• Previous Article
    Mean-variance investment and contribution decisions for defined benefit pension plans in a stochastic framework
  • JIMO Home
  • This Issue
  • Next Article
    Effect of warranty and quantity discounts on a deteriorating production system with a Markovian production process and allowable shortages
May  2021, 17(3): 1119-1145. doi: 10.3934/jimo.2020014

Optimal design of window functions for filter window bank

Faculty of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China

* Corresponding author: Bingo Wing-Kuen Ling

Received  January 2019 Revised  May 2019 Published  May 2021 Early access  January 2020

Fund Project: This paper was supported partly by the National Nature Science Foundation of China

This paper considers the designs of the periodic window functions in the filter window banks. First, the filter window bank with the constant synthesis periodic window functions is considered. The total number of the nonzero coefficients in the impulse responses of the analysis periodic window functions is minimized subject to the near perfect reconstruction condition. This is an $ L_0 $ norm optimization problem. To find its solution, the $ L_0 $ norm optimization problem is approximated by the $ L_1 $ norm optimization problem. Then, the column of the constraint matrix corresponding to the element in the solution with the smallest magnitude is removed. Next, it is tested whether the feasible set corresponding to the new $ L_0 $ norm optimization problem is empty or not. By repeating the above procedures, a solution of the $ L_0 $ norm optimization problem is obtained. Second, the filter window bank with the time varying synthesis periodic window functions is considered. Likewise, the design of the periodic window functions in both the analysis periodic window functions and the synthesis periodic window functions is formulated as an $ L_0 $ optimization problem. However, this $ L_0 $ norm optimization problem is subject to a quadratic matrix inequality constraint. To find its solution, the set of the synthesis periodic window functions is initialized. Then, the set of the analysis periodic window functions is optimized based on the initialized set of the synthesis periodic window functions. Next, the set of the synthesis periodic window functions is optimized based on the found set of the analysis periodic window functions. Finally, these two procedures are iterated. It is shown that the iterative algorithm converges. A design example of a filter window bank with the constant synthesis periodic window functions and a design example of a filter window bank with the time varying synthesis periodic window functions are illustrated. It is shown that the near perfect reconstruction condition is satisfied, whereas this is not the cases for the nonuniform filter banks with the conventional samplers and the conventional block samplers.

Citation: Xueling Zhou, Bingo Wing-Kuen Ling, Hai Huyen Dam, Kok-Lay Teo. Optimal design of window functions for filter window bank. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1119-1145. doi: 10.3934/jimo.2020014
References:
[1]

K. D. Abdesselam, Design of stable, causal, perfect reconstruction, IIR uniform DFT filter banks, IEEE Transactions on Signal Processing, 48 (2000), 1110-1119. 

[2]

T. S. Bindiya and E. Elias, Design of totally multiplier-less sharp transition width tree structured filter banks for non-uniform discrete multitone system, AEU-International Journal of Electronics and Communications, 69 (2015), 655-665.  doi: 10.1016/j.aeue.2014.12.004.

[3]

M. Blanco-VelascoF. Cruz-RoldánE. Moreno-MartínezJ. I. Godino-Llorente and K. E. Barner, Embedded filter bank-based algorithm for ECG compression, Signal Processing, 88 (2008), 1402-1412.  doi: 10.1016/j.sigpro.2007.12.006.

[4]

G. F. Choueiter and J. R. Glass, An implementation of rational wavelets and filter design for phonetic classification, IEEE Transactions on Audio, Speech, and Language Processing, 15 (2007), 939-948.  doi: 10.1109/TASL.2006.889793.

[5]

F. Cruz-RoldánP. Martín-MartínJ. Sáez-LandeteM. Blanco-Velasco and T. Saramäki, A fast windowing-based technique exploiting spline functions for designing modulated filter banks, IEEE Transactions on Circuits and Systems I: Regular Papers, 56 (2009), 168-178.  doi: 10.1109/TCSI.2008.925350.

[6]

H. H. DamS. Nordholm and A. Cantoni, Uniform FIR filter bank optimization with gGroup delay specifications, IEEE Transactions on Signal Processing, 53 (2005), 4249-4260.  doi: 10.1109/TSP.2005.857008.

[7]

G. Doblinger, A fast design method for perfect-reconstruction uniform cosine-modulated filter banks, IEEE Transactions on Signal Processing, 60 (2012), 6693-6697.  doi: 10.1109/TSP.2012.2217139.

