• Previous Article
    Optimal pricing and advertising decisions with suppliers' oligopoly competition: Stakelberg-Nash game structures
  • JIMO Home
  • This Issue
  • Next Article
    Time-consistent strategy for a multi-period mean-variance asset-liability management problem with stochastic interest rate
May  2021, 17(3): 1411-1422. doi: 10.3934/jimo.2020027

Machine interference problem involving unsuccessful switchover for a group of repairable servers with vacations

Department of Applied Statistics, National Taichung University of Science and Technology, Taichung, Taiwan

* Corresponding author: Jau-Chuan Ke

Received  January 2019 Revised  June 2019 Published  May 2021 Early access  February 2020

The purpose of this paper is to explore the multiple-server machine interference problem with standby unsuccessful switchover and Bernoulli vacation schedule. Failure times of operating and standby machines are assumed to have exponential distributions and repair times of the failed machines and vacation times of servers are also assumed to have exponential distributions. After the completion of service, the server either goes for a vacation or may continue serving for the next machine. The vacation policy we considered is a single vacation policy. In practice, the switchover may experience a significant failure. The matrix analytical method and recursive method are employed to obtain the steady-state probability vectors, and closed-form expressions of some important system characteristics are obtained. The problem of cost optimization dealt with a number of numerical examples is provided by the Quasi-Newton method, the pattern search method, and the Nelder-Mead simplex direct search method. Expressions of various system characteristics are derived. Sensitivity analysis is performed numerically for system parameters. This paper presents the first time that machine interference problem with unsuccessful switchover for a group of repairable servers with vacations has been obtained, which is quite useful for the decision makers.

Citation: Tzu-Hsin Liu, Jau-Chuan Ke, Ching-Chang Kuo. Machine interference problem involving unsuccessful switchover for a group of repairable servers with vacations. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1411-1422. doi: 10.3934/jimo.2020027
References:
[1]

W. L. Chen and K. H. Wang, Reliability analysis of a retrial machine repair problem with warm standbys and a single server with N-policy, Reliability Engineering & System Safety, 180 (2018), 476-486.  doi: 10.1016/j.ress.2018.08.011.

[2]

G. Choudhury and J. C. Ke, An unreliable retrial queue with delaying repair and general retrial times under Bernoulli vacation schedule, Applied Mathematics and Computation, 230 (2014), 436-450.  doi: 10.1016/j.amc.2013.12.108.

[3]

S. M. Gupta, Machine interference problem with warm spares, server vacations and exhaustive service, Performance Evaluation, 29 (1997), 195-211.  doi: 10.1016/S0166-5316(96)00046-6.

[4]

G. HeW. Wu and Y. Zhang, Performance analysis of machine repair system with single working vacation, Communications in Statistics – Theory and Methods, 48 (2019), 5602-5620.  doi: 10.1080/03610926.2018.1515958.

[5]

Y. L. HsuJ. C. Ke and T. H. Liu, Standby system with general repair, reboot delay, switching failure and unreliable repair facility – A statistical standpoint, Mathematics and Computers in Simulation, 81 (2011), 2400-2413.  doi: 10.1016/j.matcom.2011.03.003.

[6]

Y. L. HsuJ. C. KeT. H. Liu and C. H. Wu, Modeling of multi-server repair problem with switching failure and reboot delay and related profit analysis, Computers & Industrial Engineering, 69 (2014), 21-28.  doi: 10.1016/j.cie.2013.12.003.

[7]

H. I. HuangC. H. Lin and J. C. Ke, Parametric nonlinear programming approach for a repairable system with switching failure and fuzzy parameters, Applied Mathematics and Computation, 183 (2006), 508-517.  doi: 10.1016/j.amc.2006.05.119.

[8]

J. B. KeJ. W. Chen and K. H. Wang, Reliability measures of a repairable system with standby switching failures and reboot delay, Quality Technology and Quantitative Managementl, 8 (2011), 15-26.  doi: 10.1080/16843703.2011.11673243.

