
-
Previous Article
A two-stage solution approach for plastic injection machines scheduling problem
- JIMO Home
- This Issue
-
Next Article
Maximizing reliability of the capacity vector for multi-source multi-sink stochastic-flow networks subject to an assignment budget
A goethite process modeling method by Asynchronous Fuzzy Cognitive Network based on an improved constrained chicken swarm optimization algorithm
School of Automation, Central South University, Changsha 410083, China |
In order to solve the problem that the mechanism model of nonlinear system with uncertainty is difficult to establish, a modeling method of nonlinear system based on Asynchronous Fuzzy Cognitive Network (AFCN) is proposed. This method combines fuzzy cognitive network with time-lag system, and extends the node state values and weights of fuzzy cognitive network to the time interval, which enhances the adaptability of the model. At the same time an improved constrained chicken swarm optimization algorithm(ICCSOA) is proposed to identify model parameters of AFCN. A lag matrix corresponding to the actual measured values of the system lag of the nodes in the AFCN model is introduced, and a correction term including the difference between the measured values and the predicted values of the system is added to the model parameter updating mechanism. The simulation experiment results of goethite process system shows this modeling method can be used to model complex systems with uncertainties or partial missing data. The control model based on the established system model can make correct control decisions. ICCSOA has the advantages of fast convergence speed and accurate learning results, whose global search ability and convergence accuracy are higher than those of CSO algorithm, which can be widely used to the modeling of uncertain systems.
References:
[1] |
A. P. Antigoni and P. P. Groumpos,
Modeling of parkinson's disease using fuzzy cognitive maps and non-linear hebbian learning, International Journal on Artificial Intelligence Tools, 23 (2014), 1450010.
|
[2] |
N. Chen, J. Y. Dai, X. J. Zhou, Q. Q. Yang and W. H. Gui,
Distributed model predictive control of iron precipitation process by goethite based on dual iterative method, International Journal of Control Automation and Systems, 17 (2019), 1233-1245.
doi: 10.1007/s12555-017-0742-6. |
[3] |
N. Chen, J. Y. Dai, W. H. Gui, Y. Q. Guo and J. Q. Zhou,
A hybrid prediction model with a selectively updating strategy for iron removal process in zinc hydrometallurgy, Science China Information Sciences, 63 (2020), 119205.
doi: 10.1007/s11432-018-9711-2. |
[4] |
N. Chen, Y. Fan, W. H. Gui, C. H. Yang and Z. H. Jiang,
Hybrid modeling and control of iron precipitation by goethite process, Chinese Journal of Nonferrous Metals, 24 (2014), 254-261.
|
[5] |
B. Christen, C. Kjeldsen, T. Dalgaard and J. Martin-Ortega,
Can fuzzy cognitive mapping help in agricultural policy design and communication?, Land Use Policy, 45 (2015), 64-75.
doi: 10.1016/j.landusepol.2015.01.001. |
[6] |
N. Chen, J. Q. Zhou, J. J. Peng, W. H. Gui and J. Y. Dai,
Modeling of goethite iron precipitation process based on time-delay fuzzy gray cognitive network, Journal of Central South University, 26 (2019), 63-74.
doi: 10.1007/s11771-019-3982-1. |
[7] |
N. Chen, J. J. Peng, L. Wang, Y. Q. Guo and W. H. Gui,
Fuzzy grey cognitive networks modeling and its application, Acta Automatica Sinica, 44 (2018), 1227-1236.
|
[8] |
N. Chen, L. Wang, J. J. Peng, B. Liu and W. H. Gui,
Improved nonlinear Hebbian learning algorithm based on fuzzy cognitive networks model, Control Theory and Applications, 33 (2016), 1273-1280.
|
[9] |
Y. G. Deng, Q. Y. Chen, Z. L. Yin and P. M. Zhang,
Iron removal from zine leaching solution by goethite method, Non-ferrous Metal, 62 (2014), 80-84.
|
[10] |
Z. Djaafar, A. Yahia and N. Farid,
Multi-objective chicken swarm optimization: A novel algorithm for solving multi-objective optimization problems, Computers and Industrial Engineering, 129 (2019), 377-391.
|
[11] |
S. Fatahi and H. Moradi,
A fuzzy cognitive map model to calculate a user's desirability based on personality in e-learning environments, Computers in Human Behavior, 63 (2016), 272-281.
