• Previous Article
    Robust observer-based control for discrete-time semi-Markov jump systems with actuator saturation
  • JIMO Home
  • This Issue
  • Next Article
    Quality competition and coordination in a VMI supply chain with two risk-averse manufacturers
doi: 10.3934/jimo.2020036

Independent sales or bundling? Decisions under different market-dominant powers

School of Management and Economics, University of Electronic Science and Technology of China, Chengdu Sichuan 611731, China

* Corresponding author: Feng Wei

Received  June 2019 Revised  September 2019 Published  February 2020

Fund Project: This research is supported by the National Natural Science Foundation of China(71472026)

Enterprises are aware that bundling strategies can improve profitability in the highly competitive marketplace. This study evaluates an online to offline (O2O) supply chain system made up of a supplier and an e-retailer who can sell two products independently or bundled through online and offline channels, and discuss the influence of pricing strategy and channel choice on profit under different market-dominant powers. Based on a game theory model, we derive an optimal wholesale price for the supplier, an optimal sale price for the e-retailer, and their respective profit. We demonstrate that a Stackelberg leader is more profitable, irrespective of whether independent sales or bundling are chosen. Regardless of who the leader is, the whole supply chain receive equal profit. For a market leader, independent sales or bundling decisions should be made according to market size. Sensitivity analysis show that as the self-price sensitivity coefficient increases, the profit monotonically decreases for both independent sales and bundling; this occur for both the market dominated by the supplier and that dominated by the e-retailer. For independent sales, as the cross-price sensitivity coefficient increases, the profit monotonically increases; for bundled sales, the profit of the game players is not affected.

Citation: Feng Wei, Hong Chen. Independent sales or bundling? Decisions under different market-dominant powers. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020036
References:
[1]

A. BalakrishnanS. Sundaresan and B. Zhang, Browse-and-Switch: Retail-online competition under value uncertainty, Prod. Oper. Management, 23 (2014), 1129-1145.  doi: 10.1111/poms.12165.  Google Scholar

[2]

M. Banciu and F. Degaard, Optimal product bundling with dependent valuations: The price of independence, European J. Oper. Res., 255 (2016), 481-495.  doi: 10.1016/j.ejor.2016.05.022.  Google Scholar

[3]

H. K. Bhargava, Retailer-driven product bundling in a distribution channel, Marketing Sci., 31 (2012), 1014-1021.  doi: 10.1287/mksc.1120.0725.  Google Scholar

[4]

Q. N. CaoX. J. Geng and J. Zhang, Strategic role of retailer bundling in a distribution channel, J. Retailing, 91 (2015), 50-67.  doi: 10.1016/j.jretai.2014.10.005.  Google Scholar

[5]

Q. N. CaoK. E. Stecke and J. Zhang, The impact of limited supply on a firm's bundling strategy, Prod. Oper. Management, 24 (2015), 1931-1944.  doi: 10.1111/poms.12388.  Google Scholar

[6]

W. CaoB. Jiang and D. M. Zhou, The effects of demand uncertainty on channel structure, European J. Oper. Res., 207 (2010), 1471-1488.  doi: 10.1016/j.ejor.2010.06.001.  Google Scholar

[7]

A. ChakravartyA. Mild and A. Taudes, Bundling decisions in supply chains, European J. Oper. Res., 231 (2013), 617-630.  doi: 10.1016/j.ejor.2013.06.026.  Google Scholar

[8]

J. ChenH. Zhang and Y. Sun, Implementing coordination contracts in a manufacturer Stackelberg dual-channel supply chain, Omega, 40 (2012), 571-583.  doi: 10.1016/j.omega.2011.11.005.  Google Scholar

[9]

Y. C. ChenS. C. Fang and U. P. Wen, Pricing policies for substitutable products in a supply chain with Internet and traditional channels, European J. Oper. Res., 224 (2013), 542-551.  doi: 10.1016/j.ejor.2012.09.003.  Google Scholar

[10]

W. Y. K. ChiangD. Chhajed and J. D. Hess, Direct marketing, indirect profits: A strategic analysis of dual-channel supply-chain design, Management Sci., 49 (2003), 1-20.  doi: 10.1287/mnsc.49.1.1.12749.  Google Scholar

[11]

P. K. ChintaguntaJ. H. Chu and J. Cebollada, Quantifying transaction costs in online/off-line grocery channel choice, Marketing Sci., 31 (2012), 96-114.  doi: 10.1287/mksc.1110.0678.  Google Scholar

