
-
Previous Article
Network data envelopment analysis with fuzzy non-discretionary factors
- JIMO Home
- This Issue
-
Next Article
Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems
Robust equilibrium control-measure policy for a DC pension plan with state-dependent risk aversion under mean-variance criterion
1. | School of Mathematics and Statistics, Xi'an Jiaotong University, Shaanxi 710049, China |
2. | Center for Optimization Technique and Quantitative Finance, Xi'an International Academy for Mathematics and Mathematical Technology, Shaanxi 710049, China |
3. | School of Science, Xijing University, Xi'an, Shaanxi 710123, China |
In reality, when facing a defined contribution (DC) pension fund investment problem, the fund manager may not have sufficient confidence in the reference model and rather considers some similar alternative models. In this paper, we investigate the robust equilibrium control-measure policy for an ambiguity-averse and risk-averse fund manger under the mean-variance (MV) criterion. The ambiguity aversion is introduced by adopting the model uncertainty robustness framework developed by Anderson. The risk aversion model is state-dependent, and takes a linear form of the current wealth level after contribution. Moreover, the fund manager faces stochastic labor income risk and allocates his wealth among a risk-free asset and a risky asset. We also propose two complicated ambiguity preference functions which are economically meaningful and facilitate analytical tractability. Due to the time-inconsistency of the resulting stochastic control problem, we attack it by using the game theoretical framework and the concept of subgame perfect Nash equilibrium. The extended Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations and the verification theorem for our problem are established. The explicit expressions for the robust equilibrium policy and the corresponding robust equilibrium value function are derived by stochastic control technique. In addition, we discuss two special cases of our model, which shows that our results extend some existing works in the literature. Finally, some numerical experiments are conducted to demonstrate the effects of model parameters on our robust equilibrium policy.
References:
[1] |
E. W. Anderson, L. P. Hansen and T. J. Sargent, Robustness, detection and the price of risk, 1999. Available from: https://www.researchgate.net/profile/Lars_Hansen/publication/2637084_Robustness_Detection_and_the_Price_of_Risk/links/0deec51f6c2524ada9000000/Robustness-Detection-and-the-Price-of-Risk.pdf. Google Scholar |
[2] |
E. W. Anderson, L. P. Hansen and T. J. Sargent, A quartet of semigroups for model specification, robustness, prices of risk, and model detection, Journal of the European Economic Association, 1 (2003), 68-123. Google Scholar |
[3] |
S. Basak and G. Chabakauri, Dynamic mean-variance asset allocation, The Review of Financial Studies, 23 (2010), 2970-3016. Google Scholar |
[4] |
P. Battocchio and F. Menoncin,
Optimal pension management in a stochastic framework, Insurance: Mathematics and Economics, 34 (2004), 79-95.
doi: 10.1016/j.insmatheco.2003.11.001. |
[5] |
T. Björk, A. Murgoci and X. Y. Zhou,
Mean-variance portfolio optimization with state-dependent risk aversion, Mathematical Finance, 24 (2014), 1-24.
doi: 10.1111/j.1467-9965.2011.00515.x. |
[6] |
T. Björk, M. Khapko and A. Murgoci,
On time-inconsistent stochastic control in continuous time, Finance and Stochastics, 21 (2017), 331-360.
doi: 10.1007/s00780-017-0327-5. |
[7] |
D. Blake, D. Wright and Y. M. Zhang,
Target-driven investing: Optimal investment strategies in defined contribution pension plans under loss aversion, Journal of Economic Dynamics and Control, 37 (2013), 195-209.
doi: 10.1016/j.jedc.2012.08.001. |
[8] |
Z. Bodie, J. B. Detemple, S. Otruba and S. Walter,
Optimal consumption-portfolio choices and retirement planning, Journal of Economic Dynamics and Control, 28 (2004), 1115-1148.