doi: 10.1016/j.chb.2016.05.041. |
[12] |
B. Kosko,
Fuzzy cognitive maps, International Journal of Man-Machine Studie, 24 (1986), 65-75.
doi: 10.1016/S0020-7373(86)80040-2. |
[13] |
V. Kreinovich and C. D. Stylios,
Why fuzzy cognitive maps are efficient, International Journal of Computers Communications & Control, 10 (2015), 825-833.
doi: 10.15837/ijccc.2015.6.2073. |
[14] |
T. Kottas, D. Stimoniaris and D. Tsiamitros,
New operation scheme and control of Smart Grids using Fuzzy Cognitive Networks, PowerTech, 2015 IEEE Eindhoven, 63 (2015), 1-5.
doi: 10.1109/PTC.2015.7232563. |
[15] |
D. B. Li and J. M. Jiang,
Present situation and development trend of zinc smelting technology at home and abroad, China Metal Bulletin, 6 (2015), 41-44.
|
[16] |
P. C. Marchal, J. G. García and J. G. Ortega,
Application of fuzzy cognitive maps and run-to-run control to a decision support system for global set-point determination, IEEE Transactions on Systems Man & Cybernetics Systems, 47 (2017), 2256-2267.
doi: 10.1109/TSMC.2016.2646762. |
[17] |
A. Mourhir, E. I. Papageorgiou, K. Kokkinos and T. Rachidi, Exploring precision farming scenarios using Fuzzy Cognitive Maps, Sustainability, 9 7 (2017), 1241.
doi: 10.3390/su9071241. |
[18] |
X. B. Meng, Y. Liu and X. Z. Gao,
A new bio-inspired algorism: Chicken swarm optimization, Proc of International Conference in Swarm of Intelligence, Cham: Springer, (2014), 86-94.
|
[19] |
M. Obiedat and S. Samarasinghe,
A novel semi-quantitative Fuzzy Cognitive Map model for complex systems for addressing challenging participatory real life problems, Applied Soft Computing, 48 (2016), 91-110.
doi: 10.1016/j.asoc.2016.06.001. |
[20] |
E. I. Papageorgiou, K. D. Aggelopoulou and T. A. Gemtos,
Yield prediction in apples using Fuzzy Cognitive Map learning approach, Computers & Electronics in Agriculture, 91 (2013), 19-29.
doi: 10.1016/j.compag.2012.11.008. |
[21] |
K. E. Parsopoulos, E. I. Papagergiou, P. P. Groumpos and M. N. Vrahatis,
A first study of fuzzy cognitive maps learning using particle swarm optimization, Proceedings of IEEE Congress on Evolutionary Computation 2003, (2003), 1440-1447.
doi: 10.1109/CEC.2003.1299840. |
[22] |
J. Solana-Gutiérrez, G. Rincón, C. Alonso and D. García-de-Jalón,
Using fuzzy cognitive maps for predicting river managementresponses: A case study of the Esla River basin, Spain, Ecological Modelling, 360 (2017), 260-269.
|
[23] |
W. Stach, L. Kurgan, W. Pedrycz and M. Reformat,
Genetic learning of fuzzy cognitive maps, Fuzzy Sets and Systems, 153 (2005), 371-401.
doi: 10.1016/j.fss.2005.01.009. |
[24] |
D. H. Wu, S. P. Xu and F. Kong,
Convergence analysis and improvement of the chicken swarm optimization algorithm, IEEE Access, 4 (2019), 9400-9412.
doi: 10.1109/ACCESS.2016.2604738. |
[25] |
B. Wang, W. Li, X. H. Chen and H. H. Chen, Improved chicken swarm algorithms based on chaos theory and its application in wind power interval prediction, Mathematical Problems in Engineering, (2019), Art. ID 1240717, 10 pp.
doi: 10.1155/2019/1240717. |
[26] |
Z. Q. Wu, D. Q. Yu and X. H. Kang,
Application of improved chicken swarm optimization for MPPT in photovoltaic system, Optimal Control Applications and Method, 39 (2018), 1029-1042.
doi: 10.1002/oca.2394. |
[27] |
X. W. Yu, L. X. Zhou and X. Y. Li,
A novel hybrid localization scheme for deep mine based on wheel graph and chicken swarm optimization, Computer Networks, 154 (2019), 73-78.
