quality choice and capacity rationing in advance selling
Effect of warranty and quantity discounts on a deteriorating production system with a Markovian production process and allowable shortages
Economics and Management College, Zhaoqing University, Zhaoqing City 526061, Guangdong Province, China |
This paper explores the retailer's optimal lot sizing and quantity backordering for a deteriorating production system with a two-state Markov production process in which quantity discounts are provided by the supplier. The products are sold with the policy of free reasonable repair warranty employing the fraction of nonconforming items in a lot size. Unlike the traditional economic production quantity (EPQ) model with warranty policy based on the elapsed time of the system in the control state follows an exponential distribution, this paper not only constructs an alternative mathematical model for EPQ model based on the fraction of nonconforming items in a lot size for an imperfect production system but also extends the topics of optimal quantity and shortage to a wider scope of academic research and further finds that some results are different from the traditional EPQ models. We seek to minimize the expected total relevant cost through optimal lot sizing and quantity backordering. We also demonstrate that the optimal lot size is bounded in a finite interval. An efficient algorithm is developed to determine the optimal solution. Moreover, a numerical example is given and sensitivity analysis is conducted to highlight management insights.
References:
[1] |
A. Y. Alqahtani, S. M. Gupta and K. Nakashima,
Warranty and maintenance analysis of sensor embedded products using internet of things in industry 4.0, Int. J. Prod. Econ., 208 (2019), 483-499.
doi: 10.1016/j.ijpe.2018.12.022. |
[2] |
Y. Barron and D. Hermel,
Shortage decision policies for a fluid production model with MAP arrivals, Int. J. Prod. Res., 55 (2017), 3946-3969.
doi: 10.1080/00207543.2016.1218083. |
[3] |
W. R. Blischke and D. N. P. Murthy, Product warranty management Ⅲ: A review and mathematical models, Eur. Oper. Res., 62 (1992), 1-34. Google Scholar |
[4] |
S. Chand,
Lot sizes and setup frequency with learning in setups and process quality, Eur. J. Oper. Res., 42 (1989), 190-202.
doi: 10.1016/0377-2217(89)90321-4. |
[5] |
C.-K. Chen and C.-C. Lo,
Optimal production run length for products sold with warranty in an imperfect production system with allowable shortages, Math. Comput. Model., 44 (2006), 319-331.
doi: 10.1016/j.mcm.2006.01.019. |
[6] |
Y.-H. Chien, Z. G. Zhang and X. L. Yin,
On optimal preventive-maintenance policy for generalized Polya process repairable products under free-repair warranty, Eur. J. Oper. Res., 279 (2019), 68-78.
doi: 10.1016/j.ejor.2019.03.042. |
[7] |
K.-J. Chung and K.-L. Hou,
An optimal production run time with imperfect production processes and allowable shortages, Comput. Oper. Res., 30 (2003), 483-490.
doi: 10.1016/S0305-0548(01)00091-0. |
[8] |
A. Eroglu and G. Ozdemir,
An economic order quantity model with defective items and shortages, Int. J. Prod. Econ., 106 (2007), 544-549.
doi: 10.1016/j.ijpe.2006.06.015. |
[9] |
P. A. Hayek and M. K. Salameh,
Production lot sizing with the reworking of imperfect quality items produced, Prod. Plan. Control, 12 (2001), 584-590.
doi: 10.1080/095372801750397707. |
[10] |
K.-L. Hou,
Optimal production run length for deteriorating production system with a two-state continuous-time Markovian processes under allowable shortages, J. Oper. Res. Soc., 56 (2005), 346-350.
doi: 10.1057/palgrave.jors.2601792. |
[11] |
K.-L. Hou, L.-C. Lin and T.-Y. Lin,
Optimal lot sizing with maintenance actions and imperfect production processes, Int. J. Syst. Sci., 46 (2015), 2749-2755.
doi: 10.1080/00207721.2013.879229. |
[12] |
B. Huang and A. Wu,
Reduce shortage with self-reservation policy for a manufacturer paying both fixed and variable stockout expenditure, Eur. J. Oper. Res., 262 (2017), 944-953.
doi: 10.1016/j.ejor.2017.03.063. |
[13] |
M. Y. Jaber, M. Bonney and I. Moualek,
An economic order quantity model for an imperfect production process with entropy cost, Int. J. Prod. Econ., 118 (2009), 26-33.
