Article Contents
Article Contents

# Machine interference problem involving unsuccessful switchover for a group of repairable servers with vacations

• * Corresponding author: Jau-Chuan Ke
• The purpose of this paper is to explore the multiple-server machine interference problem with standby unsuccessful switchover and Bernoulli vacation schedule. Failure times of operating and standby machines are assumed to have exponential distributions and repair times of the failed machines and vacation times of servers are also assumed to have exponential distributions. After the completion of service, the server either goes for a vacation or may continue serving for the next machine. The vacation policy we considered is a single vacation policy. In practice, the switchover may experience a significant failure. The matrix analytical method and recursive method are employed to obtain the steady-state probability vectors, and closed-form expressions of some important system characteristics are obtained. The problem of cost optimization dealt with a number of numerical examples is provided by the Quasi-Newton method, the pattern search method, and the Nelder-Mead simplex direct search method. Expressions of various system characteristics are derived. Sensitivity analysis is performed numerically for system parameters. This paper presents the first time that machine interference problem with unsuccessful switchover for a group of repairable servers with vacations has been obtained, which is quite useful for the decision makers.

Mathematics Subject Classification: Primary: 90B22; Secondary: 60K25.

 Citation:

• Figure 1.  Plot of the average cost function versus the mean service rate and mean vacation rate

Table 1.  The average cost function for given $(W, S)$ with $M = 6$, $\lambda = 0.5$, $\alpha = 0.2\lambda$, $\theta = 0.02$, $\beta = 0.02$

 $(S, W)$ (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8) $TAC$ 99.72 98.43 99.20 100.74 102.52 104.32 106.04 107.65 $(S, W)$ (1, 9) (1, 10) (1, 11) (1, 12) (2, 1) (2, 2) (2, 3) (2, 4) $TAC$ 109.13 110.49 111.74 112.88 92.32 $\mathbf{90.90}$ 92.45 94.40 $(S, W)$ (2, 5) (2, 6) (2, 7) (2, 8) (2, 9) (2, 10) (2, 11) (2, 12) $TAC$ 96.70 98.92 100.97 102.83 104.51 106.02 107.39 108.62 $(S, W)$ (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (3, 7) (3, 8) $TAC$ 97.43 94.99 96.04 97.96 100.03 102.00 103.83 105.47 $(S, W)$ (3, 9) (3, 10) (3, 11) (3, 12) (4, 1) (4, 2) (4, 3) (4, 4) $TAC$ 106.95 108.28 109.46 110.53 98.44 96.39 97.75 99.94 $(S, W)$ (4, 5) (4, 6) (4, 7) (4, 8) (4, 9) (4, 10) (4, 11) (4, 12) $TAC$ 102.17 104.22 106.04 107.65 109.07 110.33 111.45 112.44 $(S, W)$ (5, 9) (5, 10) (5, 11) (5, 12) (6, 1) (6, 2) (6, 3) (6, 4) $TAC$ 109.33 110.60 111.72 112.72 95.48 94.17 96.15 98.83 $(S, W)$ (6, 5) (6, 6) (6, 7) (6, 8) (6, 9) (6, 10) (6, 11) (6, 12) $TAC$ 101.39 103.66 105.63 107.35 108.84 110.16 111.33 112.37 $(S, W)$ (7, 2) (7, 3) (7, 4) (7, 5) (7, 6) (7, 7) (7, 8) (7, 9) $TAC$ 91.92 94.27 97.24 100.01 102.43 104.53 106.35 107.93 $(S, W)$ (7, 10) (7, 11) (7, 12) (8, 3) (8, 4) (8, 5) (8, 6) (8, 7) $TAC$ 109.32 110.54 111.64 91.97 95.24 98.25 100.85 103.10 $(S, W)$ (8, 8) (8, 9) (8, 10) (8, 11) (8, 12) (9, 4) (9, 5) (9, 6) $TAC$ 105.03 106.71 108.19 109.49 110.65 92.94 96.20 99.01 $(S, W)$ (9, 7) (9, 8) (9, 9) (9, 10) (9, 11) (9, 12) (10, 5) (10, 6) $TAC$ 101.41 103.48 105.28 106.85 108.24 109.48 93.93 96.95 $(S, W)$ (10, 7) (10, 8) (10, 9) (10, 10) (10, 11) (10, 12) (11, 6) (11, 7) $TAC$ 99.53 101.75 103.67 105.36 106.84 108.16 94.73 97.49 $(S, W)$ (11, 8) (11, 9) (11, 10) (11, 11) (11, 12) (12, 7) (12, 8) (12, 9) $TAC$ 99.87 101.92 103.72 105.31 106.71 95.32 97.86 100.06 $(S, W)$ (12, 10) (12, 11) (12, 12) $TAC$ 101.98 103.67 105.17