doi: 10.1016/j.comnet.2019.02.011. |
[28] |
Y. L. Zhang, Modeling and Control of Dynamic System Based on Fuzzy Cognitive Maps, Dalian University of Technology, 2012. |
show all references
References:
[1] |
A. P. Antigoni and P. P. Groumpos,
Modeling of parkinson's disease using fuzzy cognitive maps and non-linear hebbian learning, International Journal on Artificial Intelligence Tools, 23 (2014), 1450010.
|
[2] |
N. Chen, J. Y. Dai, X. J. Zhou, Q. Q. Yang and W. H. Gui,
Distributed model predictive control of iron precipitation process by goethite based on dual iterative method, International Journal of Control Automation and Systems, 17 (2019), 1233-1245.
doi: 10.1007/s12555-017-0742-6. |
[3] |
N. Chen, J. Y. Dai, W. H. Gui, Y. Q. Guo and J. Q. Zhou,
A hybrid prediction model with a selectively updating strategy for iron removal process in zinc hydrometallurgy, Science China Information Sciences, 63 (2020), 119205.
doi: 10.1007/s11432-018-9711-2. |
[4] |
N. Chen, Y. Fan, W. H. Gui, C. H. Yang and Z. H. Jiang,
Hybrid modeling and control of iron precipitation by goethite process, Chinese Journal of Nonferrous Metals, 24 (2014), 254-261.
|
[5] |
B. Christen, C. Kjeldsen, T. Dalgaard and J. Martin-Ortega,
Can fuzzy cognitive mapping help in agricultural policy design and communication?, Land Use Policy, 45 (2015), 64-75.
doi: 10.1016/j.landusepol.2015.01.001. |
[6] |
N. Chen, J. Q. Zhou, J. J. Peng, W. H. Gui and J. Y. Dai,
Modeling of goethite iron precipitation process based on time-delay fuzzy gray cognitive network, Journal of Central South University, 26 (2019), 63-74.
doi: 10.1007/s11771-019-3982-1. |
[7] |
N. Chen, J. J. Peng, L. Wang, Y. Q. Guo and W. H. Gui,
Fuzzy grey cognitive networks modeling and its application, Acta Automatica Sinica, 44 (2018), 1227-1236.
|
[8] |
N. Chen, L. Wang, J. J. Peng, B. Liu and W. H. Gui,
Improved nonlinear Hebbian learning algorithm based on fuzzy cognitive networks model, Control Theory and Applications, 33 (2016), 1273-1280.
|
[9] |
Y. G. Deng, Q. Y. Chen, Z. L. Yin and P. M. Zhang,
Iron removal from zine leaching solution by goethite method, Non-ferrous Metal, 62 (2014), 80-84.
|
[10] |
Z. Djaafar, A. Yahia and N. Farid,
Multi-objective chicken swarm optimization: A novel algorithm for solving multi-objective optimization problems, Computers and Industrial Engineering, 129 (2019), 377-391.
|
[11] |
S. Fatahi and H. Moradi,
A fuzzy cognitive map model to calculate a user's desirability based on personality in e-learning environments, Computers in Human Behavior, 63 (2016), 272-281.
doi: 10.1016/j.chb.2016.05.041. |
[12] |
B. Kosko,
Fuzzy cognitive maps, International Journal of Man-Machine Studie, 24 (1986), 65-75.
doi: 10.1016/S0020-7373(86)80040-2. |
[13] |
V. Kreinovich and C. D. Stylios,
Why fuzzy cognitive maps are efficient, International Journal of Computers Communications & Control, 10 (2015), 825-833.
doi: 10.15837/ijccc.2015.6.2073. |
[14] |
T. Kottas, D. Stimoniaris and D. Tsiamitros,
New operation scheme and control of Smart Grids using Fuzzy Cognitive Networks, PowerTech, 2015 IEEE Eindhoven, 63 (2015), 1-5.
doi: 10.1109/PTC.2015.7232563. |
[15] |
D. B. Li and J. M. Jiang,
Present situation and development trend of zinc smelting technology at home and abroad, China Metal Bulletin, 6 (2015), 41-44.
