
-
Previous Article
Portfolio optimization for jump-diffusion risky assets with regime switching: A time-consistent approach
- JIMO Home
- This Issue
-
Next Article
Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs
Mean-variance investment and contribution decisions for defined benefit pension plans in a stochastic framework
1. | School of Statistics and Information, Shanghai University of International Business and Economics, Shanghai 201620, China |
2. | School of Risk and Actuarial Studies, University of New South Wales, Sydney NSW 2052, Australia |
3. | Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, Shanghai 200241, China |
In this paper we investigate the management of a defined benefit pension plan under a model with random coefficients. The objective of the pension sponsor is to minimize the solvency risk, contribution risk and the expected terminal value of the unfunded actuarial liability. By measuring the solvency risk in terms of the variance of the terminal unfunded actuarial liability, we formulate the problem as a mean-variance problem with an additional running cost. With the help of a system of backward stochastic differential equations, we derive a time-consistent equilibrium strategy towards investment and contribution rate. The obtained equilibrium strategy turns out to be a good candidate for a stable contribution plan. When the interest rate is given by the Vasicek model and all other coefficients are deterministic, we obtain closed-form solutions of the equilibrium strategy and efficient frontier.
References:
[1] |
S. Basak and G. Chabakauri, Dynamic mean-variance asset allocation, Review of Financial Studies, 23 (2010), 2970-3016. Google Scholar |
[2] |
P. Battocchio and F. Menoncin,
Optimal pension management in a stochastic framework, Insurance: Mathematics and Economics, 34 (2004), 79-95.
doi: 10.1016/j.insmatheco.2003.11.001. |
[3] |
T. Björk, M. Khapko and A. Murgoci,
On time-inconsistent stochastic control in continuous time, Finance and Stochastics, 21 (2017), 331-360.
doi: 10.1007/s00780-017-0327-5. |
[4] |
T. Björk, A. Murgoci and X. Y. Zhou,
Mean-variance portfolio optimization with state-dependent risk aversion, Mathematical Finance, 24 (2014), 1-24.
doi: 10.1111/j.1467-9965.2011.00515.x. |
[5] |
P. Briand and F. Confortola,
BSDEs with stochastic lipschitz condition and quadratic PDEs in Hilbert spaces, Stochastic Processes and their Applications, 118 (2008), 818-838.
doi: 10.1016/j.spa.2007.06.006. |
[6] |
A. Cairns,
Some notes on the dynamics and optimal control of stochastic pension fund models in continuous time, Astin Bulletin, 30 (2000), 19-55.
doi: 10.2143/AST.30.1.504625. |
[7] |
S. C. Chang, L. Y. Tzeng and J. C. Y. Miao,
Pension funding incorporating downside risks, Insurance: Mathematics and Economics, 32 (2003), 217-228.
doi: 10.1016/S0167-6687(02)00211-1. |
[8] |
L. Colombo and S. Haberman,
Optimal contributions in a defined benefit pension scheme with stochastic new entrants, Insurance: Mathematics and Economics, 37 (2005), 335-354.
doi: 10.1016/j.insmatheco.2005.02.011. |
[9] |
C. Czichowsky,
Time-consistent mean-variance portfolio selection in discrete and continuous time, Finance and Stochastics, 17 (2013), 227-271.
doi: 10.1007/s00780-012-0189-9. |
[10] |
L. Delong, R. Gerrard and S. Haberman,
Mean-variance optimization problems for an accumulation phase in a defined benefit plan, Insurance: Mathematics and Economics, 42 (2008), 107-118.
doi: 10.1016/j.insmatheco.2007.01.005. |
[11] |
I. Ekeland, O. Mbodji and T. A. Pirvu,
Time-consistent portfolio management, SIAM Journal on Financial Mathematics, 3 (2012), 1-32.
doi: 10.1137/100810034. |
[12] |
I. Ekeland and T. A. Pirvu,
Investment and consumption without commitment, Mathematics and Financial Economics, 2 (2008), 57-86.
doi: 10.1007/s11579-008-0014-6. |
[13] |
N. El Karoui, S. Peng and M. C. Quenez,
Backward stochastic differential equations in finance, Mathematical Finance, 7 (1997), 1-71.
doi: 10.1111/1467-9965.00022. |
[14] |
S. Haberman,
Stochastic investment returns and contribution rate risk in a defined benefit pension scheme, Insurance: Mathematics and Economics, 19 (1997), 127-139.