doi: 10.1016/j.ijpe.2008.08.007. |
[14] |
M. Y. Jaber, S. Zanoni and L. E. Zavanella,
Economic order quantity models for imperfect items with buy and repair options, Int. J. Prod. Econ., 155 (2014), 126-131.
doi: 10.1016/j.ijpe.2013.10.014. |
[15] |
M. Khan, M. Y. Jaber, A. L. Guiffrida and S. Zolfaghari,
A review of the extensions of a modified EOQ model for imperfect quality items, Int. J. Prod. Econ., 132 (2011), 1-12.
doi: 10.1016/j.ijpe.2011.03.009. |
[16] |
R. S. Kumar and A. Goswami, EPQ model with learning consideration, imperfect production and partial backlogging in fuzzy random environment, Int. J. Syst. Sci., 46 (2015), 1486-1497. Google Scholar |
[17] |
H. Lee, J. H. Cha and M. Finkelstein,
On information-based warranty policy for repairable products from heterogeneous population, Eur. J. Oper. Res., 253 (2016), 204-215.
doi: 10.1016/j.ejor.2016.02.020. |
[18] |
J. S. Lee and K. S. Park, Joint determination of production cycle and inspection intervals in a deteriorating production system, J. Oper. Res. Soc., 42 (1991), 775-783. Google Scholar |
[19] |
T.-Y. Lin,
Coordination policy for a two-stage supply chain considering quantity discounts and overlapped delivery with imperfect quality, Comput. Ind. Eng., 66 (2013), 53-62.
doi: 10.1016/j.cie.2013.06.012. |
[20] |
B. Liu, J. Wu and M. Xie,
Cost analysis for multi-component system with failure interaction under renewing free-replacement warranty, Eur. J. Oper. Res., 243 (2015), 874-882.
doi: 10.1016/j.ejor.2015.01.030. |
[21] |
M. Luo and S. M. Wu,
A comprehensive analysis of warranty claims and optimal policies, Eur. Oper. Res., 276 (2019), 144-159.
doi: 10.1016/j.ejor.2018.12.034. |
[22] |
B. Maddah, L. Moussawi and M. Y. Jaber,
Lot sizing with a Markov production process and imperfect items scrapped, Int. J. Prod. Econ., 124 (2010), 340-347.
doi: 10.1016/j.ijpe.2009.11.029. |
[23] |
V. Makis,
Optimal lot sizing and inspection policy for an EMQ model with imperfect inspections, Nav. Res. Log., 45 (1998), 165-186.
doi: 10.1002/(SICI)1520-6750(199803)45:2<165::AID-NAV3>3.0.CO;2-6. |
[24] |
L. Moussawi-Haidar, M. Salameh and W. Nasr,
Production lot sizing with quality screening and rework, Appl. Math. Model., 40 (2016), 3242-3256.
doi: 10.1016/j.apm.2015.09.095. |
[25] |
D. N. P. Murthy and W. R. Blischke,
Product warranty managemen-Ⅱ: An integrated framework for study, Eur. J. Oper. Res., 62 (1992), 261-281.
doi: 10.1016/0377-2217(92)90117-R. |
[26] |
D. N. P. Murthy and W. R. Blischke,
Product warranty management-Ⅲ: A review of mathematical models, Eur. J. Oper. Res., 63 (1992), 1-34.
doi: 10.1016/0377-2217(92)90052-B. |
[27] |
D. N. P. Murthy and I. Djamaludin,
New product warranty: A literature review, Int. J. Prod. Econ., 79 (2002), 231-260.
doi: 10.1016/S0925-5273(02)00153-6. |
[28] |
L.-Y. Ouyang and C.-T. Chang,
Optimal production lot with imperfect production process under permissible delay in payments and complete backlogging, Int. J. Prod. Econ., 144 (2013), 610-617.
doi: 10.1016/j.ijpe.2013.04.027. |
[29] |
B. Pal, S. S. Sana and K. Chaudhuri,
Three-layer Supply Chain- a Production- inventory model for reworkable items, Appl. Math. Comput., 219 (2012), 530-543.
doi: 10.1016/j.amc.2012.06.038. |
[30] |
B. Pal, S. S. Sana and K. Chaudhuri,
Maximizing profits for an EPQ model with unreliable machine and rework of random defective items, Int. J. Syst. Sci., 44 (2013), 582-594.
doi: 10.1080/00207721.2011.617896. |
[31] |
B. Pal, S. S. Sana and K. Chaudhuri,
A mathematical model on EPQ for stochastic demand in an imperfect production system, J. Manuf. Sys, 32 (2013), 260-270.