[8]

B. Farhang-Boroujeny, Filter bank spectrum sensing for cognitive radios, IEEE Transactions on Signal Processing, 56 (2008), 1801-1811.  doi: 10.1109/TSP.2007.911490.

[9]

C. GuJ. ZhaoW. Xu and D. Sun, Design of linear-phase notch filters based on the OMP scheme and the chebyshev window, IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 59 (2012), 592-596. 

[10]

C. Y. F. HoB. W. K. Ling and P. K. S. Tam, Representations of linear dual-rate system via single SISO LTI filter, conventional sampler and block sampler, IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 55 (2008), 168-172.  doi: 10.1109/TCSII.2007.910803.

[11]

A. KumarG. K. Singh and S. Anurag, An optimized cosine-modulated nonuniform filter bank design for subband coding of ECG signal, Journal of King Saud University-Engineering Science, 27 (2015), 158-169.  doi: 10.1016/j.jksues.2013.10.001.

[12]

B. W. K. LingC. Y. F. HoJ. Cao and Q. Dai, Necessary and sufficient condition for a set of maximally decimated integers to be incompatible, Necessary and Sufficient Condition for a Set of Maximally Decimated Integers to be Incompatible, 9 (2013), 564-566. 

[13]

B. W. K. LingC. Y.-F. HoK. L. TeoW. C. SiuJ. Z. Cao and Q. Y. Dai, Optimal design of cosine modulated nonuniform linear phase FIR filter bank via both stretching and shifting frequency response of single prototype filter, IEEE Transactions on Signal Processing, 62 (2014), 2517-2530.  doi: 10.1109/TSP.2014.2312326.

[14]

Q. Liu, X. Z. Zhang, W. K. Ling, M. Wang and Q. Dai, Exact perfect reconstruction of filter window bank with application to incompatible nonuniform filter banks, IEEE/IET International Symposium on Communication Systems, Networks and Digital Signal Processing, CSNDSP, (2016), 20–22.

[15]

M. NarendarA. P. VinodA. S. Madhukumar and A. K. Krishna, A tree-structured DFT filter bank based spectrum detector for estimation of radio channel edge frequencies in cognitive radios, Physical Communication, 9 (2013), 45-60.  doi: 10.1016/j.phycom.2013.06.001.

[16]

R. C. Nongpiur and D. J. Shpak, Maximizing the signal-to-alias ratio in non-uniform filter banks for acoustic echo cancellation, IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 59 (2012), 2315-2325.  doi: 10.1109/TCSI.2012.2185333.

[17]

G. W. OuD. P. K. Lun and B. W. K. Ling, Compressive sensing of images based on discrete periodic Radon transform, IET Electronics Letters, 50 (2014), 591-593.  doi: 10.1049/el.2014.0770.

[18]

A. Pandharipande and S. Dasgupta, On biorthogonal nonuniform filter banks and tree structures, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49 (2002), 1457-1467.  doi: 10.1109/TCSI.2002.803248.

[19]

S. Rahimi and B. Champagne, Oversampled perfect reconstruction DFT modulated filter banks for multi-carrier transceiver systems, Signal Processing, 93 (2013), 2942-2955.  doi: 10.1016/j.sigpro.2013.05.003.

[20]

A. K. Soman and P. P. Vaidyanathan, On orthonormal wavelets and paraunitary filter banks, IEEE Transactions on Signal Processing, 41 (1993), 1170-1183.  doi: 10.1109/78.205722.

[21]

R. SoniA. Jain and R. Saxena, An optimized design of nonuniform filter bank using variable-combinational window function, AEU-International Journal of Electronics and Communications, 67 (2013), 595-601.  doi: 10.1016/j.aeue.2013.01.003.

[22]

K. Swaminathan and P. Vaidyanathan, Theory and design of uniform DFT, parallel, quadrature mirror filter banks, IEEE Transactions on Circuits and Systems, 33 (1986), 1170-1191.  doi: 10.1109/TCS.1986.1085876.

[23]

G. Wang, Time-varying discrete-time signal expansions as time-varying filter banks, IET Signal Processing, 3 (2009), 353-367.  doi: 10.1049/iet-spr.2008.0049.