|
[16] |
P. C. Marchal, J. G. García and J. G. Ortega,
Application of fuzzy cognitive maps and run-to-run control to a decision support system for global set-point determination, IEEE Transactions on Systems Man & Cybernetics Systems, 47 (2017), 2256-2267.
doi: 10.1109/TSMC.2016.2646762. |
[17] |
A. Mourhir, E. I. Papageorgiou, K. Kokkinos and T. Rachidi, Exploring precision farming scenarios using Fuzzy Cognitive Maps, Sustainability, 9 7 (2017), 1241.
doi: 10.3390/su9071241. |
[18] |
X. B. Meng, Y. Liu and X. Z. Gao,
A new bio-inspired algorism: Chicken swarm optimization, Proc of International Conference in Swarm of Intelligence, Cham: Springer, (2014), 86-94.
|
[19] |
M. Obiedat and S. Samarasinghe,
A novel semi-quantitative Fuzzy Cognitive Map model for complex systems for addressing challenging participatory real life problems, Applied Soft Computing, 48 (2016), 91-110.
doi: 10.1016/j.asoc.2016.06.001. |
[20] |
E. I. Papageorgiou, K. D. Aggelopoulou and T. A. Gemtos,
Yield prediction in apples using Fuzzy Cognitive Map learning approach, Computers & Electronics in Agriculture, 91 (2013), 19-29.
doi: 10.1016/j.compag.2012.11.008. |
[21] |
K. E. Parsopoulos, E. I. Papagergiou, P. P. Groumpos and M. N. Vrahatis,
A first study of fuzzy cognitive maps learning using particle swarm optimization, Proceedings of IEEE Congress on Evolutionary Computation 2003, (2003), 1440-1447.
doi: 10.1109/CEC.2003.1299840. |
[22] |
J. Solana-Gutiérrez, G. Rincón, C. Alonso and D. García-de-Jalón,
Using fuzzy cognitive maps for predicting river managementresponses: A case study of the Esla River basin, Spain, Ecological Modelling, 360 (2017), 260-269.
|
[23] |
W. Stach, L. Kurgan, W. Pedrycz and M. Reformat,
Genetic learning of fuzzy cognitive maps, Fuzzy Sets and Systems, 153 (2005), 371-401.
doi: 10.1016/j.fss.2005.01.009. |
[24] |
D. H. Wu, S. P. Xu and F. Kong,
Convergence analysis and improvement of the chicken swarm optimization algorithm, IEEE Access, 4 (2019), 9400-9412.
doi: 10.1109/ACCESS.2016.2604738. |
[25] |
B. Wang, W. Li, X. H. Chen and H. H. Chen, Improved chicken swarm algorithms based on chaos theory and its application in wind power interval prediction, Mathematical Problems in Engineering, (2019), Art. ID 1240717, 10 pp.
doi: 10.1155/2019/1240717. |
[26] |
Z. Q. Wu, D. Q. Yu and X. H. Kang,
Application of improved chicken swarm optimization for MPPT in photovoltaic system, Optimal Control Applications and Method, 39 (2018), 1029-1042.
doi: 10.1002/oca.2394. |
[27] |
X. W. Yu, L. X. Zhou and X. Y. Li,
A novel hybrid localization scheme for deep mine based on wheel graph and chicken swarm optimization, Computer Networks, 154 (2019), 73-78.