doi: 10.1016/j.jmsy.2012.11.009. |
[32] |
E. L. Porteus,
Optimal lot sizing, process quality improvement and setup cost reduction, Oper. Res., 34 (1986), 137-144.
doi: 10.1287/opre.34.1.137. |
[33] |
M. J. Rosenblatt and H. L. Lee,
Economic production cycle with imperfect production processes, IIE Trans., 18 (1986), 48-55.
doi: 10.1080/07408178608975329. |
[34] |
S. S. Sana, An economic production lot size model in an imperfect production system, Eur. J. Oper. Res., 201 (2010), 158-170. Google Scholar |
[35] |
L. A. San-José, J. Sicilia and J. García-Laguna, Analysis of an EOQ inventory model with partial backordering and non-linear unit holding cost, Omega, 54 (2015), 147-157. Google Scholar |
[36] |
B. Sarkar,
An inventory model with reliability in an imperfect production process, Appl. Math. Comput., 218 (2012), 4881-4891.
doi: 10.1016/j.amc.2011.10.053. |
[37] |
B. Sarkar, L. E. Cárdenas-Barrón, M. Sarkar and M. L. Singgih,
An economic production quantity model with random defective rate, rework process and backorders for a single stage production system, J. Manuf. Syst., 33 (2014), 423-435.
doi: 10.1016/j.jmsy.2014.02.001. |
[38] |
B. Sarkar, S. Saren and L. E. Cárdenas-Barrón,
An inventory model with trade-credit policy and variable deterioration for fixed lifetime products, Ann. Oper. Res., 229 (2015), 677-702.
doi: 10.1007/s10479-014-1745-9. |
[39] |
E. W. Taft, The most economical production lot, The Iron Age, 101 (1918), 1410-1412. Google Scholar |
[40] |
A. H. Tai,
Economic production quantity models for deteriorating/imperfect products and service with rework, Comput. Ind. Eng., 66 (2013), 879-888.
doi: 10.1016/j.cie.2013.09.007. |
[41] |
A. A. Taleizadeh, L. E. Cárdenas-Barrón and B. Mohammadi,
A deterministic multi product single machine EPQ model with backordering, scraped products, rework and interruption in manufacturing process, Int. J. Prod. Econ., 150 (2014), 9-27.
doi: 10.1016/j.ijpe.2013.11.023. |
[42] |
A. A. Taleizadeh, S. S. Kalantari and L. E. Cárdenas-Barrón,
Pricing and lot sizing for an EPQ inventory model with rework and multiple shipments, Top, 24 (2016), 143-155.
doi: 10.1007/s11750-015-0377-9. |
[43] |
A. A. Taleizadeh, H. R. Zarei and B. R. Sarker,
An optimal control of inventory under probabilistic replenishment intervals and known price increase, Eur. Oper. Res., 257 (2017), 777-791.
doi: 10.1016/j.ejor.2016.07.041. |
[44] |
C. S. Tapiero, P. H. Ritchken and A. Reisman,
Reliability, pricing and quality control, Eur. J. Oper. Res., 31 (1987), 37-45.
doi: 10.1016/0377-2217(87)90134-2. |
[45] |
B. Van Beek and C. Van Putten, OR contributions to flexibility improvement in production/inventory systems, Eur. J. Oper. Res., 31 (1987), 52-60. Google Scholar |
[46] |
M. van der Heijden and B. P. Iskandar,
Last time buy decisions for products sold under warranty, Eur. J. Oper. Res., 224 (2013), 302-312.
doi: 10.1016/j.ejor.2012.07.041. |
[47] |
C.-H. Wang,
The impact of free-repair warranty policy on EMQ model for imperfect production systems, Comput. Oper. Res., 31 (2004), 2021-2035.
doi: 10.1016/S0305-0548(03)00161-8. |
[48] |
C.-H. Wang and S.-H. Sheu,
Optimal lot sizing for products sold under free-repair warranty, Eur. J. Oper. Res., 149 (2003), 131-141.
doi: 10.1016/S0377-2217(02)00429-0. |
[49] |
C. M. Wright and A. Mehrez,
An overview of representative research of the relationships between quality and inventory, Omega, 26 (1998), 29-47.
doi: 10.1016/S0305-0483(97)00042-X. |
[50] |
C. A. Yano and H. L. Lee,
Lot sizing with random yields: A review, Oper. Res., 43 (1995), 311-334.