[24]

X. G. Xia and B. W. Suter, Multirate filter banks with block sampling, IEEE Transactions on Signal Processing, 44 (1996), 484-496. 

[25]

X. M. XieS. C. Chan and T. I. Yuk, Design of perfect-reconstruction nonuniform recombination filter banks with flexible rational sampling factors, IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 52 (2005), 1965-1981.  doi: 10.1109/TCSI.2005.852009.

[26]

H. XiongL. ZhuN. Ma and Y. F. Zheng, Scalable video compression framework with adaptive orientational multiresolution transform and nonuniform directional filterbank design, IEEE Transactions on Circuits and Systems for Video Technology, 21 (2011), 1085-1099. 

[27]

Z. XiongK. RamchandranC. Herley and M. T. Orchard, Flexible tree-structured signal expansions using time-varying wavelet packets, IEEE Transactions on Signal Processing, 45 (1997), 333-345. 

[28]

W. XuJ. X. Zhao and C. Gu, Design of linear-phase FIR multiple-notch filters via an iterative reweighted OMP scheme, IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 61 (2014), 813-817.  doi: 10.1109/TCSII.2014.2345299.

[29]

C. Q. Yang, J. Xiao, Y. F. Zeng, B. W. Deng and W.-K. Ling, Design of periodic window functions in filter window filter banks for harsh environment, International Conference on Industrial Informatics, INDIN, (2016), 18–21. doi: 10.1109/INDIN.2016.7819305.

[30]

Z. YangB. W. K. Ling and C. Bingham, Approximate affine linear relationship between $L_1$ norm objective function values and $L_2$ norm constraint bounds, IET Signal Processing, 9 (2015), 670-680. 

[31]

K. C. Zangi and R. D. Koilpillai, Software radio issues in cellular base stations, IEEE Journal on Selected Areas in Communications, 17 (1999), 561-573.  doi: 10.1109/49.761036.

[32]

Y. ZhangS. Negahdaripour and Q. Z. Li, Low bit-rate compression of underwater imagery based on adaptive hybrid Wavelets and directional filter banks, Signal Processing: Image Communication, 47 (2016), 96-114.  doi: 10.1016/j.image.2016.06.001.

show all references

References:
[1]

K. D. Abdesselam, Design of stable, causal, perfect reconstruction, IIR uniform DFT filter banks, IEEE Transactions on Signal Processing, 48 (2000), 1110-1119. 

[2]

T. S. Bindiya and E. Elias, Design of totally multiplier-less sharp transition width tree structured filter banks for non-uniform discrete multitone system, AEU-International Journal of Electronics and Communications, 69 (2015), 655-665.  doi: 10.1016/j.aeue.2014.12.004.

[3]

M. Blanco-VelascoF. Cruz-RoldánE. Moreno-MartínezJ. I. Godino-Llorente and K. E. Barner, Embedded filter bank-based algorithm for ECG compression, Signal Processing, 88 (2008), 1402-1412.  doi: 10.1016/j.sigpro.2007.12.006.

[4]

G. F. Choueiter and J. R. Glass, An implementation of rational wavelets and filter design for phonetic classification, IEEE Transactions on Audio, Speech, and Language Processing, 15 (2007), 939-948.  doi: 10.1109/TASL.2006.889793.

[5]

F. Cruz-RoldánP. Martín-MartínJ. Sáez-LandeteM. Blanco-Velasco and T. Saramäki, A fast windowing-based technique exploiting spline functions for designing modulated filter banks, IEEE Transactions on Circuits and Systems I: Regular Papers, 56 (2009), 168-178.  doi: 10.1109/TCSI.2008.925350.

[6]

H. H. DamS. Nordholm and A. Cantoni, Uniform FIR filter bank optimization with gGroup delay specifications, IEEE Transactions on Signal Processing, 53 (2005), 4249-4260.  doi: 10.1109/TSP.2005.857008.

[7]

G. Doblinger, A fast design method for perfect-reconstruction uniform cosine-modulated filter banks, IEEE Transactions on Signal Processing, 60 (2012), 6693-6697.  doi: 10.1109/TSP.2012.2217139.

[8]

B. Farhang-Boroujeny, Filter bank spectrum sensing for cognitive radios, IEEE Transactions on Signal Processing, 56 (2008), 1801-1811.  doi: 10.1109/TSP.2007.911490.