doi: 10.1016/S0165-1889(03)00068-X. |
[9] |
A. J. G. Cairns, D. Blake and K. Dowd,
Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans, Journal of Economic Dynamics and Control, 30 (2006), 843-877.
doi: 10.1016/j.jedc.2005.03.009. |
[10] |
Z. Chen, Z. F. Li, Y. Zeng and J. Y. Sun,
Asset allocation under loss aversion and minimum performance constraint in a DC pension plan with inflation risk, Insurance: Mathematics and Economics, 75 (2017), 137-150.
doi: 10.1016/j.insmatheco.2017.05.009. |
[11] |
X. Y. Cui, D. Li, S. Y. Wang and S. S. Zhu,
Better than dynamic mean-variance: Time inconsistency and free cash flow stream, Mathematical Finance, 22 (2012), 346-378.
doi: 10.1111/j.1467-9965.2010.00461.x. |
[12] |
X. Y. Cui, L. Xu and Y. Zeng,
Continuous time mean-variance portfolio optimization with piecewise state-dependent risk aversion, Optimization Letters, 10 (2016), 1681-1691.
doi: 10.1007/s11590-015-0970-8. |
[13] |
X. Y. Cui, X. Li, D. Li and Y. Shi,
Time consistent behavioral portfolio policy for dynamic mean-variance formulation, Journal of the Operational Research Society, 68 (2017), 1647-1660.
doi: 10.1057/s41274-017-0179-6. |
[14] |
G. Deelstra, M. Grasselli and P.-F. Koehl,
Optimal investment strategies in the presence of a minimum guarantee, Insurance: Mathematics and Economics, 33 (2003), 189-207.
doi: 10.1016/S0167-6687(03)00153-7. |
[15] |
C. R. Flor and L. S. Larsen,
Robust portfolio choice with stochastic interest rates, Annals of Finance, 10 (2014), 243-265.
doi: 10.1007/s10436-013-0234-5. |
[16] |
G. H. Guan and Z. X. Liang,
Mean-variance efficiency of DC pension plan under stochastic interest rate and mean-reverting returns, Insurance: Mathematics and Economics, 61 (2015), 99-109.
doi: 10.1016/j.insmatheco.2014.12.006. |
[17] |
L. P. Hansen, T. J.Sargent, G. Turmuhambetova and N. Williams,
Robust control and model misspecification, Journal of Economic Theory, 128 (2006), 45-90.
doi: 10.1016/j.jet.2004.12.006. |
[18] |
Y. Hu, H. Q. Jin and X. Y. Zhou,
Time-inconsistent stochastic linear-quadratic control, SIAM Journal on Control and Optimization, 50 (2012), 1548-1572.
doi: 10.1137/110853960. |
[19] |
I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Second edition. Graduate Texts in Mathematics, 113. Springer-Verlag, New York, 1991
doi: 10.1007/978-1-4612-0949-2. |
[20] |
F. Knight, Risk, Uncertainty and Profit, Houghton Mifflin, New York, 1921.
doi: 10.1017/CBO9780511817410.005. |
[21] |
R. Korn, O. Menkens and M. Steffensen,
Worst-case-optimal dynamic reinsurance for large claims, European Actuarial Journal, 2 (2012), 21-48.
doi: 10.1007/s13385-012-0050-8. |
[22] |
Z. X. Liang and M. Song,
Time-consistent reinsurance and investment strategies for mean-variance insurer under partial information, Insurance: Mathematics and Economics, 65 (2015), 66-76.
doi: 10.1016/j.insmatheco.2015.08.008. |
[23] |
Y. W. Li and Z. F. Li,
Optimal time-consistent investment and reinsurance strategies for mean-variance insurers with state dependent risk aversion, Insurance: Mathematics and Economics, 53 (2013), 86-97.
doi: 10.1016/j.insmatheco.2013.03.008. |
[24] |
D. Li and W. L. Ng,
Optimal dynamic portfolio selection: Multiperiod mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.