[9]

J. B. KeW. C. Lee and J. C. Ke, Reliability-based measure for a system with standbys subjected to switching failures, Engineering Computations, 25 (2008), 694-706.  doi: 10.1108/02644400810899979.

[10]

J. C. KeK. B. Huang and W. L. Pearn, A batch arrival queue under randomized multi-vacation policy with unreliable server and repair, International Journal of Systems Science, 43 (2012), 552-565.  doi: 10.1080/00207721.2010.517863.

[11]

J. C. KeS. L. Lee and C. H. Liou, Machine repair problem in production systems with spares and server vacations, RAIRO Operation Research, 43 (2009), 35-54.  doi: 10.1051/ro/2009004.

[12]

J. C. KeT. H. Liu and D. Y. Yang, Machine repairing systems with standby switching failure, Computers & Industrial Engineering, 99 (2016), 223-228.  doi: 10.1016/j.cie.2016.07.016.

[13]

J. C. KeT. H. Liu and D. Y. Yang, Modeling of machine interference problem with unreliable repairman and standbys imperfect switchover, Reliability Engineering & System Safety, 174 (2018), 12-18.  doi: 10.1016/j.ress.2018.01.013.

[14]

J. C. Ke and K. H. Wang, Vacation policies for machine repair problem with two type spares, Applied Mathematical Modelling, 31 (2007), 880-894.  doi: 10.1016/j.apm.2006.02.009.

[15]

J. C. Ke and C. H. Wu, Multi-server machine repair model with standbys and synchronous multiple vacation, Computers & Industrial Engineering, 62 (2012), 296-305.  doi: 10.1016/j.cie.2011.09.017.

[16]

B. KerenG. Gurevich and Y. Hadad, Machines interference problem with several operatiors and several service types that have different priorities, International Journal of Operational Research, 30 (2017), 289-320.  doi: 10.1504/IJOR.2017.087274.

[17]

K. KumarM. Jain and C. Shekhar, Machine repair system with F-policy, two unreliable servers, and warm standbys, Journal of Testing and Evaluation, 47 (2019), 361-383.  doi: 10.1520/JTE20160595.

[18]

C. C. Kuo and J. C. Ke, Comparative analysis of standby systems with unreliable server and switching failure, Reliability Engineering and System Safety, 145 (2016), 74-82.  doi: 10.1016/j.ress.2015.09.001.

[19]

Y. Lee, Availability analysis of redundancy model with generally distributed repair time, imperfect switchover and interrupted repair, Electronics Letters, 52 (2016), 1851-1853.  doi: 10.1049/el.2016.2114.

[20]

E. E. Lewis, Introduction to Reliability Engineering, John Wiley & Sons, Inc., New York, 1987.

[21]

T. H. LiuJ. C. KeY. L. Hsu and Y. L. Hsu, Bootstrapping computation of availability for a repairable system with standby subject to imperfect switching, Communications in statistics – Simulation and Computation, 40 (2011), 469-483.  doi: 10.1080/03610918.2010.546539.

[22]

S. MaheshwariR. Supriya and M. Jain, Machine repair problem with K-type warm spares, multiple vacation for repairman and reneging, International Journal of Engineering and Technology, 2 (2010), 252-258. 

[23]

S. J. Sadjadi and R. Soltani, Minimum-Maximum regret redundancy allocation with the choice of redundancy strategy and multiple choice of component type under uncertainty, Computers & Industrial Engineering, 79 (2015), 204-213. 

[24]

C. ShekharM. JainA. Raina and R. Mishra, Sensitivity analysis of repairable redundant system with switching failure and geometric reneging, Decision Science Letters, 6 (2017), 337-350.  doi: 10.5267/j.dsl.2017.2.004.

[25]

R. K. Shrivastava and A. K. Mishra, Analysis of queueing model for machine repairing system with Bernoulli vacation schedule, International Journal of Mathematics Trends and Technology, 10 (2014), 85-92.  doi: 10.14445/22315373/IJMTT-V10P514.