[9]

C. GuJ. ZhaoW. Xu and D. Sun, Design of linear-phase notch filters based on the OMP scheme and the chebyshev window, IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 59 (2012), 592-596. 

[10]

C. Y. F. HoB. W. K. Ling and P. K. S. Tam, Representations of linear dual-rate system via single SISO LTI filter, conventional sampler and block sampler, IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 55 (2008), 168-172.  doi: 10.1109/TCSII.2007.910803.

[11]

A. KumarG. K. Singh and S. Anurag, An optimized cosine-modulated nonuniform filter bank design for subband coding of ECG signal, Journal of King Saud University-Engineering Science, 27 (2015), 158-169.  doi: 10.1016/j.jksues.2013.10.001.

[12]

B. W. K. LingC. Y. F. HoJ. Cao and Q. Dai, Necessary and sufficient condition for a set of maximally decimated integers to be incompatible, Necessary and Sufficient Condition for a Set of Maximally Decimated Integers to be Incompatible, 9 (2013), 564-566. 

[13]

B. W. K. LingC. Y.-F. HoK. L. TeoW. C. SiuJ. Z. Cao and Q. Y. Dai, Optimal design of cosine modulated nonuniform linear phase FIR filter bank via both stretching and shifting frequency response of single prototype filter, IEEE Transactions on Signal Processing, 62 (2014), 2517-2530.  doi: 10.1109/TSP.2014.2312326.

[14]

Q. Liu, X. Z. Zhang, W. K. Ling, M. Wang and Q. Dai, Exact perfect reconstruction of filter window bank with application to incompatible nonuniform filter banks, IEEE/IET International Symposium on Communication Systems, Networks and Digital Signal Processing, CSNDSP, (2016), 20–22.

[15]

M. NarendarA. P. VinodA. S. Madhukumar and A. K. Krishna, A tree-structured DFT filter bank based spectrum detector for estimation of radio channel edge frequencies in cognitive radios, Physical Communication, 9 (2013), 45-60.  doi: 10.1016/j.phycom.2013.06.001.

[16]

R. C. Nongpiur and D. J. Shpak, Maximizing the signal-to-alias ratio in non-uniform filter banks for acoustic echo cancellation, IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 59 (2012), 2315-2325.  doi: 10.1109/TCSI.2012.2185333.

[17]

G. W. OuD. P. K. Lun and B. W. K. Ling, Compressive sensing of images based on discrete periodic Radon transform, IET Electronics Letters, 50 (2014), 591-593.  doi: 10.1049/el.2014.0770.

[18]

A. Pandharipande and S. Dasgupta, On biorthogonal nonuniform filter banks and tree structures, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49 (2002), 1457-1467.  doi: 10.1109/TCSI.2002.803248.

[19]

S. Rahimi and B. Champagne, Oversampled perfect reconstruction DFT modulated filter banks for multi-carrier transceiver systems, Signal Processing, 93 (2013), 2942-2955.  doi: 10.1016/j.sigpro.2013.05.003.

[20]

A. K. Soman and P. P. Vaidyanathan, On orthonormal wavelets and paraunitary filter banks, IEEE Transactions on Signal Processing, 41 (1993), 1170-1183.  doi: 10.1109/78.205722.

[21]

R. SoniA. Jain and R. Saxena, An optimized design of nonuniform filter bank using variable-combinational window function, AEU-International Journal of Electronics and Communications, 67 (2013), 595-601.  doi: 10.1016/j.aeue.2013.01.003.

[22]

K. Swaminathan and P. Vaidyanathan, Theory and design of uniform DFT, parallel, quadrature mirror filter banks, IEEE Transactions on Circuits and Systems, 33 (1986), 1170-1191.  doi: 10.1109/TCS.1986.1085876.

[23]

G. Wang, Time-varying discrete-time signal expansions as time-varying filter banks, IET Signal Processing, 3 (2009), 353-367.  doi: 10.1049/iet-spr.2008.0049.

[24]

X. G. Xia and B. W. Suter, Multirate filter banks with block sampling, IEEE Transactions on Signal Processing, 44 (1996), 484-496. 

[25]

X. M. XieS. C. Chan and T. I. Yuk, Design of perfect-reconstruction nonuniform recombination filter banks with flexible rational sampling factors, IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 52 (2005), 1965-1981.  doi: 10.1109/TCSI.2005.852009.