doi: 10.1111/1467-9965.00100. |
[25] |
X. Lin, C. H. Zhang and T. K. Siu,
Stochastic differential portfolio games for an insurer in a jump-diffusion risk process, Mathematical Methods of Operations Research, 75 (2012), 83-100.
doi: 10.1007/s00186-011-0376-z. |
[26] |
J. Liu, J. Pan and T. Wang,
An equilibrium model of rare-event premia and its implication for option smirks, The Review of Financial Studies, 18 (2005), 131-164.
doi: 10.1093/rfs/hhi011. |
[27] |
H. Liu, Robust consumption and portfolio choice for time varying investment opportunities, Annals of Finance, 6 (2010), 435-454. Google Scholar |
[28] |
Y. L. Liu, M. Y. Yang, J. Zhai and M. Y. Bai,
Portfolio selection of the defined contribution pension fund with uncertain return and salary: A multi-period mean-variance model, Journal of Intelligent and Fuzzy Systems, 34 (2018), 2363-2371.
doi: 10.3233/JIFS-171440. |
[29] |
Q.-P. Ma,
On "optimal pension management in a stochastic framework" with exponential utility, Insurance: Mathematics and Economics, 49 (2011), 61-69.
doi: 10.1016/j.insmatheco.2011.02.003. |
[30] |
P. J. Maenhout, Robust portfolio rules and asset pricing, The Review of Financial Studies, 17 (2004), 951-983. Google Scholar |
[31] |
P. J. Maenhout,
Robust portfolio rules and detection-error probabilities for a mean-reverting risk premium, Journal of Economic Theory, 128 (2006), 136-163.
doi: 10.1016/j.jet.2005.12.012. |
[32] |
H. M. Markowitz, Portfolio selection, The Journal of Finance, 7 (1952), 77-91. Google Scholar |
[33] |
C. Munk and A. Rubtsov,
Portfolio management with stochastic interest rates and inflation ambiguity, Annals of Finance, 10 (2014), 419-455.
doi: 10.1007/s10436-013-0238-1. |
[34] |
B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Fifth edition. Universitext. Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-03620-4. |
[35] |
J. Poterba, J. Rauh, S. Venti and D. Wise,
Defined contribution plans, defined benefit plans, and the accumulation of retirement wealth, Journal of Public Economics, 91 (2007), 2062-2086.
doi: 10.3386/w12597. |
[36] |
C. S. Pun and H. Y. Wong,
Robust investment-reinsurance optimization with multiscale stochastic volatility, Insurance: Mathematics and Economics, 62 (2015), 245-256.
doi: 10.1016/j.insmatheco.2015.03.030. |
[37] |
C. S. Pun,
Robust time-inconsistent stochastic control problems, Automatica, 94 (2018), 249-257.
doi: 10.1016/j.automatica.2018.04.038. |
[38] |
C. S. Pun, Robust time-inconsistent stochastic control problems (extended version), Working paper, 2018. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3035656. Google Scholar |
[39] |
R. H. Strotz, Myopia and inconsistency in dynamic utility maximization, The Review of Economic Studies, (1973), 128–143.
doi: 10.1007/978-1-349-15492-0_10. |
[40] |
E. Vigna,
On efficiency of mean-variance based portfolio selection in defined contribution pension schemes, Quantitative Finance, 14 (2014), 237-258.
doi: 10.1080/14697688.2012.708778. |
[41] |
L. Y. Wang and Z. P. Chen, Nash equilibrium strategy for a DC pension plan with state-dependent risk aversion: A multiperiod mean-variance framework, Discrete Dynamics in Nature and Society, 2018 (2018), Art. ID 7581231, 17 pp.
doi: 10.1155/2018/7581231. |
[42] |
L. Y. Wang and Z. P. Chen, Stochastic game theoretic formulation for a multi-period DC pension plan with state-dependent risk aversion, Mathematics, 7 (2019).