[26]

S. R. Srinivas, A multi-server synchronous vacation model with thresholds and a probabilistic decision rule, European Journal of Operational Research, 182 (2007), 305-320.  doi: 10.1016/j.ejor.2006.07.037.

[27]

K. H. WangW. L. Chen and D. Y. Yang, Optimal management of the machine repair problem with working vacation: Newton's method, Journal of Computational and Applied Mathematics, 233 (2009), 449-458.  doi: 10.1016/j.cam.2009.07.043.

[28]

K. H. WangW. L. Dong and J. B. Ke, Comparison of reliability and the availability between four systems with standby components and standby switching failure, Applied Mathematics and Computation, 183 (2006), 1310-1322.  doi: 10.1016/j.amc.2006.05.161.

[29]

K. H. WangT. C. Yen and J. Y. Chen, Optimization analysis of retrial machine repair problem with server breakdown and threshold recovery policy, Journal of Testing and Evaluation, 46 (2018), 2630-2640.  doi: 10.1520/JTE20160149.

[30]

C. H. Wu and J. C. Ke, Multi-server machine repair problems under a (V, R) synchronous single vacation policy, Applied Mathematical Modelling, 38 (2014), 2180-2189.  doi: 10.1016/j.apm.2013.10.045.

[31]

D. Y. Yang and Y. D. Chang, Sensitivity analysis of the machine repair problem with general repeated attempts, International Journal of Computer Mathematics, 95 (2018), 1761-1774.  doi: 10.1080/00207160.2017.1336230.

[32]

D. Yue, W. Yue and Y. Sun, Performance analysis of an M/M/c/N queueing system with balking, reneging and synchronous vacations of partial servers, The Sixth International Symposium on Operations Research and Its Applications (ISORA–06), (2006), 128–143.

show all references

References:
[1]

W. L. Chen and K. H. Wang, Reliability analysis of a retrial machine repair problem with warm standbys and a single server with N-policy, Reliability Engineering & System Safety, 180 (2018), 476-486.  doi: 10.1016/j.ress.2018.08.011.

[2]

G. Choudhury and J. C. Ke, An unreliable retrial queue with delaying repair and general retrial times under Bernoulli vacation schedule, Applied Mathematics and Computation, 230 (2014), 436-450.  doi: 10.1016/j.amc.2013.12.108.

[3]

S. M. Gupta, Machine interference problem with warm spares, server vacations and exhaustive service, Performance Evaluation, 29 (1997), 195-211.  doi: 10.1016/S0166-5316(96)00046-6.

[4]

G. HeW. Wu and Y. Zhang, Performance analysis of machine repair system with single working vacation, Communications in Statistics – Theory and Methods, 48 (2019), 5602-5620.  doi: 10.1080/03610926.2018.1515958.

[5]

Y. L. HsuJ. C. Ke and T. H. Liu, Standby system with general repair, reboot delay, switching failure and unreliable repair facility – A statistical standpoint, Mathematics and Computers in Simulation, 81 (2011), 2400-2413.  doi: 10.1016/j.matcom.2011.03.003.

[6]

Y. L. HsuJ. C. KeT. H. Liu and C. H. Wu, Modeling of multi-server repair problem with switching failure and reboot delay and related profit analysis, Computers & Industrial Engineering, 69 (2014), 21-28.  doi: 10.1016/j.cie.2013.12.003.

[7]

H. I. HuangC. H. Lin and J. C. Ke, Parametric nonlinear programming approach for a repairable system with switching failure and fuzzy parameters, Applied Mathematics and Computation, 183 (2006), 508-517.  doi: 10.1016/j.amc.2006.05.119.

[8]

J. B. KeJ. W. Chen and K. H. Wang, Reliability measures of a repairable system with standby switching failures and reboot delay, Quality Technology and Quantitative Managementl, 8 (2011), 15-26.  doi: 10.1080/16843703.2011.11673243.