doi: 10.1287/opre.43.2.311. |
[51] |
R. H. Yeh, M. Y. Chen and C. Y. Lin,
Optimal periodic replacement policy for repairable products under free-repair warranty, Eur. Oper. Res., 176 (2007), 1678-1686.
doi: 10.1016/j.ejor.2005.10.047. |
[52] |
R. H. Yeh, W. T. Ho and S. T. Tseng,
Optimal production run length for products sold with warranty, Eur. J. Oper. Res., 120 (2000), 575-582.
doi: 10.1016/S0377-2217(99)00004-1. |
[53] |
S. H. Yoo, D. S. Kim and M. S. Park,
Lot sizing and quality investment with quality cost analyses for imperfect production and inspection processes with commercial return, Int. J. Prod. Econ., 140 (2012), 922-933.
doi: 10.1016/j.ijpe.2012.07.014. |
[54] |
X. Zhang and Y. Gerchak,
Joint lot sizing and inspection policy in an EOQ model with random yield, IIE Trans., 22 (1990), 41-47.
doi: 10.1080/07408179008964156. |
[55] |
Y.-W. Zhou, J. Y. Chen, Y. Z. Wu and W. H. Zhou,
EPQ models for items with imperfect quality and one-time-only discount, Appl. Math. Model., 39 (2015), 1000-1018.
doi: 10.1016/j.apm.2014.07.017. |
show all references
References:
[1] |
A. Y. Alqahtani, S. M. Gupta and K. Nakashima,
Warranty and maintenance analysis of sensor embedded products using internet of things in industry 4.0, Int. J. Prod. Econ., 208 (2019), 483-499.
doi: 10.1016/j.ijpe.2018.12.022. |
[2] |
Y. Barron and D. Hermel,
Shortage decision policies for a fluid production model with MAP arrivals, Int. J. Prod. Res., 55 (2017), 3946-3969.
doi: 10.1080/00207543.2016.1218083. |
[3] |
W. R. Blischke and D. N. P. Murthy, Product warranty management Ⅲ: A review and mathematical models, Eur. Oper. Res., 62 (1992), 1-34. Google Scholar |
[4] |
S. Chand,
Lot sizes and setup frequency with learning in setups and process quality, Eur. J. Oper. Res., 42 (1989), 190-202.
doi: 10.1016/0377-2217(89)90321-4. |
[5] |
C.-K. Chen and C.-C. Lo,
Optimal production run length for products sold with warranty in an imperfect production system with allowable shortages, Math. Comput. Model., 44 (2006), 319-331.
doi: 10.1016/j.mcm.2006.01.019. |
[6] |
Y.-H. Chien, Z. G. Zhang and X. L. Yin,
On optimal preventive-maintenance policy for generalized Polya process repairable products under free-repair warranty, Eur. J. Oper. Res., 279 (2019), 68-78.
doi: 10.1016/j.ejor.2019.03.042. |
[7] |
K.-J. Chung and K.-L. Hou,
An optimal production run time with imperfect production processes and allowable shortages, Comput. Oper. Res., 30 (2003), 483-490.
doi: 10.1016/S0305-0548(01)00091-0. |
[8] |
A. Eroglu and G. Ozdemir,
An economic order quantity model with defective items and shortages, Int. J. Prod. Econ., 106 (2007), 544-549.
doi: 10.1016/j.ijpe.2006.06.015. |
[9] |
P. A. Hayek and M. K. Salameh,
Production lot sizing with the reworking of imperfect quality items produced, Prod. Plan. Control, 12 (2001), 584-590.
doi: 10.1080/095372801750397707. |
[10] |
K.-L. Hou,
Optimal production run length for deteriorating production system with a two-state continuous-time Markovian processes under allowable shortages, J. Oper. Res. Soc., 56 (2005), 346-350.
doi: 10.1057/palgrave.jors.2601792. |
[11] |
K.-L. Hou, L.-C. Lin and T.-Y. Lin,
Optimal lot sizing with maintenance actions and imperfect production processes, Int. J. Syst. Sci., 46 (2015), 2749-2755.
doi: 10.1080/00207721.2013.879229. |
[12] |
B. Huang and A. Wu,
Reduce shortage with self-reservation policy for a manufacturer paying both fixed and variable stockout expenditure, Eur. J. Oper. Res., 262 (2017), 944-953.
doi: 10.1016/j.ejor.2017.03.063. |
[13] |
M. Y. Jaber, M. Bonney and I. Moualek,
An economic order quantity model for an imperfect production process with entropy cost, Int. J. Prod. Econ., 118 (2009), 26-33.