doi: 10.1016/S0167-6687(96)00019-4. |
[15] |
S. Haberman, Z. Butt and C. Megaloudi,
Contribution and solvency risk in a defined benefit pension scheme, Insurance: Mathematics and Economics, 27 (2000), 237-259.
doi: 10.1016/S0167-6687(00)00051-2. |
[16] |
S. Haberman and J.-H. Sung, Dynamic approaches to pension funding, Insurance: Mathematics and Economics, 15 (1994), 151-162. Google Scholar |
[17] |
Y. Hu, H. Q. Jin and X. Y. Zhou,
Time-inconsistent stochastic linear-quadratic control, SIAM Journal on Control and Optimization, 50 (2012), 1548-1572.
doi: 10.1137/110853960. |
[18] |
H.-C. Huang and A. J. G. Cairns,
On the control of defined-benefit pension plans, Insurance: Mathematics and Economics, 38 (2006), 113-131.
doi: 10.1016/j.insmatheco.2005.08.005. |
[19] |
R. Josa-Fombellida and J. Rincón-Zapatero,
Minimization of risks in pension funding by means of contributions and portfolio selection, Insurance: Mathematics and Economics, 29 (2001), 35-45.
doi: 10.1016/S0167-6687(01)00070-1. |
[20] |
R. Josa-Fombellida and J. P. Rincón-Zapatero,
Optimal risk management in defined benefit stochastic pension funds, Insurance: Mathematics and Economics, 34 (2004), 489-503.
doi: 10.1016/j.insmatheco.2004.03.002. |
[21] |
R. Josa-Fombellida and J. P. Rincón-Zapatero,
Mean-variance portfolio and contribution selection in stochastic pension funding, European Journal of Operational Research, 187 (2008), 120-137.
doi: 10.1016/j.ejor.2007.03.002. |
[22] |
R. Josa-Fombellida and J. P. Rincón-Zapatero,
Optimal asset allocation for aggregated defined benefit pension funds with stochastic interest rates, European Journal of Operational Research, 201 (2010), 211-221.
doi: 10.1016/j.ejor.2009.02.021. |
[23] |
E. Lee, An Introduction to Pension Schemes, Institute and Faculty of Actuaries, London, UK, 1986. Google Scholar |
[24] |
D. Li and W. L. Ng,
Optimal dynamic portfolio selection: Multi-period mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.
doi: 10.1111/1467-9965.00100. |
[25] |
A. E. B. Lim,
Quadratic hedging and mean-variance portfolio selection with random parameters in an incomplete market, Mathematics of Operations Research, 29 (2004), 132-161.
doi: 10.1287/moor.1030.0065. |
[26] |
J. Marín-Solano and J. Navas,
Consumption and portfolio rules for time-inconsistent investors, European Journal of Operational Research, 201 (2010), 860-872.
doi: 10.1016/j.ejor.2009.04.005. |
[27] |
D. Marshall and J. Reeve, Defined Benefit Pension Schemes: Funding for Ongoing Security, Presented to Staple Inn Actuarial Society, London, UK, 1993. Google Scholar |
[28] |
M.-A. Morlais,
Quadratic BSDEs driven by a continuous martingale and applications to the utility maximization problem, Finance and Stochastics, 13 (2009), 121-150.
doi: 10.1007/s00780-008-0079-3. |
[29] |
B. Ngwira and R. Gerrard,
Stochastic pension fund control in the presence of Poisson jumps, Insurance: Mathematics and Economics, 40 (2007), 283-292.
doi: 10.1016/j.insmatheco.2006.05.002. |
[30] |
R. H. Strotz, Myopia and inconsistency in dynamic utility maximization, Readings in Welfare Economics, (1973), 128–143.
doi: 10.1007/978-1-349-15492-0_10. |
[31] |
J. Q. Wei and T. X. Wang,
Time-consistent mean-variance asset-liability management with random coefficients, Insurance: Mathematics and Economics, 77 (2017), 84-96.
doi: 10.1016/j.insmatheco.2017.08.011. |
[32] |
J. M. Yong,
Linear-quadratic optimal control problems for mean-field stochastic differential equations: Time-consistent solutions, Transactions of the American Mathematical Society, 369 (2017), 5467-5523.
doi: 10.1090/tran/6502. |
[33] |
Q. Zhao, Y. Shen and J. Q. Wei,
Consumption-investment strategies with non-exponential discounting and logarithmic utility, European Journal of Operational Research, 238 (2014), 824-835.