doi: 10.1016/j.comnet.2019.02.011. |
[28] |
Y. L. Zhang, Modeling and Control of Dynamic System Based on Fuzzy Cognitive Maps, Dalian University of Technology, 2012. |






Test Function | Expression | Symbol | Range of values | Value of optimal solution |
Sphere | F1 | [-100, 100] | 0 | |
Rosenbrock | F2 | [-30, 30] | 0 | |
High Conditioned Elliptic | F3 | [-100, 100] | 0 | |
Bent Cigar | F4 | [-100, 100] | 0 | |
Discus | F5 | [-100, 100] | 0 | |
Rotated hyper-ellipsoid | F6 | [-100, 100] | 0 | |
Rotated rastrigin | F7 | [-100, 100] | 0 |
Test Function | Expression | Symbol | Range of values | Value of optimal solution |
Sphere | F1 | [-100, 100] | 0 | |
Rosenbrock | F2 | [-30, 30] | 0 | |
High Conditioned Elliptic | F3 | [-100, 100] | 0 | |
Bent Cigar | F4 | [-100, 100] | 0 | |
Discus | F5 | [-100, 100] | 0 | |
Rotated hyper-ellipsoid | F6 | [-100, 100] | 0 | |
Rotated rastrigin | F7 | [-100, 100] | 0 |
Title Symbol | Algorithms | Optimal value | Worst value | Average value | Standard deviation | Stable step |
F1 | CSO | 1.8488e-133 | 2.8082e-123 | 6.0362e-125 | 3.9681e-124 | 30 |
ICSO | 7.0233e-133 | 6.4356e-125 | 3.1959e-126 | 1.1357e-125 | 26 | |
ICCSO | 6.9244e-182 | 2.0424e-163 | 5.0084e-165 | 3.2075e-164 | 24 | |
F2 | CSO | 6.1449 | 7.97 | 6.9651 | 0.3031 | 33 |
ICSO | 5.9715 | 7.2163 | 6.7664 | 0.3324 | 29 | |
ICCSO | 2.1398e-07 | 4.9115e-05 | 6.6865e-06 | 8.2512e-06 | 27 | |
F3 | CSO | 6.7415e-127 | 2.1961e-117 | 7.328e-119 | 3.3125e-118 | 32 |
ICSO | 9.006e-128 | 1.4093e-118 | 3.3872e-120 | 1.9906e-119 | 28 | |
ICCSO | 8.9815e-177 | 1.2078e-160 | 2.4737e-162 | 1.7073e-161 | 25 | |
F4 | CSO | 3.1473e-127 | 1.0419e-117 | 2.9859e-119 | 1.4796e-118 | 36 |
ICSO | 9.4786e-127 | 5.5614e-119 | 2.5308e-120 | 8.8336e-120 | 28 | |
ICCSO | 5.148e-178 | 5.2831e-161 | 1.1419e-162 | 7.372e-162 | 25 | |
F5 | CSO | 1.9478e-131 | 9.9848e-123 | 5.2391e-124 | 1.7265-123 | 35 |
ICSO | 9.8894e-132 | 2.2241e-123 | 4.6208e-125 | 3.1431e-124 | 27 | |
ICCSO | 4.9026e-181 | 1.0179e-166 | 5.8305e-168 | 2.5381e-167 | 23 | |
F6 | CSO | 5.4415e-127 | 1.5173e-109 | 6.328e-129 | 3.3225e-117 | 37 |
ICSO | 8.016e-138 | 1.9214e-140 | 4.6672e-110 | 2.1066e-119 | 31 | |
ICCSO | 9.148e-165 | 1.3078e-187 | 2.6728e-154 | 1.7953e-151 | 28 | |
F7 | CSO | 4.1923e-172 | 1.0419e-117 | 2.1659e-139 | 1.4707e-118 | 36 |
ICSO | 9.4554e-125 | 4.6634e-122 | 2.5325e-113 | 7.7543e-122 | 32 | |
ICCSO | 6.1579e-148 | 5.2635e-177 | 1.9719e-172 | 6.3823e-165 | 27 |
Title Symbol | Algorithms | Optimal value | Worst value | Average value | Standard deviation | Stable step |
F1 | CSO | 1.8488e-133 | 2.8082e-123 | 6.0362e-125 | 3.9681e-124 | 30 |
ICSO | 7.0233e-133 | 6.4356e-125 | 3.1959e-126 | 1.1357e-125 | 26 | |
ICCSO | 6.9244e-182 | 2.0424e-163 | 5.0084e-165 | 3.2075e-164 | 24 | |
F2 | CSO | 6.1449 | 7.97 | 6.9651 | 0.3031 | 33 |
ICSO | 5.9715 | 7.2163 | 6.7664 | 0.3324 | 29 | |
ICCSO | 2.1398e-07 | 4.9115e-05 | 6.6865e-06 | 8.2512e-06 | 27 | |
F3 | CSO | 6.7415e-127 | 2.1961e-117 | 7.328e-119 | 3.3125e-118 | 32 |
ICSO | 9.006e-128 | 1.4093e-118 | 3.3872e-120 | 1.9906e-119 | 28 | |
ICCSO | 8.9815e-177 | 1.2078e-160 | 2.4737e-162 | 1.7073e-161 | 25 | |
F4 | CSO | 3.1473e-127 | 1.0419e-117 | 2.9859e-119 | 1.4796e-118 | 36 |