doi: 10.1016/j.ijpe.2008.08.007. |
[14] |
M. Y. Jaber, S. Zanoni and L. E. Zavanella,
Economic order quantity models for imperfect items with buy and repair options, Int. J. Prod. Econ., 155 (2014), 126-131.
doi: 10.1016/j.ijpe.2013.10.014. |
[15] |
M. Khan, M. Y. Jaber, A. L. Guiffrida and S. Zolfaghari,
A review of the extensions of a modified EOQ model for imperfect quality items, Int. J. Prod. Econ., 132 (2011), 1-12.
doi: 10.1016/j.ijpe.2011.03.009. |
[16] |
R. S. Kumar and A. Goswami, EPQ model with learning consideration, imperfect production and partial backlogging in fuzzy random environment, Int. J. Syst. Sci., 46 (2015), 1486-1497. Google Scholar |
[17] |
H. Lee, J. H. Cha and M. Finkelstein,
On information-based warranty policy for repairable products from heterogeneous population, Eur. J. Oper. Res., 253 (2016), 204-215.
doi: 10.1016/j.ejor.2016.02.020. |
[18] |
J. S. Lee and K. S. Park, Joint determination of production cycle and inspection intervals in a deteriorating production system, J. Oper. Res. Soc., 42 (1991), 775-783. Google Scholar |
[19] |
T.-Y. Lin,
Coordination policy for a two-stage supply chain considering quantity discounts and overlapped delivery with imperfect quality, Comput. Ind. Eng., 66 (2013), 53-62.
doi: 10.1016/j.cie.2013.06.012. |
[20] |
B. Liu, J. Wu and M. Xie,
Cost analysis for multi-component system with failure interaction under renewing free-replacement warranty, Eur. J. Oper. Res., 243 (2015), 874-882.
doi: 10.1016/j.ejor.2015.01.030. |
[21] |
M. Luo and S. M. Wu,
A comprehensive analysis of warranty claims and optimal policies, Eur. Oper. Res., 276 (2019), 144-159.
doi: 10.1016/j.ejor.2018.12.034. |
[22] |
B. Maddah, L. Moussawi and M. Y. Jaber,
Lot sizing with a Markov production process and imperfect items scrapped, Int. J. Prod. Econ., 124 (2010), 340-347.
doi: 10.1016/j.ijpe.2009.11.029. |
[23] |
V. Makis,
Optimal lot sizing and inspection policy for an EMQ model with imperfect inspections, Nav. Res. Log., 45 (1998), 165-186.
doi: 10.1002/(SICI)1520-6750(199803)45:2<165::AID-NAV3>3.0.CO;2-6. |
[24] |
L. Moussawi-Haidar, M. Salameh and W. Nasr,
Production lot sizing with quality screening and rework, Appl. Math. Model., 40 (2016), 3242-3256.
doi: 10.1016/j.apm.2015.09.095. |
[25] |
D. N. P. Murthy and W. R. Blischke,
Product warranty managemen-Ⅱ: An integrated framework for study, Eur. J. Oper. Res., 62 (1992), 261-281.
doi: 10.1016/0377-2217(92)90117-R. |
[26] |
D. N. P. Murthy and W. R. Blischke,
Product warranty management-Ⅲ: A review of mathematical models, Eur. J. Oper. Res., 63 (1992), 1-34.
doi: 10.1016/0377-2217(92)90052-B. |
[27] |
D. N. P. Murthy and I. Djamaludin,
New product warranty: A literature review, Int. J. Prod. Econ., 79 (2002), 231-260.
doi: 10.1016/S0925-5273(02)00153-6. |
[28] |
L.-Y. Ouyang and C.-T. Chang,
Optimal production lot with imperfect production process under permissible delay in payments and complete backlogging, Int. J. Prod. Econ., 144 (2013), 610-617.
doi: 10.1016/j.ijpe.2013.04.027. |
[29] |
B. Pal, S. S. Sana and K. Chaudhuri,
Three-layer Supply Chain- a Production- inventory model for reworkable items, Appl. Math. Comput., 219 (2012), 530-543.
doi: 10.1016/j.amc.2012.06.038. |
[30] |
B. Pal, S. S. Sana and K. Chaudhuri,
Maximizing profits for an EPQ model with unreliable machine and rework of random defective items, Int. J. Syst. Sci., 44 (2013), 582-594.