doi: 10.1016/j.ejor.2014.04.034. |
[34] |
X. Y. Zhou and D. Li,
Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization, 42 (2000), 19-33.
doi: 10.1007/s002450010003. |
show all references
References:
[1] |
S. Basak and G. Chabakauri, Dynamic mean-variance asset allocation, Review of Financial Studies, 23 (2010), 2970-3016. Google Scholar |
[2] |
P. Battocchio and F. Menoncin,
Optimal pension management in a stochastic framework, Insurance: Mathematics and Economics, 34 (2004), 79-95.
doi: 10.1016/j.insmatheco.2003.11.001. |
[3] |
T. Björk, M. Khapko and A. Murgoci,
On time-inconsistent stochastic control in continuous time, Finance and Stochastics, 21 (2017), 331-360.
doi: 10.1007/s00780-017-0327-5. |
[4] |
T. Björk, A. Murgoci and X. Y. Zhou,
Mean-variance portfolio optimization with state-dependent risk aversion, Mathematical Finance, 24 (2014), 1-24.
doi: 10.1111/j.1467-9965.2011.00515.x. |
[5] |
P. Briand and F. Confortola,
BSDEs with stochastic lipschitz condition and quadratic PDEs in Hilbert spaces, Stochastic Processes and their Applications, 118 (2008), 818-838.
doi: 10.1016/j.spa.2007.06.006. |
[6] |
A. Cairns,
Some notes on the dynamics and optimal control of stochastic pension fund models in continuous time, Astin Bulletin, 30 (2000), 19-55.
doi: 10.2143/AST.30.1.504625. |
[7] |
S. C. Chang, L. Y. Tzeng and J. C. Y. Miao,
Pension funding incorporating downside risks, Insurance: Mathematics and Economics, 32 (2003), 217-228.
doi: 10.1016/S0167-6687(02)00211-1. |
[8] |
L. Colombo and S. Haberman,
Optimal contributions in a defined benefit pension scheme with stochastic new entrants, Insurance: Mathematics and Economics, 37 (2005), 335-354.
doi: 10.1016/j.insmatheco.2005.02.011. |
[9] |
C. Czichowsky,
Time-consistent mean-variance portfolio selection in discrete and continuous time, Finance and Stochastics, 17 (2013), 227-271.
doi: 10.1007/s00780-012-0189-9. |
[10] |
L. Delong, R. Gerrard and S. Haberman,
Mean-variance optimization problems for an accumulation phase in a defined benefit plan, Insurance: Mathematics and Economics, 42 (2008), 107-118.
doi: 10.1016/j.insmatheco.2007.01.005. |
[11] |
I. Ekeland, O. Mbodji and T. A. Pirvu,
Time-consistent portfolio management, SIAM Journal on Financial Mathematics, 3 (2012), 1-32.
doi: 10.1137/100810034. |
[12] |
I. Ekeland and T. A. Pirvu,
Investment and consumption without commitment, Mathematics and Financial Economics, 2 (2008), 57-86.
doi: 10.1007/s11579-008-0014-6. |
[13] |
N. El Karoui, S. Peng and M. C. Quenez,
Backward stochastic differential equations in finance, Mathematical Finance, 7 (1997), 1-71.
doi: 10.1111/1467-9965.00022. |
[14] |
S. Haberman,
Stochastic investment returns and contribution rate risk in a defined benefit pension scheme, Insurance: Mathematics and Economics, 19 (1997), 127-139.
doi: 10.1016/S0167-6687(96)00019-4. |
[15] |
S. Haberman, Z. Butt and C. Megaloudi,
Contribution and solvency risk in a defined benefit pension scheme, Insurance: Mathematics and Economics, 27 (2000), 237-259.
doi: 10.1016/S0167-6687(00)00051-2. |
[16] |
S. Haberman and J.-H. Sung, Dynamic approaches to pension funding, Insurance: Mathematics and Economics, 15 (1994), 151-162. Google Scholar |
[17] |
Y. Hu, H. Q. Jin and X. Y. Zhou,
Time-inconsistent stochastic linear-quadratic control, SIAM Journal on Control and Optimization, 50 (2012), 1548-1572.
doi: 10.1137/110853960. |
[18] |
H.-C. Huang and A. J. G. Cairns,
On the control of defined-benefit pension plans, Insurance: Mathematics and Economics, 38 (2006), 113-131.