doi: 10.3390/math7010108. |
[43] |
P. Wang and Z. F. Li,
Robust optimal investment strategy for an AAM of DC pension plans with stochastic interest rate and stochastic volatility, Insurance: Mathematics and Economics, 80 (2018), 67-83.
doi: 10.1016/j.insmatheco.2018.03.003. |
[44] |
H. L. Wu, Time-consistent strategies for a multiperiod mean-variance portfolio selection problem, Journal of Applied Mathematics, 2013 (2013), Art. ID 841627, 13 pp.
doi: 10.1155/2013/841627. |
[45] |
H. L. Wu, L. Zhang and H. Chen,
Nash equilibrium strategies for a defined contribution pension management, Insurance: Mathematics and Economics, 62 (2015), 202-214.
doi: 10.1016/j.insmatheco.2015.03.014. |
[46] |
H. Wu, C. Weng and Y. Zeng, Equilibrium consumption and portfolio decisions with stochastic discount rate and time-varying utility functions, OR Spectrum, 40 (2018), 541-582. Google Scholar |
[47] |
W. D. Xu, C. F. Wu and H. Y. Li,
Robust general equilibrium under stochastic volatility model, Finance Research Letters, 7 (2010), 224-231.
doi: 10.1016/j.frl.2010.05.002. |
[48] |
H. X. Yao, Z. Yang and P. Chen,
Markowitz's mean-variance defined contribution pension fund management under inflation: A continuous-time model, Insurance: Mathematics and Economics, 53 (2013), 851-863.
doi: 10.1016/j.insmatheco.2013.10.002. |
[49] |
B. Yi, Z. F. Li, F. G. Viens and Y. Zeng,
Robust optimal control for an insurer with reinsurance and investment under Heston's stochastic volatility model, Insurance: Mathematics and Economics, 53 (2013), 601-614.
doi: 10.1016/j.insmatheco.2013.08.011. |
[50] |
B. Yi, F. Viens, Z. F. Li and Y. Zeng,
Robust optimal strategies for an insurer with reinsurance and investment under benchmark and mean-variance criteria, Scandinavian Actuarial Journal, 2015 (2015), 725-751.
doi: 10.1080/03461238.2014.883085. |
[51] |
Y. Zeng, D. P. Li and A. L. Gu,
Robust equilibrium reinsurance-investment strategy for a mean-variance insurer in a model with jumps, Insurance: Mathematics and Economics, 66 (2016), 138-152.
doi: 10.1016/j.insmatheco.2015.10.012. |
[52] |
Y. Zeng, D. P. Li, Z. Chen and Z. Yang,
Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility, Journal of Economic Dynamics and Control, 88 (2018), 70-103.
doi: 10.1016/j.jedc.2018.01.023. |
[53] |
X. Zhang and T. K. Siu,
Optimal investment and reinsurance of an insurer with model uncertainty, Insurance: Mathematics and Economics, 45 (2009), 81-88.
doi: 10.1016/j.insmatheco.2009.04.001. |
[54] |
X. X. Zheng, J. M. Zhou and Z. Y. Sun,
Robust optimal portfolio and proportional reinsurance for an insurer under a CEV model, Insurance: Mathematics and Economics, 67 (2016), 77-87.
doi: 10.1016/j.insmatheco.2015.12.008. |
[55] |
X. Y. Zhou and D. Li,
Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization, 42 (2000), 19-33.
doi: 10.1007/s002450010003. |
[56] |
H. N. Zhu, M. Cao and C. K. Zhang,
Time-consistent investment and reinsurance strategies for mean-variance insurers with relative performance concerns under the Heston model, Finance Research Letters, 30 (2018), 280-291.