[9]

J. B. KeW. C. Lee and J. C. Ke, Reliability-based measure for a system with standbys subjected to switching failures, Engineering Computations, 25 (2008), 694-706.  doi: 10.1108/02644400810899979.

[10]

J. C. KeK. B. Huang and W. L. Pearn, A batch arrival queue under randomized multi-vacation policy with unreliable server and repair, International Journal of Systems Science, 43 (2012), 552-565.  doi: 10.1080/00207721.2010.517863.

[11]

J. C. KeS. L. Lee and C. H. Liou, Machine repair problem in production systems with spares and server vacations, RAIRO Operation Research, 43 (2009), 35-54.  doi: 10.1051/ro/2009004.

[12]

J. C. KeT. H. Liu and D. Y. Yang, Machine repairing systems with standby switching failure, Computers & Industrial Engineering, 99 (2016), 223-228.  doi: 10.1016/j.cie.2016.07.016.

[13]

J. C. KeT. H. Liu and D. Y. Yang, Modeling of machine interference problem with unreliable repairman and standbys imperfect switchover, Reliability Engineering & System Safety, 174 (2018), 12-18.  doi: 10.1016/j.ress.2018.01.013.

[14]

J. C. Ke and K. H. Wang, Vacation policies for machine repair problem with two type spares, Applied Mathematical Modelling, 31 (2007), 880-894.  doi: 10.1016/j.apm.2006.02.009.

[15]

J. C. Ke and C. H. Wu, Multi-server machine repair model with standbys and synchronous multiple vacation, Computers & Industrial Engineering, 62 (2012), 296-305.  doi: 10.1016/j.cie.2011.09.017.

[16]

B. KerenG. Gurevich and Y. Hadad, Machines interference problem with several operatiors and several service types that have different priorities, International Journal of Operational Research, 30 (2017), 289-320.  doi: 10.1504/IJOR.2017.087274.

[17]

K. KumarM. Jain and C. Shekhar, Machine repair system with F-policy, two unreliable servers, and warm standbys, Journal of Testing and Evaluation, 47 (2019), 361-383.  doi: 10.1520/JTE20160595.

[18]

C. C. Kuo and J. C. Ke, Comparative analysis of standby systems with unreliable server and switching failure, Reliability Engineering and System Safety, 145 (2016), 74-82.  doi: 10.1016/j.ress.2015.09.001.

[19]

Y. Lee, Availability analysis of redundancy model with generally distributed repair time, imperfect switchover and interrupted repair, Electronics Letters, 52 (2016), 1851-1853.  doi: 10.1049/el.2016.2114.

[20]

E. E. Lewis, Introduction to Reliability Engineering, John Wiley & Sons, Inc., New York, 1987.

[21]

T. H. LiuJ. C. KeY. L. Hsu and Y. L. Hsu, Bootstrapping computation of availability for a repairable system with standby subject to imperfect switching, Communications in statistics – Simulation and Computation, 40 (2011), 469-483.  doi: 10.1080/03610918.2010.546539.

[22]

S. MaheshwariR. Supriya and M. Jain, Machine repair problem with K-type warm spares, multiple vacation for repairman and reneging, International Journal of Engineering and Technology, 2 (2010), 252-258. 

[23]

S. J. Sadjadi and R. Soltani, Minimum-Maximum regret redundancy allocation with the choice of redundancy strategy and multiple choice of component type under uncertainty, Computers & Industrial Engineering, 79 (2015), 204-213. 

[24]

C. ShekharM. JainA. Raina and R. Mishra, Sensitivity analysis of repairable redundant system with switching failure and geometric reneging, Decision Science Letters, 6 (2017), 337-350.  doi: 10.5267/j.dsl.2017.2.004.

[25]

R. K. Shrivastava and A. K. Mishra, Analysis of queueing model for machine repairing system with Bernoulli vacation schedule, International Journal of Mathematics Trends and Technology, 10 (2014), 85-92.  doi: 10.14445/22315373/IJMTT-V10P514.