Table 2.  The minimum average cost function for varying values of $\lambda$ with $M = 6$, $\alpha = 0.2\lambda$, $\theta = 0.02$, $\beta = 0.02$

 QN method $\lambda$ 0.2 0.4 0.6 $TAC$ 68.34 85.47 95.95 $(W^*, S^*)$ (1, 1) (2, 2) (2, 2) $(\mu^*, \delta^*)$ (2.37, 5.43) (2.38, 2.14) (3.09, 4.09) Iterations 1204 1427 1583 CPU Time 6.26 5.62 5.64 MN method $TAC$ 68.34 85.47 95.95 $(W^*, S^*)$ (1, 1) (2, 2) (2, 2) $(\mu^*, \delta^*)$ (2.37, 5.43) (2.38, 2.14) (3.09, 4.09) Iterations 6741 6074 6176 CPU Time 6.39 5.77 5.62 PS method $TAC$ 68.34 85.47 95.95 $(W^*, S^*)$ (1, 1) (2, 2) (2, 2) $(\mu^*, \delta^*)$ (2.37, 5.43) (2.38, 2.14) (3.09, 4.09) Iterations 11679 13179 13294 CPU Time 22.44 23.57 25.80
•  [1] W. L. Chen and K. H. Wang, Reliability analysis of a retrial machine repair problem with warm standbys and a single server with N-policy, Reliability Engineering & System Safety, 180 (2018), 476-486.  doi: 10.1016/j.ress.2018.08.011. [2] G. Choudhury and J. C. Ke, An unreliable retrial queue with delaying repair and general retrial times under Bernoulli vacation schedule, Applied Mathematics and Computation, 230 (2014), 436-450.  doi: 10.1016/j.amc.2013.12.108. [3] S. M. Gupta, Machine interference problem with warm spares, server vacations and exhaustive service, Performance Evaluation, 29 (1997), 195-211.  doi: 10.1016/S0166-5316(96)00046-6. [4] G. He, W. Wu and Y. Zhang, Performance analysis of machine repair system with single working vacation, Communications in Statistics – Theory and Methods, 48 (2019), 5602-5620.  doi: 10.1080/03610926.2018.1515958. [5] Y. L. Hsu, J. C. Ke and T. H. Liu, Standby system with general repair, reboot delay, switching failure and unreliable repair facility – A statistical standpoint, Mathematics and Computers in Simulation, 81 (2011), 2400-2413.  doi: 10.1016/j.matcom.2011.03.003. [6] Y. L. Hsu, J. C. Ke, T. H. Liu and C. H. Wu, Modeling of multi-server repair problem with switching failure and reboot delay and related profit analysis, Computers & Industrial Engineering, 69 (2014), 21-28.  doi: 10.1016/j.cie.2013.12.003. [7] H. I. Huang, C. H. Lin and J. C. Ke, Parametric nonlinear programming approach for a repairable system with switching failure and fuzzy parameters, Applied Mathematics and Computation, 183 (2006), 508-517.  doi: 10.1016/j.amc.2006.05.119. [8] J. B. Ke, J. W. Chen and K. H. Wang, Reliability measures of a repairable system with standby switching failures and reboot delay, Quality Technology and Quantitative Managementl, 8 (2011), 15-26.  doi: 10.1080/16843703.2011.11673243. [9] J. B. Ke, W. C. Lee and J. C. Ke, Reliability-based measure for a system with standbys subjected to switching failures, Engineering Computations, 25 (2008), 694-706.  doi: 10.1108/02644400810899979. [10] J. C. Ke, K. B. Huang and W. L. Pearn, A batch arrival queue under randomized multi-vacation policy with unreliable server and repair, International Journal of Systems Science, 43 (2012), 552-565.  doi: 10.1080/00207721.2010.517863. [11] J. C. Ke, S. L. Lee and C. H. Liou, Machine repair problem in production systems with spares and server vacations, RAIRO Operation Research, 43 (2009), 35-54.  doi: 10.1051/ro/2009004. [12] J. C. Ke, T. H. Liu and D. Y. Yang, Machine repairing systems with standby switching failure, Computers & Industrial Engineering, 99 (2016), 223-228.  doi: 10.1016/j.cie.2016.07.016. [13] J. C. Ke, T. H. Liu and D. Y. Yang, Modeling of machine interference problem with unreliable repairman and standbys imperfect switchover, Reliability Engineering & System Safety, 174 (2018), 12-18.  doi: 10.1016/j.ress.2018.01.013. [14] J. C. Ke and K. H. Wang, Vacation policies for machine repair problem with two type spares, Applied Mathematical Modelling, 31 (2007), 880-894.  doi: 10.1016/j.apm.2006.02.009. [15] J. C. Ke and C. H. Wu, Multi-server machine repair model with standbys and synchronous multiple vacation, Computers & Industrial Engineering, 62 (2012), 296-305.  