doi: 10.1016/j.frl.2018.10.009. |
show all references
References:
[1] |
E. W. Anderson, L. P. Hansen and T. J. Sargent, Robustness, detection and the price of risk, 1999. Available from: https://www.researchgate.net/profile/Lars_Hansen/publication/2637084_Robustness_Detection_and_the_Price_of_Risk/links/0deec51f6c2524ada9000000/Robustness-Detection-and-the-Price-of-Risk.pdf. Google Scholar |
[2] |
E. W. Anderson, L. P. Hansen and T. J. Sargent, A quartet of semigroups for model specification, robustness, prices of risk, and model detection, Journal of the European Economic Association, 1 (2003), 68-123. Google Scholar |
[3] |
S. Basak and G. Chabakauri, Dynamic mean-variance asset allocation, The Review of Financial Studies, 23 (2010), 2970-3016. Google Scholar |
[4] |
P. Battocchio and F. Menoncin,
Optimal pension management in a stochastic framework, Insurance: Mathematics and Economics, 34 (2004), 79-95.
doi: 10.1016/j.insmatheco.2003.11.001. |
[5] |
T. Björk, A. Murgoci and X. Y. Zhou,
Mean-variance portfolio optimization with state-dependent risk aversion, Mathematical Finance, 24 (2014), 1-24.
doi: 10.1111/j.1467-9965.2011.00515.x. |
[6] |
T. Björk, M. Khapko and A. Murgoci,
On time-inconsistent stochastic control in continuous time, Finance and Stochastics, 21 (2017), 331-360.
doi: 10.1007/s00780-017-0327-5. |
[7] |
D. Blake, D. Wright and Y. M. Zhang,
Target-driven investing: Optimal investment strategies in defined contribution pension plans under loss aversion, Journal of Economic Dynamics and Control, 37 (2013), 195-209.
doi: 10.1016/j.jedc.2012.08.001. |
[8] |
Z. Bodie, J. B. Detemple, S. Otruba and S. Walter,
Optimal consumption-portfolio choices and retirement planning, Journal of Economic Dynamics and Control, 28 (2004), 1115-1148.
doi: 10.1016/S0165-1889(03)00068-X. |
[9] |
A. J. G. Cairns, D. Blake and K. Dowd,
Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans, Journal of Economic Dynamics and Control, 30 (2006), 843-877.
doi: 10.1016/j.jedc.2005.03.009. |
[10] |
Z. Chen, Z. F. Li, Y. Zeng and J. Y. Sun,
Asset allocation under loss aversion and minimum performance constraint in a DC pension plan with inflation risk, Insurance: Mathematics and Economics, 75 (2017), 137-150.
doi: 10.1016/j.insmatheco.2017.05.009. |
[11] |
X. Y. Cui, D. Li, S. Y. Wang and S. S. Zhu,
Better than dynamic mean-variance: Time inconsistency and free cash flow stream, Mathematical Finance, 22 (2012), 346-378.
doi: 10.1111/j.1467-9965.2010.00461.x. |
[12] |
X. Y. Cui, L. Xu and Y. Zeng,
Continuous time mean-variance portfolio optimization with piecewise state-dependent risk aversion, Optimization Letters, 10 (2016), 1681-1691.
doi: 10.1007/s11590-015-0970-8. |
[13] |
X. Y. Cui, X. Li, D. Li and Y. Shi,
Time consistent behavioral portfolio policy for dynamic mean-variance formulation, Journal of the Operational Research Society, 68 (2017), 1647-1660.
doi: 10.1057/s41274-017-0179-6. |
[14] |
G. Deelstra, M. Grasselli and P.-F. Koehl,
Optimal investment strategies in the presence of a minimum guarantee, Insurance: Mathematics and Economics, 33 (2003), 189-207.
doi: 10.1016/S0167-6687(03)00153-7. |
[15] |
C. R. Flor and L. S. Larsen,
Robust portfolio choice with stochastic interest rates, Annals of Finance, 10 (2014), 243-265.
doi: 10.1007/s10436-013-0234-5. |
[16] |
G. H. Guan and Z. X. Liang,
Mean-variance efficiency of DC pension plan under stochastic interest rate and mean-reverting returns, Insurance: Mathematics and Economics, 61 (2015), 99-109.