[26]

S. R. Srinivas, A multi-server synchronous vacation model with thresholds and a probabilistic decision rule, European Journal of Operational Research, 182 (2007), 305-320.  doi: 10.1016/j.ejor.2006.07.037.

[27]

K. H. WangW. L. Chen and D. Y. Yang, Optimal management of the machine repair problem with working vacation: Newton's method, Journal of Computational and Applied Mathematics, 233 (2009), 449-458.  doi: 10.1016/j.cam.2009.07.043.

[28]

K. H. WangW. L. Dong and J. B. Ke, Comparison of reliability and the availability between four systems with standby components and standby switching failure, Applied Mathematics and Computation, 183 (2006), 1310-1322.  doi: 10.1016/j.amc.2006.05.161.

[29]

K. H. WangT. C. Yen and J. Y. Chen, Optimization analysis of retrial machine repair problem with server breakdown and threshold recovery policy, Journal of Testing and Evaluation, 46 (2018), 2630-2640.  doi: 10.1520/JTE20160149.

[30]

C. H. Wu and J. C. Ke, Multi-server machine repair problems under a (V, R) synchronous single vacation policy, Applied Mathematical Modelling, 38 (2014), 2180-2189.  doi: 10.1016/j.apm.2013.10.045.

[31]

D. Y. Yang and Y. D. Chang, Sensitivity analysis of the machine repair problem with general repeated attempts, International Journal of Computer Mathematics, 95 (2018), 1761-1774.  doi: 10.1080/00207160.2017.1336230.

[32]

D. Yue, W. Yue and Y. Sun, Performance analysis of an M/M/c/N queueing system with balking, reneging and synchronous vacations of partial servers, The Sixth International Symposium on Operations Research and Its Applications (ISORA–06), (2006), 128–143.