doi: 10.1080/00207721.2011.617896. |
[31] |
B. Pal, S. S. Sana and K. Chaudhuri,
A mathematical model on EPQ for stochastic demand in an imperfect production system, J. Manuf. Sys, 32 (2013), 260-270.
doi: 10.1016/j.jmsy.2012.11.009. |
[32] |
E. L. Porteus,
Optimal lot sizing, process quality improvement and setup cost reduction, Oper. Res., 34 (1986), 137-144.
doi: 10.1287/opre.34.1.137. |
[33] |
M. J. Rosenblatt and H. L. Lee,
Economic production cycle with imperfect production processes, IIE Trans., 18 (1986), 48-55.
doi: 10.1080/07408178608975329. |
[34] |
S. S. Sana, An economic production lot size model in an imperfect production system, Eur. J. Oper. Res., 201 (2010), 158-170. Google Scholar |
[35] |
L. A. San-José, J. Sicilia and J. García-Laguna, Analysis of an EOQ inventory model with partial backordering and non-linear unit holding cost, Omega, 54 (2015), 147-157. Google Scholar |
[36] |
B. Sarkar,
An inventory model with reliability in an imperfect production process, Appl. Math. Comput., 218 (2012), 4881-4891.
doi: 10.1016/j.amc.2011.10.053. |
[37] |
B. Sarkar, L. E. Cárdenas-Barrón, M. Sarkar and M. L. Singgih,
An economic production quantity model with random defective rate, rework process and backorders for a single stage production system, J. Manuf. Syst., 33 (2014), 423-435.
doi: 10.1016/j.jmsy.2014.02.001. |
[38] |
B. Sarkar, S. Saren and L. E. Cárdenas-Barrón,
An inventory model with trade-credit policy and variable deterioration for fixed lifetime products, Ann. Oper. Res., 229 (2015), 677-702.
doi: 10.1007/s10479-014-1745-9. |
[39] |
E. W. Taft, The most economical production lot, The Iron Age, 101 (1918), 1410-1412. Google Scholar |
[40] |
A. H. Tai,
Economic production quantity models for deteriorating/imperfect products and service with rework, Comput. Ind. Eng., 66 (2013), 879-888.
doi: 10.1016/j.cie.2013.09.007. |
[41] |
A. A. Taleizadeh, L. E. Cárdenas-Barrón and B. Mohammadi,
A deterministic multi product single machine EPQ model with backordering, scraped products, rework and interruption in manufacturing process, Int. J. Prod. Econ., 150 (2014), 9-27.
doi: 10.1016/j.ijpe.2013.11.023. |
[42] |
A. A. Taleizadeh, S. S. Kalantari and L. E. Cárdenas-Barrón,
Pricing and lot sizing for an EPQ inventory model with rework and multiple shipments, Top, 24 (2016), 143-155.
doi: 10.1007/s11750-015-0377-9. |
[43] |
A. A. Taleizadeh, H. R. Zarei and B. R. Sarker,
An optimal control of inventory under probabilistic replenishment intervals and known price increase, Eur. Oper. Res., 257 (2017), 777-791.
doi: 10.1016/j.ejor.2016.07.041. |
[44] |
C. S. Tapiero, P. H. Ritchken and A. Reisman,
Reliability, pricing and quality control, Eur. J. Oper. Res., 31 (1987), 37-45.
doi: 10.1016/0377-2217(87)90134-2. |
[45] |
B. Van Beek and C. Van Putten, OR contributions to flexibility improvement in production/inventory systems, Eur. J. Oper. Res., 31 (1987), 52-60. Google Scholar |
[46] |
M. van der Heijden and B. P. Iskandar,
Last time buy decisions for products sold under warranty, Eur. J. Oper. Res., 224 (2013), 302-312.
doi: 10.1016/j.ejor.2012.07.041. |
[47] |
C.-H. Wang,
The impact of free-repair warranty policy on EMQ model for imperfect production systems, Comput. Oper. Res., 31 (2004), 2021-2035.
doi: 10.1016/S0305-0548(03)00161-8. |
[48] |
C.-H. Wang and S.-H. Sheu,
Optimal lot sizing for products sold under free-repair warranty, Eur. J. Oper. Res., 149 (2003), 131-141.
doi: 10.1016/S0377-2217(02)00429-0. |
[49] |
C. M. Wright and A. Mehrez,
An overview of representative research of the relationships between quality and inventory, Omega, 26 (1998), 29-47.