ICSO | 9.4786e-127 | 5.5614e-119 | 2.5308e-120 | 8.8336e-120 | 28 | |
ICCSO | 5.148e-178 | 5.2831e-161 | 1.1419e-162 | 7.372e-162 | 25 | |
F5 | CSO | 1.9478e-131 | 9.9848e-123 | 5.2391e-124 | 1.7265-123 | 35 |
ICSO | 9.8894e-132 | 2.2241e-123 | 4.6208e-125 | 3.1431e-124 | 27 | |
ICCSO | 4.9026e-181 | 1.0179e-166 | 5.8305e-168 | 2.5381e-167 | 23 | |
F6 | CSO | 5.4415e-127 | 1.5173e-109 | 6.328e-129 | 3.3225e-117 | 37 |
ICSO | 8.016e-138 | 1.9214e-140 | 4.6672e-110 | 2.1066e-119 | 31 | |
ICCSO | 9.148e-165 | 1.3078e-187 | 2.6728e-154 | 1.7953e-151 | 28 | |
F7 | CSO | 4.1923e-172 | 1.0419e-117 | 2.1659e-139 | 1.4707e-118 | 36 |
ICSO | 9.4554e-125 | 4.6634e-122 | 2.5325e-113 | 7.7543e-122 | 32 | |
ICCSO | 6.1579e-148 | 5.2635e-177 | 1.9719e-172 | 6.3823e-165 | 27 |
Algorithm | ICCSO | GA | PSO |
0.3600 | 0.3600 | 0.3600 | |
0.3559 | 0.3591 | 0.3490 | |
Steady step | 9 | 10 | 13 |
RMSE | 0.0017 | 0.0022 | 0.0019 |
MAE | 0.0011 | 0.0019 | 0.0015 |
MAX | 0.0026 | 0.0028 | 0.0029 |
SD | 0.0009 | 0.0017 | 0.0020 |
Algorithm | ICCSO | GA | PSO |
0.3600 | 0.3600 | 0.3600 | |
0.3559 | 0.3591 | 0.3490 | |
Steady step | 9 | 10 | 13 |
RMSE | 0.0017 | 0.0022 | 0.0019 |
MAE | 0.0011 | 0.0019 | 0.0015 |
MAX | 0.0026 | 0.0028 | 0.0029 |
SD | 0.0009 | 0.0017 | 0.0020 |
Working conditions | RMSE | MAE | MAX | SD | ||
SSS | 0.1400 | 0.1421 | 0.0013 | 0.0011 | 0.0023 | 0.0011 |
SSB | 0.1500 | 0.1490 | ||||
SBS | 0.1518 | 0.1533 | ||||
SBB | 0.1177 | 0.1199 | ||||
MSS | 0.2900 | 0.2906 | ||||
MSB | 0.2694 | 0.2689 | ||||
MBS | 0.3659 | 0.3659 | ||||
MBB | 0.0100 | 0.0120 | ||||
BSS | 0.1620 | 0.1627 | ||||
BSB | 0.1997 | 0.2002 | ||||
BBS | 0.3400 | 0.3407 | ||||
BBB | 0.3200 | 0.3189 |
Working conditions | RMSE | MAE | MAX | SD | ||
SSS | 0.1400 | 0.1421 | 0.0013 | 0.0011 | 0.0023 | 0.0011 |
SSB | 0.1500 | 0.1490 | ||||
SBS | 0.1518 | 0.1533 | ||||
SBB | 0.1177 | 0.1199 | ||||
MSS | 0.2900 | 0.2906 | ||||
MSB | 0.2694 | 0.2689 | ||||
MBS | 0.3659 | 0.3659 | ||||
MBB | 0.0100 | 0.0120 | ||||
BSS | 0.1620 | 0.1627 | ||||
BSB | 0.1997 | 0.2002 | ||||
BBS | 0.3400 | 0.3407 | ||||
BBB | 0.3200 | 0.3189 |
[1] |
Lesia V. Baranovska. Pursuit differential-difference games with pure time-lag. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1021-1031. doi: 10.3934/dcdsb.2019004 |
[2] |
Miao Yu. A solution of TSP based on the ant colony algorithm improved by particle swarm optimization. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 979-987. doi: 10.3934/dcdss.2019066 |
[3] |
Min Zhang, Gang Li. Multi-objective optimization algorithm based on improved particle swarm in cloud computing environment. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1413-1426. doi: 10.3934/dcdss.2019097 |
[4] |
Mohamed A. Tawhid, Kevin B. Dsouza. Hybrid binary dragonfly enhanced particle swarm optimization algorithm for solving feature selection problems. Mathematical Foundations of Computing, 2018, 1 (2) : 181-200. doi: 10.3934/mfc.2018009 |
[5] |
Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control and Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185 |
[6] |
Li Gang. An optimization detection algorithm for complex intrusion interference signal in mobile wireless network. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1371-1384. doi: 10.3934/dcdss.2019094 |