doi: 10.1016/j.insmatheco.2005.08.005. |
[19] |
R. Josa-Fombellida and J. Rincón-Zapatero,
Minimization of risks in pension funding by means of contributions and portfolio selection, Insurance: Mathematics and Economics, 29 (2001), 35-45.
doi: 10.1016/S0167-6687(01)00070-1. |
[20] |
R. Josa-Fombellida and J. P. Rincón-Zapatero,
Optimal risk management in defined benefit stochastic pension funds, Insurance: Mathematics and Economics, 34 (2004), 489-503.
doi: 10.1016/j.insmatheco.2004.03.002. |
[21] |
R. Josa-Fombellida and J. P. Rincón-Zapatero,
Mean-variance portfolio and contribution selection in stochastic pension funding, European Journal of Operational Research, 187 (2008), 120-137.
doi: 10.1016/j.ejor.2007.03.002. |
[22] |
R. Josa-Fombellida and J. P. Rincón-Zapatero,
Optimal asset allocation for aggregated defined benefit pension funds with stochastic interest rates, European Journal of Operational Research, 201 (2010), 211-221.
doi: 10.1016/j.ejor.2009.02.021. |
[23] |
E. Lee, An Introduction to Pension Schemes, Institute and Faculty of Actuaries, London, UK, 1986. Google Scholar |
[24] |
D. Li and W. L. Ng,
Optimal dynamic portfolio selection: Multi-period mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.
doi: 10.1111/1467-9965.00100. |
[25] |
A. E. B. Lim,
Quadratic hedging and mean-variance portfolio selection with random parameters in an incomplete market, Mathematics of Operations Research, 29 (2004), 132-161.
doi: 10.1287/moor.1030.0065. |
[26] |
J. Marín-Solano and J. Navas,
Consumption and portfolio rules for time-inconsistent investors, European Journal of Operational Research, 201 (2010), 860-872.
doi: 10.1016/j.ejor.2009.04.005. |
[27] |
D. Marshall and J. Reeve, Defined Benefit Pension Schemes: Funding for Ongoing Security, Presented to Staple Inn Actuarial Society, London, UK, 1993. Google Scholar |
[28] |
M.-A. Morlais,
Quadratic BSDEs driven by a continuous martingale and applications to the utility maximization problem, Finance and Stochastics, 13 (2009), 121-150.
doi: 10.1007/s00780-008-0079-3. |
[29] |
B. Ngwira and R. Gerrard,
Stochastic pension fund control in the presence of Poisson jumps, Insurance: Mathematics and Economics, 40 (2007), 283-292.
doi: 10.1016/j.insmatheco.2006.05.002. |
[30] |
R. H. Strotz, Myopia and inconsistency in dynamic utility maximization, Readings in Welfare Economics, (1973), 128–143.
doi: 10.1007/978-1-349-15492-0_10. |
[31] |
J. Q. Wei and T. X. Wang,
Time-consistent mean-variance asset-liability management with random coefficients, Insurance: Mathematics and Economics, 77 (2017), 84-96.
doi: 10.1016/j.insmatheco.2017.08.011. |
[32] |
J. M. Yong,
Linear-quadratic optimal control problems for mean-field stochastic differential equations: Time-consistent solutions, Transactions of the American Mathematical Society, 369 (2017), 5467-5523.
doi: 10.1090/tran/6502. |
[33] |
Q. Zhao, Y. Shen and J. Q. Wei,
Consumption-investment strategies with non-exponential discounting and logarithmic utility, European Journal of Operational Research, 238 (2014), 824-835.
doi: 10.1016/j.ejor.2014.04.034. |
[34] |
X. Y. Zhou and D. Li,
Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization, 42 (2000), 19-33.
doi: 10.1007/s002450010003. |

[1] |
Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133 |
[2] |
Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020166 |
[3] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[4] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020390 |
[5] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[6] |
Shan Liu, Hui Zhao, Ximin Rong. Time-consistent investment-reinsurance strategy with a defaultable security under ambiguous environment. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021015 |
[7] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[8] |
Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085 |
[9] |
Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021003 |
[10] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[11] |
Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021019 |
[12] |
Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304 |
[13] |
Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167 |
[14] |
Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020 doi: 10.3934/fods.2020018 |
[15] |
Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020465 |
[16] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[17] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[18] |
Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260 |
[19] |
Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020054 |
[20] |
Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]