[12]

S. C. Choi, Price competition in a channel structure with a common retailer, Marketing Sci., 10 (1991), 271-296.  doi: 10.1287/mksc.10.4.271.  Google Scholar

[13]

B. DanG. Y. Xu and C. Liu, Pricing policies in a dual-channel supply chain with retail services, Internat. J. Prod. Econ., 139 (2012), 312-320.  doi: 10.1016/j.ijpe.2012.05.014.  Google Scholar

[14]

F. Gao and X. M. Su, Omnichannel retail operations with buy-online-and-pick-up-in-store, Management Sci., 63 (2016), 1-15.  doi: 10.1287/mnsc.2016.2473.  Google Scholar

[15]

M. GirjuA. Prasad and B. T. Ratchford, Pure components versus pure bundling in a marketing channel, J. Retailing, 89 (2013), 423-437.  doi: 10.1016/j.jretai.2013.06.001.  Google Scholar

[16]

U. GurlerS. Oztop and A. Sen, Optimal bundle formation and pricing of two products with limited stock, Internat. J. Prod. Econ., 118 (2009), 442-462.  doi: 10.1016/j.ijpe.2008.11.012.  Google Scholar

[17]

W. Hanson and R. K. Martin, Optimal bundle pricing, Management Sci., 36 (1990), 155-174.  doi: 10.1287/mnsc.36.2.155.  Google Scholar

[18]

Y. Y. HeJ. ZhangQ. L. Gou and G. B. Bi, Supply chain decisions with reference quality effect under the O2O environment, Ann. Oper. Res., 268 (2018), 273-292.  doi: 10.1007/s10479-016-2224-2.  Google Scholar

[19]

D. Honhon and X. J. A. Pan, Improving profits by bundling vertically differentiated products, Prod. Oper. Management, 26 (2017), 1481-1497.  doi: 10.1111/poms.12686.  Google Scholar

[20]

W. Hu and Y. J. Li, Retail service for mixed retail and e-tail channels, Ann. Oper. Res., 192 (2012), 151-171.  doi: 10.1007/s10479-010-0818-7.  Google Scholar

[21]

G. W. HuaS. Y. Wang and T. C. E. Cheng, Price and lead time decisions in dual-channel supply chains, European Internat. J. Prod. Econ., 205 (2010), 113-126.  doi: 10.1016/j.ejor.2009.12.012.  Google Scholar

[22]

J. N. JiZ. Y. Zhang and L. Yang, Comparisons of initial carbon allowance allocation rules in an O2O retail supply chain with the cap-and-trade regulation, Internat. J. Prod. Econ., 187 (2017), 68-84.  doi: 10.1016/j.ijpe.2017.02.011.  Google Scholar

[23]

Y. C. JiangY. Z. LiuH. WangJ. Shang and S. Ding, Online pricing with bundling and coupon discounts, Internat. J. Prod. Res., 56 (2018), 1773-1788.  doi: 10.1080/00207543.2015.1112443.  Google Scholar

[24]

Q. H. Lu and N. Liu, Pricing games of mixed conventional and e-commerce distribution channels, Comput. Industrial Engineering, 64 (2013), 122-132.  doi: 10.1016/j.cie.2012.09.018.  Google Scholar

[25]

Z. LuoX. ChenJ. Chen and X. J. Wang, Optimal pricing policies for differentiated brands under different supply chain power structures, European J. Oper. Res., 259 (2017), 437-451.  doi: 10.1016/j.ejor.2016.10.046.  Google Scholar

[26]

Z. LuoX. Chen and M. Kai, The effect of customer value and power structure on retail supply chain product choice and pricing decisions, Omega, 77 (2018), 115-126.  doi: 10.1016/j.omega.2017.06.003.  Google Scholar

[27]

S. MayerR. Klein and S. Seiermann, A simulation-based approach to price optimisation of the mixed bundling problem with capacity constraints, Internat. J. Prod. Econ., 145 (2013), 584-598.  doi: 10.1016/j.ijpe.2013.05.014.  Google Scholar

[28]

A. MehraS. Kumar and J. S. Raju, Competitive strategies for brick-and-mortar stores to counter "showrooming", Management Sci., 64 (2018), 3076-3090.  doi: 10.1287/mnsc.2017.2764.  Google Scholar

[29]