doi: 10.1016/S0305-0483(97)00042-X. |
[50] |
C. A. Yano and H. L. Lee,
Lot sizing with random yields: A review, Oper. Res., 43 (1995), 311-334.
doi: 10.1287/opre.43.2.311. |
[51] |
R. H. Yeh, M. Y. Chen and C. Y. Lin,
Optimal periodic replacement policy for repairable products under free-repair warranty, Eur. Oper. Res., 176 (2007), 1678-1686.
doi: 10.1016/j.ejor.2005.10.047. |
[52] |
R. H. Yeh, W. T. Ho and S. T. Tseng,
Optimal production run length for products sold with warranty, Eur. J. Oper. Res., 120 (2000), 575-582.
doi: 10.1016/S0377-2217(99)00004-1. |
[53] |
S. H. Yoo, D. S. Kim and M. S. Park,
Lot sizing and quality investment with quality cost analyses for imperfect production and inspection processes with commercial return, Int. J. Prod. Econ., 140 (2012), 922-933.
doi: 10.1016/j.ijpe.2012.07.014. |
[54] |
X. Zhang and Y. Gerchak,
Joint lot sizing and inspection policy in an EOQ model with random yield, IIE Trans., 22 (1990), 41-47.
doi: 10.1080/07408179008964156. |
[55] |
Y.-W. Zhou, J. Y. Chen, Y. Z. Wu and W. H. Zhou,
EPQ models for items with imperfect quality and one-time-only discount, Appl. Math. Model., 39 (2015), 1000-1018.
doi: 10.1016/j.apm.2014.07.017. |


Description and parameters | Value | Unit |
Production rate ( |
10, 000 | units/year |
Demand rate ( |
2, 000 | units/year |
Setup cost ( |
500 | $/cycle |
Holding cost rate for a unit (a fraction of dollar value) ( |
0.26 | $/unit/year |
Backordering cost ( |
6 | $/unit/year |
Repair cost/warranty cost ( |
5 | $/unit |
Restoration cost ( |
100 | $/cycle |
Probability that the system from controlled state shifts to uncontrolled state ( |
0.1 | N/A |
Percentage of nonconforming items when the process is controlled state ( |
0.1 | N/A |
Percentage of nonconforming items when the process is in uncontrolled ( |
0.75 | N/A |
Description and parameters | Value | Unit |
Production rate ( |
10, 000 | units/year |
Demand rate ( |
2, 000 | units/year |
Setup cost ( |
500 | $/cycle |
Holding cost rate for a unit (a fraction of dollar value) ( |
0.26 | $/unit/year |
Backordering cost ( |
6 | $/unit/year |
Repair cost/warranty cost ( |
5 | $/unit |
Restoration cost ( |
100 | $/cycle |
Probability that the system from controlled state shifts to uncontrolled state ( |
0.1 | N/A |
Percentage of nonconforming items when the process is controlled state ( |
0.1 | N/A |
Percentage of nonconforming items when the process is in uncontrolled ( |
0.75 | N/A |
0.1 | 500 | 6 | 0.2 | 100 | 1050 | 480 | 84514.92 |
130 | 1050 | 480 | 84572.06 | ||||
0.26 | 100 | 883.1 | 448 | 84652.73 | |||
130 | 905.1 | 459.2 | 84719.84 | ||||
7.8 | 0.2 | 100 | 1050 | 480 | 85848.04 | ||
130 | 1050 | 480 | 85905.19 | ||||
0.26 | 100 | 879.8 | 446.4 | 85984.22 | |||
130 | 901.9 | 457.6 | 86051.58 | ||||
650 | 6 | 0.2 | 100 | 1050 | 480 | 84800.63 | |
130 | 1062.1 | 485.5 | 84857.59 | ||||
0.26 | 100 | 1050 | 532.7 | 84958.68 | |||
130 | 1050 | 532.7 | 85015.83 | ||||
7.8 | 0.2 | 100 | 1050 | 480 | 86133.76 | ||
130 | 1059 | 484.1 | 86190.8 | ||||
0.26 | 100 | 1050 | 532.7 | 86291.81 | |||
130 | 1050 | 532.7 | 86348.95 | ||||
0.13 | 500 | 6 | 0.2 | 100 | 1050 | 480 | 84518.1 |
130 | 1050 | 480 | 84575.24 | ||||
0.26 | 100 | 884.3 | 448.7 | 84656.5 | |||
130 | 906.3 | 459.8 | 84723.52 | ||||
7.8 | 0.2 | 100 | 1050 | 480 | 85853.41 | ||
130 | 1050 | 480 | 85910.55 | ||||
0.26 | 100 | 881.9 | 447.4 | 85990.62 | |||
130 | 903.9 | 458.6 | 86057.8 | ||||
650 | 6 | 0.2 | 100 | 1050 | 480 | 84803.81 | |