[26]

H. XiongL. ZhuN. Ma and Y. F. Zheng, Scalable video compression framework with adaptive orientational multiresolution transform and nonuniform directional filterbank design, IEEE Transactions on Circuits and Systems for Video Technology, 21 (2011), 1085-1099. 

[27]

Z. XiongK. RamchandranC. Herley and M. T. Orchard, Flexible tree-structured signal expansions using time-varying wavelet packets, IEEE Transactions on Signal Processing, 45 (1997), 333-345. 

[28]

W. XuJ. X. Zhao and C. Gu, Design of linear-phase FIR multiple-notch filters via an iterative reweighted OMP scheme, IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 61 (2014), 813-817.  doi: 10.1109/TCSII.2014.2345299.

[29]

C. Q. Yang, J. Xiao, Y. F. Zeng, B. W. Deng and W.-K. Ling, Design of periodic window functions in filter window filter banks for harsh environment, International Conference on Industrial Informatics, INDIN, (2016), 18–21. doi: 10.1109/INDIN.2016.7819305.

[30]

Z. YangB. W. K. Ling and C. Bingham, Approximate affine linear relationship between $L_1$ norm objective function values and $L_2$ norm constraint bounds, IET Signal Processing, 9 (2015), 670-680. 

[31]

K. C. Zangi and R. D. Koilpillai, Software radio issues in cellular base stations, IEEE Journal on Selected Areas in Communications, 17 (1999), 561-573.  doi: 10.1109/49.761036.

[32]

Y. ZhangS. Negahdaripour and Q. Z. Li, Low bit-rate compression of underwater imagery based on adaptive hybrid Wavelets and directional filter banks, Signal Processing: Image Communication, 47 (2016), 96-114.  doi: 10.1016/j.image.2016.06.001.

Figure 1.  Block diagram of a filter window bank
Figure 2.  Nonuniform filter bank with the conventional samplers
Figure 3.  Nonuniform block filter bank with the block samplers
Figure 4.  (a) The transfer functional distortions, (b) the first aliasing distortion components, (c) the second aliasing distortion components, (d) the third aliasing distortion components, (e) the fourth aliasing distortion components and (f) the fifth aliasing distortion components of both the filter window bank and the block filter bank
Table 1.  Both the transfer functional distortions and the aliasing distortions of both the filter window bank and the block filter bank
Filter window bank Block filter bank Improvement
The maximum absolute value of the transfer functional distortion $-17.3157dB$ $0.9315dB$ $18.2472dB$
The maximum absolute value of the first aliasing distortion $-24.8282dB$ $-2.0172dB$ $22.8110dB$
The maximum absolute value of the second aliasing distortion $-18.6761dB$ $-5.4446dB$ $13.2316dB$
The maximum absolute value of the third aliasing distortion $-27.5018dB$ $-9.3399dB$ $18.1618dB$
The maximum absolute value of the fourth aliasing distortion $-18.7578dB$ $-5.1906$ $13.5672dB$
The maximum absolute value of the fifth aliasing distortion $-23.9515dB$ $-0.7191dB$ $23.2325dB$
Filter window bank Block filter bank Improvement
The maximum absolute value of the transfer functional distortion $-17.3157dB$ $0.9315dB$ $18.2472dB$
The maximum absolute value of the first aliasing distortion $-24.8282dB$ $-2.0172dB$ $22.8110dB$
The maximum absolute value of the second aliasing distortion $-18.6761dB$ $-5.4446dB$ $13.2316dB$
The maximum absolute value of the third aliasing distortion $-27.5018dB$ $-9.3399dB$ $18.1618dB$
The maximum absolute value of the fourth aliasing distortion $-18.7578dB$ $-5.1906$ $13.5672dB$
The maximum absolute value of the fifth aliasing distortion $-23.9515dB$ $-0.7191dB$ $23.2325dB$
[1]

Qing Liu, Bingo Wing-Kuen Ling, Qingyun Dai, Qing Miao, Caixia Liu. Optimal maximally decimated M-channel mirrored paraunitary linear phase FIR filter bank design via norm relaxed sequential quadratic programming. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1993-2011. doi: 10.3934/jimo.2020055

[2]