Figure 1.  Plot of the average cost function versus the mean service rate and mean vacation rate
Table 1.  The average cost function for given $ (W, S) $ with $ M = 6 $, $ \lambda = 0.5 $, $ \alpha = 0.2\lambda $, $ \theta = 0.02 $, $ \beta = 0.02 $
$ (S, W) $ (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8)
$ TAC $ 99.72 98.43 99.20 100.74 102.52 104.32 106.04 107.65
$ (S, W) $ (1, 9) (1, 10) (1, 11) (1, 12) (2, 1) (2, 2) (2, 3) (2, 4)
$ TAC $ 109.13 110.49 111.74 112.88 92.32 $ \mathbf{90.90} $ 92.45 94.40
$ (S, W) $ (2, 5) (2, 6) (2, 7) (2, 8) (2, 9) (2, 10) (2, 11) (2, 12)
$ TAC $ 96.70 98.92 100.97 102.83 104.51 106.02 107.39 108.62
$ (S, W) $ (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (3, 7) (3, 8)
$ TAC $ 97.43 94.99 96.04 97.96 100.03 102.00 103.83 105.47
$ (S, W) $ (3, 9) (3, 10) (3, 11) (3, 12) (4, 1) (4, 2) (4, 3) (4, 4)
$ TAC $ 106.95 108.28 109.46 110.53 98.44 96.39 97.75 99.94
$ (S, W) $ (4, 5) (4, 6) (4, 7) (4, 8) (4, 9) (4, 10) (4, 11) (4, 12)
$ TAC $ 102.17 104.22 106.04 107.65 109.07 110.33 111.45 112.44
$ (S, W) $ (5, 9) (5, 10) (5, 11) (5, 12) (6, 1) (6, 2) (6, 3) (6, 4)
$ TAC $ 109.33 110.60 111.72 112.72 95.48 94.17 96.15 98.83
$ (S, W) $ (6, 5) (6, 6) (6, 7) (6, 8) (6, 9) (6, 10) (6, 11) (6, 12)
$ TAC $ 101.39 103.66 105.63 107.35 108.84 110.16 111.33 112.37
$ (S, W) $ (7, 2) (7, 3) (7, 4) (7, 5) (7, 6) (7, 7) (7, 8) (7, 9)
$ TAC $ 91.92 94.27 97.24 100.01 102.43 104.53 106.35 107.93
$ (S, W) $ (7, 10) (7, 11) (7, 12) (8, 3) (8, 4) (8, 5) (8, 6) (8, 7)
$ TAC $ 109.32 110.54 111.64 91.97 95.24 98.25 100.85 103.10
$ (S, W) $ (8, 8) (8, 9) (8, 10) (8, 11) (8, 12) (9, 4) (9, 5) (9, 6)
$ TAC $ 105.03 106.71 108.19 109.49 110.65 92.94 96.20 99.01
$ (S, W) $ (9, 7) (9, 8) (9, 9) (9, 10) (9, 11) (9, 12) (10, 5) (10, 6)
$ TAC $ 101.41 103.48 105.28 106.85 108.24 109.48 93.93 96.95
$ (S, W) $ (10, 7) (10, 8) (10, 9) (10, 10) (10, 11) (10, 12) (11, 6) (11, 7)
$ TAC $ 99.53 101.75 103.67 105.36 106.84 108.16 94.73 97.49
$ (S, W) $ (11, 8) (11, 9) (11, 10) (11, 11) (11, 12) (12, 7) (12, 8) (12, 9)
$ TAC $ 99.87 101.92 103.72 105.31 106.71 95.32 97.86 100.06
$ (S, W) $ (12, 10) (12, 11) (12, 12)
$ TAC $ 101.98 103.67 105.17
$ (S, W) $ (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7) (1, 8)
$ TAC $ 99.72 98.43 99.20 100.74 102.52 104.32 106.04 107.65
$ (S, W) $ (1, 9) (1, 10) (1, 11) (1, 12) (2, 1) (2, 2) (2, 3) (2, 4)
$ TAC $ 109.13 110.49 111.74 112.88 92.32 $ \mathbf{90.90} $ 92.45 94.40
$ (S, W) $ (2, 5) (2, 6) (2, 7) (2, 8) (2, 9) (2, 10) (2, 11) (2, 12)
$ TAC $ 96.70 98.92 100.97 102.83 104.51 106.02 107.39 108.62
$ (S, W) $ (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (3, 7) (3, 8)
$ TAC $ 97.43 94.99 96.04 97.96 100.03 102.00 103.83 105.47