130 | 1050 | 480 | 84860.95 | ||||
0.26 | 100 | 1050 | 532.7 | 84961.86 | |||
130 | 1050 | 532.7 | 85019 | ||||
7.8 | 0.2 | 100 | 1050 | 480 | 86139.12 | ||
130 | 1060.9 | 485 | 86196.11 | ||||
0.26 | 100 | 1050 | 532.7 | 86297.17 | |||
130 | 1050 | 532.7 | 86354.32 |
0.1 | 500 | 6 | 0.2 | 100 | 1050 | 480 | 84514.92 |
130 | 1050 | 480 | 84572.06 | ||||
0.26 | 100 | 883.1 | 448 | 84652.73 | |||
130 | 905.1 | 459.2 | 84719.84 | ||||
7.8 | 0.2 | 100 | 1050 | 480 | 85848.04 | ||
130 | 1050 | 480 | 85905.19 | ||||
0.26 | 100 | 879.8 | 446.4 | 85984.22 | |||
130 | 901.9 | 457.6 | 86051.58 | ||||
650 | 6 | 0.2 | 100 | 1050 | 480 | 84800.63 | |
130 | 1062.1 | 485.5 | 84857.59 | ||||
0.26 | 100 | 1050 | 532.7 | 84958.68 | |||
130 | 1050 | 532.7 | 85015.83 | ||||
7.8 | 0.2 | 100 | 1050 | 480 | 86133.76 | ||
130 | 1059 | 484.1 | 86190.8 | ||||
0.26 | 100 | 1050 | 532.7 | 86291.81 | |||
130 | 1050 | 532.7 | 86348.95 | ||||
0.13 | 500 | 6 | 0.2 | 100 | 1050 | 480 | 84518.1 |
130 | 1050 | 480 | 84575.24 | ||||
0.26 | 100 | 884.3 | 448.7 | 84656.5 | |||
130 | 906.3 | 459.8 | 84723.52 | ||||
7.8 | 0.2 | 100 | 1050 | 480 | 85853.41 | ||
130 | 1050 | 480 | 85910.55 | ||||
0.26 | 100 | 881.9 | 447.4 | 85990.62 | |||
130 | 903.9 | 458.6 | 86057.8 | ||||
650 | 6 | 0.2 | 100 | 1050 | 480 | 84803.81 | |
130 | 1050 | 480 | 84860.95 | ||||
0.26 | 100 | 1050 | 532.7 | 84961.86 | |||
130 | 1050 | 532.7 | 85019 | ||||
7.8 | 0.2 | 100 | 1050 | 480 | 86139.12 | ||
130 | 1060.9 | 485 | 86196.11 | ||||
0.26 | 100 | 1050 | 532.7 | 86297.17 | |||
130 | 1050 | 532.7 | 86354.32 |
[1] |
Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043 |
[2] |
Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319 |
[3] |
Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170 |
[4] |
Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021002 |
[5] |
Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021011 |
[6] |
Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124 |
[7] |
Yanjun He, Wei Zeng, Minghui Yu, Hongtao Zhou, Delie Ming. Incentives for production capacity improvement in construction supplier development. Journal of Industrial & Management Optimization, 2021, 17 (1) : 409-426. doi: 10.3934/jimo.2019118 |
[8] |
Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020181 |
[9] |
Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021010 |
[10] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[11] |
Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020165 |
[12] |
Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020173 |
[13] |
Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373 |
[14] |
Wenyan Zhuo, Honglin Yang, Leopoldo Eduardo Cárdenas-Barrón, Hong Wan. Loss-averse supply chain decisions with a capital constrained retailer. Journal of Industrial & Management Optimization, 2021, 17 (2) : 711-732. doi: 10.3934/jimo.2019131 |
[15] |
Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020167 |
[16] |
Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020175 |
[17] |
Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020172 |
[18] |
Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125 |
[19] |
Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134 |
[20] |
Xiao-Xu Chen, Peng Xu, Jiao-Jiao Li, Thomas Walker, Guo-Qiang Yang. Decision-making in a retailer-led closed-loop supply chain involving a third-party logistics provider. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021014 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]