Hai Huyen Dam, Wing-Kuen Ling. Optimal design of finite precision and infinite precision non-uniform cosine modulated filter bank. Journal of Industrial and Management Optimization, 2019, 15 (1) : 97-112. doi: 10.3934/jimo.2018034

[3]

Liqiang Jin, Yanqing Liu, Yanyan Yin, Kok Lay Teo, Fei Liu. Design of probabilistic $ l_2-l_\infty $ filter for uncertain Markov jump systems with partial information of the transition probabilities. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2335-2349. doi: 10.3934/jimo.2021070

[4]

Hai Huyen Dam, Kok Lay Teo. Variable fractional delay filter design with discrete coefficients. Journal of Industrial and Management Optimization, 2016, 12 (3) : 819-831. doi: 10.3934/jimo.2016.12.819

[5]

Lidan Li, Hongwei Zhang, Liwei Zhang. Inverse quadratic programming problem with $ l_1 $ norm measure. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2425-2437. doi: 10.3934/jimo.2019061

[6]

Ankhbayar Chuluunbaatar, Enkhbat Rentsen. Solving a fractional programming problem in a commercial bank. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021153

[7]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems and Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[8]

Zongwei Chen. An online-decision algorithm for the multi-period bank clearing problem. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2783-2803. doi: 10.3934/jimo.2021091

[9]

Z.Y. Wu, H.W.J. Lee, F.S. Bai, L.S. Zhang. Quadratic smoothing approximation to $l_1$ exact penalty function in global optimization. Journal of Industrial and Management Optimization, 2005, 1 (4) : 533-547. doi: 10.3934/jimo.2005.1.533

[10]

Qifeng Cheng, Xue Han, Tingting Zhao, V S Sarma Yadavalli. Improved particle swarm optimization and neighborhood field optimization by introducing the re-sampling step of particle filter. Journal of Industrial and Management Optimization, 2019, 15 (1) : 177-198. doi: 10.3934/jimo.2018038

[11]

Donglei Du, Tianping Shuai. Errata to:''Optimal preemptive online scheduling to minimize $l_{p}$ norm on two processors''[Journal of Industrial and Management Optimization, 1(3) (2005), 345-351.]. Journal of Industrial and Management Optimization, 2008, 4 (2) : 339-341. doi: 10.3934/jimo.2008.4.339

[12]

Pia Heins, Michael Moeller, Martin Burger. Locally sparse reconstruction using the $l^{1,\infty}$-norm. Inverse Problems and Imaging, 2015, 9 (4) : 1093-1137. doi: 10.3934/ipi.2015.9.1093

[13]

P. R. Zingano. Asymptotic behavior of the $L^1$ norm of solutions to nonlinear parabolic equations. Communications on Pure and Applied Analysis, 2004, 3 (1) : 151-159. doi: 10.3934/cpaa.2004.3.151

[14]

Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1835-1861. doi: 10.3934/jimo.2021046

[15]

Wawan Hafid Syaifudin, Endah R. M. Putri. The application of model predictive control on stock portfolio optimization with prediction based on Geometric Brownian Motion-Kalman Filter. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021119

[16]

Duo Wang, Zheng-Fen Jin, Youlin Shang. A penalty decomposition method for nuclear norm minimization with l1 norm fidelity term. Evolution Equations and Control Theory, 2019, 8 (4) : 695-708. doi: 10.3934/eect.2019034

[17]

Burak Ordin, Adil Bagirov, Ehsan Mohebi. An incremental nonsmooth optimization algorithm for clustering using $ L_1 $ and $ L_\infty $ norms. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2757-2779. doi: 10.3934/jimo.2019079

[18]

Karina Samvelyan, Frol Zapolsky. Rigidity of the ${{L}^{p}}$-norm of the Poisson bracket on surfaces. Electronic Research Announcements, 2017, 24: 28-37. doi: 10.3934/era.2017.24.004

[19]

Sebastian Reich, Seoleun Shin. On the consistency of ensemble transform filter formulations. Journal of Computational Dynamics, 2014, 1 (1) : 177-189. doi: 10.3934/jcd.2014.1.177

[20]

Alexander Bibov, Heikki Haario, Antti Solonen. Stabilized BFGS approximate Kalman filter. Inverse Problems and Imaging, 2015, 9 (4) : 1003-1024. doi: 10.3934/ipi.2015.9.1003

2021 Impact Factor: 1.411

Article outline

Figures and Tables

[Back to Top]