-
Previous Article
Bundling and pricing decisions for bricks-and-clicks firms with consideration of network externality
- JIMO Home
- This Issue
-
Next Article
Fit revelation strategy in a supply chain with two types of consumers
Utility maximization with habit formation of interaction
1. | Department of Actuarial Science, School of Insurance, , Central University of Finance and Economics Beijing 100081, China |
2. | Department of Actuarial Science, School of Insurance; , China Institute for Actuarial Science, , Central University of Finance and Economics, Beijing 100081, China |
In this paper, we analytically solve the utility maximization problem for a consumption set with multiple habit formation of interaction. Consumption is here composed of habitual and nonhabitual components, where habitual consumption represents the effect of past consumption. We further assume that the individual seeks to maximize his/her expected utility from nonhabitual consumption. Although there is usually no explicit solution of linear dynamic systems in the habit formation model, we study the functional minimum of habitual consumption. To solve the optimization problem with a general utility function, we adopt the convex dual martingale approach to construct the optimal consumption strategy and provide an economic interpretation for nearly every object throughout the solution process.
References:
[1] |
J. Bismut,
Conjugate convex functions in optimal stochastic control, Journal of Mathematical Analysis and Applications, 44 (1973), 384-404.
doi: 10.1016/0022-247X(73)90066-8. |
[2] |
G. Constantinides,
Habit formation: A resolution of the equity premium puzzle, Journal of Political Economy, 98 (1990), 519-543.
doi: 10.1086/261693. |
[3] |
J. Cvitanić and I. Karatzas,
Convex duality in constrained portfolio optimization, Annals of Applied Probability, 2 (1992), 767-818.
doi: 10.1214/aoap/1177005576. |
[4] |
J. Cvitanić and I. Karatzas,
Hedging contingent claims with constrained portfolios, Annals of Applied Probability, 3 (1993), 652-681.
doi: 10.1214/aoap/1177005357. |
[5] |
J. Detemple and I. Karatzas,
Non-addictive habits: Optimal consumption portfolio policies, Journal of Economic Theory, 113 (2003), 265-285.
doi: 10.1016/S0022-0531(03)00099-1. |
[6] |
J. Detemple and F. Zapatero,
Asset prices in an exchange economy with habit formation, Econometrica, 59 (1991), 1633-1657.
doi: 10.2307/2938283. |
[7] |
J. Detemple and F. Zapatero,
Optimal consumption-portfolio policies with habit formation, Mathematical Finance, 2 (1992), 251-274.
doi: 10.1111/j.1467-9965.1992.tb00032.x. |
[8] |
N. Englezos and I. Karatzas,
Utility maximization with habit formation: Dynamic programming and stochastic pdes, SIAM Journal on Control and Optimization, 48 (2009), 481-520.
doi: 10.1137/070686998. |
[9] | J. Hicks, Capital and Growth, Oxford Univ. Press, New York, 1965. Google Scholar |
[10] |
J. Kakeu and P. Nguimkeu,
Habit formation and exhaustible resource risk-pricing, Energy Economics, 64 (2017), 1-12.
doi: 10.1016/j.eneco.2017.03.013. |
[11] |
I. Karatzas, J. Lehoczky, S. Sethi and S. Shreve,
Explicit solution of a general consumption/investment problem, Mathematics of Operations Research, 11 (1986), 261-294.
doi: 10.1287/moor.11.2.261. |
[12] |
I. Karatzas, J. Lehoczky and S. Shreve,
Optimal portfolio and consumption decisions for a "small investor" on a finite horizon, SIAM Journal on Control and Optimization, 25 (1987), 1557-1586.
doi: 10.1137/0325086. |
[13] |
I. Karatzas and S. Shreve, Methods of Mathematical Finance, Springer, 1998.
doi: 10.1007/b98840. |
[14] |
R. Merton,
Lifetime portfolio selection under uncertainty: The continuous-time case, Review of Economics and Statistics, 51 (1969), 247-257.
doi: 10.2307/1926560. |
[15] |
R. Merton,
Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.
doi: 10.1016/0022-0531(71)90038-X. |
[16] |
C. Munk,
Portfolio and consumption choice with stochastic investment opportunities and habit formation in preferences, Journal of Economic Dynamics and Control, 32 (2008), 3560-3589.
doi: 10.1016/j.jedc.2008.02.005. |
[17] |
R. Muraviev,
Additive habit formation: consumption in incomplete markets with random endowments, Mathematics and Financial Economics, 5 (2011), 67-99.
doi: 10.1007/s11579-011-0049-y. |
[18] |
M. Schroder and C. Skiadas, An isomorphism between asset pricing models with and without linear habit formation, Review of Financial Studies, 15 (2002), 1189-1221. Google Scholar |
[19] |
S. Shreve, Stochastic Calculus for Finance, Springer, 2004. |
[20] |
S. Sundaresan,
Intertemporally dependent preferences and the volatility of consumption and wealth, Review of Financial Studies, 2 (1989), 73-89.
doi: 10.1093/rfs/2.1.73. |
show all references
References:
[1] |
J. Bismut,
Conjugate convex functions in optimal stochastic control, Journal of Mathematical Analysis and Applications, 44 (1973), 384-404.