[7] |
Antonio Magaña, Alain Miranville, Ramón Quintanilla. On the time decay in phase–lag thermoelasticity with two temperatures. Electronic Research Archive, 2019, 27: 7-19. doi: 10.3934/era.2019007 |
[8] |
Binghai Zhou, Yuanrui Lei, Shi Zong. Lagrangian relaxation algorithm for the truck scheduling problem with products time window constraint in multi-door cross-dock. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021151 |
[9] |
Tao Zhang, Yue-Jie Zhang, Qipeng P. Zheng, P. M. Pardalos. A hybrid particle swarm optimization and tabu search algorithm for order planning problems of steel factories based on the Make-To-Stock and Make-To-Order management architecture. Journal of Industrial and Management Optimization, 2011, 7 (1) : 31-51. doi: 10.3934/jimo.2011.7.31 |
[10] |
Yang Chen, Xiaoguang Xu, Yong Wang. Wireless sensor network energy efficient coverage method based on intelligent optimization algorithm. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 887-900. doi: 10.3934/dcdss.2019059 |
[11] |
Javad Taheri, Abolfazl Mirzazadeh. Optimization of inventory system with defects, rework failure and two types of errors under crisp and fuzzy approach. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2289-2318. doi: 10.3934/jimo.2021068 |
[12] |
Yunan Wu, Guangya Chen, T. C. Edwin Cheng. A vector network equilibrium problem with a unilateral constraint. Journal of Industrial and Management Optimization, 2010, 6 (3) : 453-464. doi: 10.3934/jimo.2010.6.453 |
[13] |
Zhuangyi Liu, Ramón Quintanilla. Time decay in dual-phase-lag thermoelasticity: Critical case. Communications on Pure and Applied Analysis, 2018, 17 (1) : 177-190. doi: 10.3934/cpaa.2018011 |
[14] |
Junyuan Lin, Timothy A. Lucas. A particle swarm optimization model of emergency airplane evacuations with emotion. Networks and Heterogeneous Media, 2015, 10 (3) : 631-646. doi: 10.3934/nhm.2015.10.631 |
[15] |
Zhongqiang Wu, Zongkui Xie. A multi-objective lion swarm optimization based on multi-agent. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022001 |
[16] |
Ricardo Almeida. Optimality conditions for fractional variational problems with free terminal time. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 1-19. doi: 10.3934/dcdss.2018001 |
[17] |
Shakoor Pooseh, Ricardo Almeida, Delfim F. M. Torres. Fractional order optimal control problems with free terminal time. Journal of Industrial and Management Optimization, 2014, 10 (2) : 363-381. doi: 10.3934/jimo.2014.10.363 |
[18] |
Purnima Pandit. Fuzzy system of linear equations. Conference Publications, 2013, 2013 (special) : 619-627. doi: 10.3934/proc.2013.2013.619 |
[19] |
Jiangtao Mo, Liqun Qi, Zengxin Wei. A network simplex algorithm for simple manufacturing network model. Journal of Industrial and Management Optimization, 2005, 1 (2) : 251-273. doi: 10.3934/jimo.2005.1.251 |
[20] |
Xiliang Sun, Wanjie Hu, Xiaolong Xue, Jianjun Dong. Multi-objective optimization model for planning metro-based underground logistics system network: Nanjing case study. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021179 |
2021 Impact Factor: 1.411
Tools
Article outline
Figures and Tables
[Back to Top]