doi: 10.1016/j.insmatheco.2014.12.006. |
[17] |
L. P. Hansen, T. J.Sargent, G. Turmuhambetova and N. Williams,
Robust control and model misspecification, Journal of Economic Theory, 128 (2006), 45-90.
doi: 10.1016/j.jet.2004.12.006. |
[18] |
Y. Hu, H. Q. Jin and X. Y. Zhou,
Time-inconsistent stochastic linear-quadratic control, SIAM Journal on Control and Optimization, 50 (2012), 1548-1572.
doi: 10.1137/110853960. |
[19] |
I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Second edition. Graduate Texts in Mathematics, 113. Springer-Verlag, New York, 1991
doi: 10.1007/978-1-4612-0949-2. |
[20] |
F. Knight, Risk, Uncertainty and Profit, Houghton Mifflin, New York, 1921.
doi: 10.1017/CBO9780511817410.005. |
[21] |
R. Korn, O. Menkens and M. Steffensen,
Worst-case-optimal dynamic reinsurance for large claims, European Actuarial Journal, 2 (2012), 21-48.
doi: 10.1007/s13385-012-0050-8. |
[22] |
Z. X. Liang and M. Song,
Time-consistent reinsurance and investment strategies for mean-variance insurer under partial information, Insurance: Mathematics and Economics, 65 (2015), 66-76.
doi: 10.1016/j.insmatheco.2015.08.008. |
[23] |
Y. W. Li and Z. F. Li,
Optimal time-consistent investment and reinsurance strategies for mean-variance insurers with state dependent risk aversion, Insurance: Mathematics and Economics, 53 (2013), 86-97.
doi: 10.1016/j.insmatheco.2013.03.008. |
[24] |
D. Li and W. L. Ng,
Optimal dynamic portfolio selection: Multiperiod mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.
doi: 10.1111/1467-9965.00100. |
[25] |
X. Lin, C. H. Zhang and T. K. Siu,
Stochastic differential portfolio games for an insurer in a jump-diffusion risk process, Mathematical Methods of Operations Research, 75 (2012), 83-100.
doi: 10.1007/s00186-011-0376-z. |
[26] |
J. Liu, J. Pan and T. Wang,
An equilibrium model of rare-event premia and its implication for option smirks, The Review of Financial Studies, 18 (2005), 131-164.
doi: 10.1093/rfs/hhi011. |
[27] |
H. Liu, Robust consumption and portfolio choice for time varying investment opportunities, Annals of Finance, 6 (2010), 435-454. Google Scholar |
[28] |
Y. L. Liu, M. Y. Yang, J. Zhai and M. Y. Bai,
Portfolio selection of the defined contribution pension fund with uncertain return and salary: A multi-period mean-variance model, Journal of Intelligent and Fuzzy Systems, 34 (2018), 2363-2371.
doi: 10.3233/JIFS-171440. |
[29] |
Q.-P. Ma,
On "optimal pension management in a stochastic framework" with exponential utility, Insurance: Mathematics and Economics, 49 (2011), 61-69.
doi: 10.1016/j.insmatheco.2011.02.003. |
[30] |
P. J. Maenhout, Robust portfolio rules and asset pricing, The Review of Financial Studies, 17 (2004), 951-983. Google Scholar |
[31] |
P. J. Maenhout,
Robust portfolio rules and detection-error probabilities for a mean-reverting risk premium, Journal of Economic Theory, 128 (2006), 136-163.
doi: 10.1016/j.jet.2005.12.012. |
[32] |
H. M. Markowitz, Portfolio selection, The Journal of Finance, 7 (1952), 77-91. Google Scholar |
[33] |
C. Munk and A. Rubtsov,
Portfolio management with stochastic interest rates and inflation ambiguity, Annals of Finance, 10 (2014), 419-455.
doi: 10.1007/s10436-013-0238-1. |
[34] |
B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Fifth edition. Universitext. Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-03620-4. |
[35] |
J. Poterba, J. Rauh, S. Venti and D. Wise,
Defined contribution plans, defined benefit plans, and the accumulation of retirement wealth, Journal of Public Economics, 91 (2007), 2062-2086.