$ (S, W) $ (3, 9) (3, 10) (3, 11) (3, 12) (4, 1) (4, 2) (4, 3) (4, 4)
$ TAC $ 106.95 108.28 109.46 110.53 98.44 96.39 97.75 99.94
$ (S, W) $ (4, 5) (4, 6) (4, 7) (4, 8) (4, 9) (4, 10) (4, 11) (4, 12)
$ TAC $ 102.17 104.22 106.04 107.65 109.07 110.33 111.45 112.44
$ (S, W) $ (5, 9) (5, 10) (5, 11) (5, 12) (6, 1) (6, 2) (6, 3) (6, 4)
$ TAC $ 109.33 110.60 111.72 112.72 95.48 94.17 96.15 98.83
$ (S, W) $ (6, 5) (6, 6) (6, 7) (6, 8) (6, 9) (6, 10) (6, 11) (6, 12)
$ TAC $ 101.39 103.66 105.63 107.35 108.84 110.16 111.33 112.37
$ (S, W) $ (7, 2) (7, 3) (7, 4) (7, 5) (7, 6) (7, 7) (7, 8) (7, 9)
$ TAC $ 91.92 94.27 97.24 100.01 102.43 104.53 106.35 107.93
$ (S, W) $ (7, 10) (7, 11) (7, 12) (8, 3) (8, 4) (8, 5) (8, 6) (8, 7)
$ TAC $ 109.32 110.54 111.64 91.97 95.24 98.25 100.85 103.10
$ (S, W) $ (8, 8) (8, 9) (8, 10) (8, 11) (8, 12) (9, 4) (9, 5) (9, 6)
$ TAC $ 105.03 106.71 108.19 109.49 110.65 92.94 96.20 99.01
$ (S, W) $ (9, 7) (9, 8) (9, 9) (9, 10) (9, 11) (9, 12) (10, 5) (10, 6)
$ TAC $ 101.41 103.48 105.28 106.85 108.24 109.48 93.93 96.95
$ (S, W) $ (10, 7) (10, 8) (10, 9) (10, 10) (10, 11) (10, 12) (11, 6) (11, 7)
$ TAC $ 99.53 101.75 103.67 105.36 106.84 108.16 94.73 97.49
$ (S, W) $ (11, 8) (11, 9) (11, 10) (11, 11) (11, 12) (12, 7) (12, 8) (12, 9)
$ TAC $ 99.87 101.92 103.72 105.31 106.71 95.32 97.86 100.06
$ (S, W) $ (12, 10) (12, 11) (12, 12)
$ TAC $ 101.98 103.67 105.17
Table 2.  The minimum average cost function for varying values of $ \lambda $ with $ M = 6 $, $ \alpha = 0.2\lambda $, $ \theta = 0.02 $, $ \beta = 0.02 $
QN method
$ \lambda $ 0.2 0.4 0.6
$ TAC $ 68.34 85.47 95.95
$ (W^*, S^*) $ (1, 1) (2, 2) (2, 2)
$ (\mu^*, \delta^*) $ (2.37, 5.43) (2.38, 2.14) (3.09, 4.09)
Iterations 1204 1427 1583
CPU Time 6.26 5.62 5.64
MN method
$ TAC $ 68.34 85.47 95.95
$ (W^*, S^*) $ (1, 1) (2, 2) (2, 2)
$ (\mu^*, \delta^*) $ (2.37, 5.43) (2.38, 2.14) (3.09, 4.09)
Iterations 6741 6074 6176
CPU Time 6.39 5.77 5.62
PS method
$ TAC $ 68.34 85.47 95.95
$ (W^*, S^*) $ (1, 1) (2, 2) (2, 2)
$ (\mu^*, \delta^*) $ (2.37, 5.43) (2.38, 2.14) (3.09, 4.09)
Iterations 11679 13179 13294
CPU Time 22.44 23.57 25.80
QN method
$ \lambda $ 0.2 0.4 0.6
$ TAC $ 68.34 85.47 95.95
$ (W^*, S^*) $ (1, 1) (2, 2) (2, 2)
$ (\mu^*, \delta^*) $ (2.37, 5.43) (2.38, 2.14) (3.09, 4.09)
Iterations 1204 1427 1583
CPU Time 6.26 5.62 5.64
MN method
$ TAC $ 68.34 85.47 95.95
$ (W^*, S^*) $ (1, 1) (2, 2) (2, 2)
$ (\mu^*, \delta^*) $ (2.37, 5.43) (2.38, 2.14) (3.09, 4.09)
Iterations 6741 6074 6176
CPU Time 6.39 5.77 5.62
PS method
$ TAC $ 68.34 85.47 95.95
$ (W^*, S^*) $ (1, 1) (2, 2) (2, 2)
$ (\mu^*, \delta^*) $ (2.37, 5.43) (2.38, 2.14) (3.09, 4.09)
Iterations 11679 13179 13294
CPU Time 22.44 23.57 25.80
[1]