doi: 10.1016/j.cie.2011.09.017. [16] B. Keren, G. Gurevich and Y. Hadad, Machines interference problem with several operatiors and several service types that have different priorities, International Journal of Operational Research, 30 (2017), 289-320.  doi: 10.1504/IJOR.2017.087274. [17] K. Kumar, M. Jain and C. Shekhar, Machine repair system with F-policy, two unreliable servers, and warm standbys, Journal of Testing and Evaluation, 47 (2019), 361-383.  doi: 10.1520/JTE20160595. [18] C. C. Kuo and J. C. Ke, Comparative analysis of standby systems with unreliable server and switching failure, Reliability Engineering and System Safety, 145 (2016), 74-82.  doi: 10.1016/j.ress.2015.09.001. [19] Y. Lee, Availability analysis of redundancy model with generally distributed repair time, imperfect switchover and interrupted repair, Electronics Letters, 52 (2016), 1851-1853.  doi: 10.1049/el.2016.2114. [20] E. E. Lewis, Introduction to Reliability Engineering, John Wiley & Sons, Inc., New York, 1987. [21] T. H. Liu, J. C. Ke, Y. L. Hsu and Y. L. Hsu, Bootstrapping computation of availability for a repairable system with standby subject to imperfect switching, Communications in statistics – Simulation and Computation, 40 (2011), 469-483.  doi: 10.1080/03610918.2010.546539. [22] S. Maheshwari, R. Supriya and M. Jain, Machine repair problem with K-type warm spares, multiple vacation for repairman and reneging, International Journal of Engineering and Technology, 2 (2010), 252-258. [23] S. J. Sadjadi and R. Soltani, Minimum-Maximum regret redundancy allocation with the choice of redundancy strategy and multiple choice of component type under uncertainty, Computers & Industrial Engineering, 79 (2015), 204-213. [24] C. Shekhar, M. Jain, A. Raina and R. Mishra, Sensitivity analysis of repairable redundant system with switching failure and geometric reneging, Decision Science Letters, 6 (2017), 337-350.  doi: 10.5267/j.dsl.2017.2.004. [25] R. K. Shrivastava and A. K. Mishra, Analysis of queueing model for machine repairing system with Bernoulli vacation schedule, International Journal of Mathematics Trends and Technology, 10 (2014), 85-92.  doi: 10.14445/22315373/IJMTT-V10P514. [26] S. R. Srinivas, A multi-server synchronous vacation model with thresholds and a probabilistic decision rule, European Journal of Operational Research, 182 (2007), 305-320.  doi: 10.1016/j.ejor.2006.07.037. [27] K. H. Wang, W. L. Chen and D. Y. Yang, Optimal management of the machine repair problem with working vacation: Newton's method, Journal of Computational and Applied Mathematics, 233 (2009), 449-458.  doi: 10.1016/j.cam.2009.07.043. [28] K. H. Wang, W. L. Dong and J. B. Ke, Comparison of reliability and the availability between four systems with standby components and standby switching failure, Applied Mathematics and Computation, 183 (2006), 1310-1322.  doi: 10.1016/j.amc.2006.05.161. [29] K. H. Wang, T. C. Yen and J. Y. Chen, Optimization analysis of retrial machine repair problem with server breakdown and threshold recovery policy, Journal of Testing and Evaluation, 46 (2018), 2630-2640.  doi: 10.1520/JTE20160149. [30] C. H. Wu and J. C. Ke, Multi-server machine repair problems under a (V, R) synchronous single vacation policy, Applied Mathematical Modelling, 38 (2014), 2180-2189.  doi: 10.1016/j.apm.2013.10.045. [31] D. Y. Yang and Y. D. Chang, Sensitivity analysis of the machine repair problem with general repeated attempts, International Journal of Computer Mathematics, 95 (2018), 1761-1774.  doi: 10.1080/00207160.2017.1336230. [32] D. Yue, W. Yue and Y. Sun, Performance analysis of an M/M/c/N queueing system with balking, reneging and synchronous vacations of partial servers, The Sixth International Symposium on Operations Research and Its Applications (ISORA–06), (2006), 128–143.

Figures(1)

Tables(2)