doi: 10.3386/w12597. |
[36] |
C. S. Pun and H. Y. Wong,
Robust investment-reinsurance optimization with multiscale stochastic volatility, Insurance: Mathematics and Economics, 62 (2015), 245-256.
doi: 10.1016/j.insmatheco.2015.03.030. |
[37] |
C. S. Pun,
Robust time-inconsistent stochastic control problems, Automatica, 94 (2018), 249-257.
doi: 10.1016/j.automatica.2018.04.038. |
[38] |
C. S. Pun, Robust time-inconsistent stochastic control problems (extended version), Working paper, 2018. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3035656. Google Scholar |
[39] |
R. H. Strotz, Myopia and inconsistency in dynamic utility maximization, The Review of Economic Studies, (1973), 128–143.
doi: 10.1007/978-1-349-15492-0_10. |
[40] |
E. Vigna,
On efficiency of mean-variance based portfolio selection in defined contribution pension schemes, Quantitative Finance, 14 (2014), 237-258.
doi: 10.1080/14697688.2012.708778. |
[41] |
L. Y. Wang and Z. P. Chen, Nash equilibrium strategy for a DC pension plan with state-dependent risk aversion: A multiperiod mean-variance framework, Discrete Dynamics in Nature and Society, 2018 (2018), Art. ID 7581231, 17 pp.
doi: 10.1155/2018/7581231. |
[42] |
L. Y. Wang and Z. P. Chen, Stochastic game theoretic formulation for a multi-period DC pension plan with state-dependent risk aversion, Mathematics, 7 (2019).
doi: 10.3390/math7010108. |
[43] |
P. Wang and Z. F. Li,
Robust optimal investment strategy for an AAM of DC pension plans with stochastic interest rate and stochastic volatility, Insurance: Mathematics and Economics, 80 (2018), 67-83.
doi: 10.1016/j.insmatheco.2018.03.003. |
[44] |
H. L. Wu, Time-consistent strategies for a multiperiod mean-variance portfolio selection problem, Journal of Applied Mathematics, 2013 (2013), Art. ID 841627, 13 pp.
doi: 10.1155/2013/841627. |
[45] |
H. L. Wu, L. Zhang and H. Chen,
Nash equilibrium strategies for a defined contribution pension management, Insurance: Mathematics and Economics, 62 (2015), 202-214.
doi: 10.1016/j.insmatheco.2015.03.014. |
[46] |
H. Wu, C. Weng and Y. Zeng, Equilibrium consumption and portfolio decisions with stochastic discount rate and time-varying utility functions, OR Spectrum, 40 (2018), 541-582. Google Scholar |
[47] |
W. D. Xu, C. F. Wu and H. Y. Li,
Robust general equilibrium under stochastic volatility model, Finance Research Letters, 7 (2010), 224-231.
doi: 10.1016/j.frl.2010.05.002. |
[48] |
H. X. Yao, Z. Yang and P. Chen,
Markowitz's mean-variance defined contribution pension fund management under inflation: A continuous-time model, Insurance: Mathematics and Economics, 53 (2013), 851-863.
doi: 10.1016/j.insmatheco.2013.10.002. |
[49] |
B. Yi, Z. F. Li, F. G. Viens and Y. Zeng,
Robust optimal control for an insurer with reinsurance and investment under Heston's stochastic volatility model, Insurance: Mathematics and Economics, 53 (2013), 601-614.
doi: 10.1016/j.insmatheco.2013.08.011. |
[50] |
B. Yi, F. Viens, Z. F. Li and Y. Zeng,
Robust optimal strategies for an insurer with reinsurance and investment under benchmark and mean-variance criteria, Scandinavian Actuarial Journal, 2015 (2015), 725-751.