C. J. Price. A modified Nelder-Mead barrier method for constrained optimization. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 613-631. doi: 10.3934/naco.2020058

[2]

Honglan Zhu, Qin Ni, Meilan Zeng. A quasi-Newton trust region method based on a new fractional model. Numerical Algebra, Control and Optimization, 2015, 5 (3) : 237-249. doi: 10.3934/naco.2015.5.237

[3]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial and Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[4]

Matthias Gerdts, Stefan Horn, Sven-Joachim Kimmerle. Line search globalization of a semismooth Newton method for operator equations in Hilbert spaces with applications in optimal control. Journal of Industrial and Management Optimization, 2017, 13 (1) : 47-62. doi: 10.3934/jimo.2016003

[5]

Cheng-Dar Liou. Note on "Cost analysis of the M/M/R machine repair problem with second optional repair: Newton-Quasi method". Journal of Industrial and Management Optimization, 2012, 8 (3) : 727-732. doi: 10.3934/jimo.2012.8.727

[6]

Kuo-Hsiung Wang, Chuen-Wen Liao, Tseng-Chang Yen. Cost analysis of the M/M/R machine repair problem with second optional repair: Newton-Quasi method. Journal of Industrial and Management Optimization, 2010, 6 (1) : 197-207. doi: 10.3934/jimo.2010.6.197

[7]

Mingyong Lai, Xiaojiao Tong. A metaheuristic method for vehicle routing problem based on improved ant colony optimization and Tabu search. Journal of Industrial and Management Optimization, 2012, 8 (2) : 469-484. doi: 10.3934/jimo.2012.8.469

[8]

T. Tachim Medjo. On the Newton method in robust control of fluid flow. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1201-1222. doi: 10.3934/dcds.2003.9.1201

[9]

Xiaojiao Tong, Felix F. Wu, Yongping Zhang, Zheng Yan, Yixin Ni. A semismooth Newton method for solving optimal power flow. Journal of Industrial and Management Optimization, 2007, 3 (3) : 553-567. doi: 10.3934/jimo.2007.3.553

[10]

Zhi-Feng Pang, Yu-Fei Yang. Semismooth Newton method for minimization of the LLT model. Inverse Problems and Imaging, 2009, 3 (4) : 677-691. doi: 10.3934/ipi.2009.3.677

[11]

Corrado Falcolini, Laura Tedeschini-Lalli. A numerical renormalization method for quasi–conservative periodic attractors. Journal of Computational Dynamics, 2020, 7 (2) : 461-468. doi: 10.3934/jcd.2020018

[12]

Xiaojiao Tong, Shuzi Zhou. A smoothing projected Newton-type method for semismooth equations with bound constraints. Journal of Industrial and Management Optimization, 2005, 1 (2) : 235-250. doi: 10.3934/jimo.2005.1.235

[13]

R. Baier, M. Dellnitz, M. Hessel-von Molo, S. Sertl, I. G. Kevrekidis. The computation of convex invariant sets via Newton's method. Journal of Computational Dynamics, 2014, 1 (1) : 39-69. doi: 10.3934/jcd.2014.1.39

[14]

Saeed Ketabchi, Hossein Moosaei, M. Parandegan, Hamidreza Navidi. Computing minimum norm solution of linear systems of equations by the generalized Newton method. Numerical Algebra, Control and Optimization, 2017, 7 (2) : 113-119. doi: 10.3934/naco.2017008

[15]

Hans J. Wolters. A Newton-type method for computing best segment approximations. Communications on Pure and Applied Analysis, 2004, 3 (1) : 133-149 . doi: 10.3934/cpaa.2004.3.133

[16]

Liqun Qi, Zheng yan, Hongxia Yin. Semismooth reformulation and Newton's method for the security region problem of power systems. Journal of Industrial and Management Optimization, 2008, 4 (1) : 143-153. doi: 10.3934/jimo.2008.4.143

[17]

Shuang Chen, Li-Ping Pang, Dan Li. An inexact semismooth Newton method for variational inequality with symmetric cone constraints. Journal of Industrial and Management Optimization, 2015, 11 (3) : 733-746. doi: 10.3934/jimo.2015.11.733

[18]

Hong-Yi Miao, Li Wang. Preconditioned inexact Newton-like method for large nonsymmetric eigenvalue problems. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 677-685. doi: 10.3934/naco.2021012

[19]

Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015

[20]

Marcus Wagner. A direct method for the solution of an optimal control problem arising from image registration. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 487-510. doi: 10.3934/naco.2012.2.487

2021 Impact Factor: 1.411

Article outline

Figures and Tables

[Back to Top]