doi: 10.1016/0022-247X(73)90066-8. |
[2] |
G. Constantinides,
Habit formation: A resolution of the equity premium puzzle, Journal of Political Economy, 98 (1990), 519-543.
doi: 10.1086/261693. |
[3] |
J. Cvitanić and I. Karatzas,
Convex duality in constrained portfolio optimization, Annals of Applied Probability, 2 (1992), 767-818.
doi: 10.1214/aoap/1177005576. |
[4] |
J. Cvitanić and I. Karatzas,
Hedging contingent claims with constrained portfolios, Annals of Applied Probability, 3 (1993), 652-681.
doi: 10.1214/aoap/1177005357. |
[5] |
J. Detemple and I. Karatzas,
Non-addictive habits: Optimal consumption portfolio policies, Journal of Economic Theory, 113 (2003), 265-285.
doi: 10.1016/S0022-0531(03)00099-1. |
[6] |
J. Detemple and F. Zapatero,
Asset prices in an exchange economy with habit formation, Econometrica, 59 (1991), 1633-1657.
doi: 10.2307/2938283. |
[7] |
J. Detemple and F. Zapatero,
Optimal consumption-portfolio policies with habit formation, Mathematical Finance, 2 (1992), 251-274.
doi: 10.1111/j.1467-9965.1992.tb00032.x. |
[8] |
N. Englezos and I. Karatzas,
Utility maximization with habit formation: Dynamic programming and stochastic pdes, SIAM Journal on Control and Optimization, 48 (2009), 481-520.
doi: 10.1137/070686998. |
[9] | J. Hicks, Capital and Growth, Oxford Univ. Press, New York, 1965. Google Scholar |
[10] |
J. Kakeu and P. Nguimkeu,
Habit formation and exhaustible resource risk-pricing, Energy Economics, 64 (2017), 1-12.
doi: 10.1016/j.eneco.2017.03.013. |
[11] |
I. Karatzas, J. Lehoczky, S. Sethi and S. Shreve,
Explicit solution of a general consumption/investment problem, Mathematics of Operations Research, 11 (1986), 261-294.
doi: 10.1287/moor.11.2.261. |
[12] |
I. Karatzas, J. Lehoczky and S. Shreve,
Optimal portfolio and consumption decisions for a "small investor" on a finite horizon, SIAM Journal on Control and Optimization, 25 (1987), 1557-1586.
doi: 10.1137/0325086. |
[13] |
I. Karatzas and S. Shreve, Methods of Mathematical Finance, Springer, 1998.
doi: 10.1007/b98840. |
[14] |
R. Merton,
Lifetime portfolio selection under uncertainty: The continuous-time case, Review of Economics and Statistics, 51 (1969), 247-257.
doi: 10.2307/1926560. |
[15] |
R. Merton,
Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.
doi: 10.1016/0022-0531(71)90038-X. |
[16] |
C. Munk,
Portfolio and consumption choice with stochastic investment opportunities and habit formation in preferences, Journal of Economic Dynamics and Control, 32 (2008), 3560-3589.
doi: 10.1016/j.jedc.2008.02.005. |
[17] |
R. Muraviev,
Additive habit formation: consumption in incomplete markets with random endowments, Mathematics and Financial Economics, 5 (2011), 67-99.
doi: 10.1007/s11579-011-0049-y. |
[18] |
M. Schroder and C. Skiadas, An isomorphism between asset pricing models with and without linear habit formation, Review of Financial Studies, 15 (2002), 1189-1221. Google Scholar |
[19] |
S. Shreve, Stochastic Calculus for Finance, Springer, 2004. |
[20] |
S. Sundaresan,
Intertemporally dependent preferences and the volatility of consumption and wealth, Review of Financial Studies, 2 (1989), 73-89.
doi: 10.1093/rfs/2.1.73. |
[1] |
Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285 |
[2] |
Vadim Azhmyakov, Juan P. Fernández-Gutiérrez, Erik I. Verriest, Stefan W. Pickl. A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure. Journal of Industrial & Management Optimization, 2021, 17 (2) : 669-686. doi: 10.3934/jimo.2019128 |
[3] |
Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098 |
[4] |
Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020166 |
[5] |
Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100 |
[6] |
Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134 |
[7] |
Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177 |
[8] |
Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070 |
[9] |
Hedy Attouch, Aïcha Balhag, Zaki Chbani, Hassan Riahi. Fast convex optimization via inertial dynamics combining viscous and Hessian-driven damping with time rescaling. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021010 |
[10] |
Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353 |
[11] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021013 |
[12] |
Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 |
[13] |
M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014 |
[14] |
Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021024 |
[15] |
Simone Fagioli, Emanuela Radici. Opinion formation systems via deterministic particles approximation. Kinetic & Related Models, 2021, 14 (1) : 45-76. doi: 10.3934/krm.2020048 |
[16] |
Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020173 |
[17] |
Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021002 |
[18] |
Bing Liu, Ming Zhou. Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin. Journal of Industrial & Management Optimization, 2021, 17 (2) : 937-952. doi: 10.3934/jimo.2020005 |
[19] |
Junkee Jeon. Finite horizon portfolio selection problems with stochastic borrowing constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 733-763. doi: 10.3934/jimo.2019132 |
[20] |
Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130 |
2019 Impact Factor: 1.366
Tools
Article outline
[Back to Top]