doi: 10.1080/03461238.2014.883085. |
[51] |
Y. Zeng, D. P. Li and A. L. Gu,
Robust equilibrium reinsurance-investment strategy for a mean-variance insurer in a model with jumps, Insurance: Mathematics and Economics, 66 (2016), 138-152.
doi: 10.1016/j.insmatheco.2015.10.012. |
[52] |
Y. Zeng, D. P. Li, Z. Chen and Z. Yang,
Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility, Journal of Economic Dynamics and Control, 88 (2018), 70-103.
doi: 10.1016/j.jedc.2018.01.023. |
[53] |
X. Zhang and T. K. Siu,
Optimal investment and reinsurance of an insurer with model uncertainty, Insurance: Mathematics and Economics, 45 (2009), 81-88.
doi: 10.1016/j.insmatheco.2009.04.001. |
[54] |
X. X. Zheng, J. M. Zhou and Z. Y. Sun,
Robust optimal portfolio and proportional reinsurance for an insurer under a CEV model, Insurance: Mathematics and Economics, 67 (2016), 77-87.
doi: 10.1016/j.insmatheco.2015.12.008. |
[55] |
X. Y. Zhou and D. Li,
Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization, 42 (2000), 19-33.
doi: 10.1007/s002450010003. |
[56] |
H. N. Zhu, M. Cao and C. K. Zhang,
Time-consistent investment and reinsurance strategies for mean-variance insurers with relative performance concerns under the Heston model, Finance Research Letters, 30 (2018), 280-291.
doi: 10.1016/j.frl.2018.10.009. |












Parameter | Symbol | Value |
Time horizon (retirement date) | $T$ | 5 |
Initial wealth | $X_{0}$ | 4 |
Initial labor income | $L_{0}$ | 1 |
Risk-free interest rate | $r(t)$ | 0.05 |
Appreciation rate of the risky asset | $\mu(t)$ | 0.15 |
Volatility rate of the risky asset | $\sigma(t)$ | 0.25 |
Appreciation rate of the labor income | $\alpha(t)$ | 0.08 |
Volatility rate of the labor income (hedgeable) | $\varphi(t)$ | 0.15 |
Volatility rate of the labor income (non-hedgeable) | $\beta(t)$ | 0.20 |
Contribution rate | $c$ | 0.2 |
Risk aversion coefficient | $\gamma$ | 2 |
Aggregate ambiguity aversion | $\xi$ | 1 |
Parameter | Symbol | Value |
Time horizon (retirement date) | $T$ | 5 |
Initial wealth | $X_{0}$ | 4 |
Initial labor income | $L_{0}$ | 1 |
Risk-free interest rate | $r(t)$ | 0.05 |
Appreciation rate of the risky asset | $\mu(t)$ | 0.15 |
Volatility rate of the risky asset | $\sigma(t)$ | 0.25 |
Appreciation rate of the labor income | $\alpha(t)$ | 0.08 |
Volatility rate of the labor income (hedgeable) | $\varphi(t)$ | 0.15 |
Volatility rate of the labor income (non-hedgeable) | $\beta(t)$ | 0.20 |
Contribution rate | $c$ | 0.2 |
Risk aversion coefficient | $\gamma$ | 2 |
Aggregate ambiguity aversion | $\xi$ | 1 |
[1] |
Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109 |
[2] |
Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020103 |
[3] |
Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020166 |
[4] |
Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021011 |
[5] |
Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100 |
[6] |
Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65 |
[7] |
Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029 |
[8] |
Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020347 |
[9] |
Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020179 |
[10] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020454 |
[11] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[12] |
Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031 |
[13] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[14] |
Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021003 |
[15] |
Yiling Chen, Baojun Bian. Optimal dividend policy in an insurance company with contagious arrivals of claims. Mathematical Control & Related Fields, 2021, 11 (1) : 1-22. doi: 10.3934/mcrf.2020024 |
[16] |
Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034 |
[17] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
[18] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[19] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020404 |
[20] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]