A. PrasadR. Venkatesh and V. Mahajan, Optimal bundling of technological products with network externality, Management Sci., 56 (2010), 2224-2236.  doi: 10.1287/mnsc.1100.1259.  Google Scholar

[30]

A. PrasadR. Venkatesh and V. Mahajan, Product bundling or reserved product pricing? Price discrimination with myopic and strategic consumers, Internat. J. Res. Marketing, 32 (2015), 1-8.  doi: 10.1016/j.ijresmar.2014.06.004.  Google Scholar

[31]

A. PrasadR. Venkatesh and V. Mahajan, Temporal product bundling with myopic and strategic consumers: Manifestations and relative effectiveness, Quantitative Marketing Economics, 15 (2017), 341-368.  doi: 10.1007/s11129-017-9189-6.  Google Scholar

[32]

J. K. RyanD. Sun and X. Y. Zhao, Coordinating a supply chain with a manufacturer-owned online channel: A dual channel model under price competition, IEEE Transac. Engineering Manag., 60 (2013), 247-259.  doi: 10.1109/TEM.2012.2207903.  Google Scholar

[33]

M. Sarkar and Y. H. Lee, Optimum pricing strategy for complementary products with reservation price in a supply chain model, J. Ind. Manag. Optim., 13 (2017), 1579-1612.  doi: 10.3934/jimo.2017007.  Google Scholar

[34]

M. Sheikhzadeh and E. Elahi, Product bundling: Impacts of product heterogeneity and risk considerations, Internat. J. Prod. Econ., 144 (2013), 209-222.  doi: 10.1016/j.ijpe.2013.02.006.  Google Scholar

[35]

W. WangG. Li and T. C. E. Cheng, Channel selection in a supply chain with a multi-channel retailer: The role of channel operating costs, Internat. J. Prod. Econ., 173 (2016), 54-65.  doi: 10.1016/j.ijpe.2015.12.004.  Google Scholar

[36]

J. P. XieL. LiangL. H. Liu and P. Ieromonachou, Coordination contracts of dual-channel with cooperation advertising in closed-loop supply chains, Internat. J. Prod. Econ., 183 (2017), 528-538.  doi: 10.1016/j.ijpe.2016.07.026.  Google Scholar

[37]

R. L. Yan and S. Bandyopadhyay, The profit benefits of bundle pricing of complementary products, J. Retailing Consumer Services, 18 (2011), 355-361.  doi: 10.1016/j.jretconser.2011.04.001.  Google Scholar

[38]

R. L. YanC. MyersJ. Wang and S. Ghose, Bundling products to success: The influence of complementarity and advertising, J. Retailing Consumer Services, 21 (2014), 48-53.  doi: 10.1016/j.jretconser.2013.07.007.  Google Scholar

[39]

R. L. Yan and Z. Pei, Retail services and firm profit in a dual-channel market, J. Retailing Consumer Services, 16 (2009), 306-314.  doi: 10.1016/j.jretconser.2009.02.006.  Google Scholar

[40]

D. Q. Yao and J. J. Liu, Competitive pricing of mixed retail and e-tail distribution channels, Omega, 33 (2005), 235-247.  doi: 10.1016/j.omega.2004.04.007.  Google Scholar

[41]

R. ZhangB. Liu and W. L. Wang, Pricing decisions in a dual channels system with different power structures, Economic Modelling, 29 (2012), 523-533.  doi: 10.1016/j.econmod.2011.08.024.  Google Scholar

show all references

References:
[1]

A. BalakrishnanS. Sundaresan and B. Zhang, Browse-and-Switch: Retail-online competition under value uncertainty, Prod. Oper. Management, 23 (2014), 1129-1145.  doi: 10.1111/poms.12165.  Google Scholar

[2]

M. Banciu and F. Degaard, Optimal product bundling with dependent valuations: The price of independence, European J. Oper. Res., 255 (2016), 481-495.  doi: 10.1016/j.ejor.2016.05.022.  Google Scholar

[3]

H. K. Bhargava, Retailer-driven product bundling in a distribution channel, Marketing Sci., 31 (2012), 1014-1021.  doi: 10.1287/mksc.1120.0725.  Google Scholar

[4]

Q. N. CaoX. J. Geng and J. Zhang, Strategic role of retailer bundling in a distribution channel, J. Retailing, 91 (2015), 50-67.  doi: 10.1016/j.jretai.2014.10.005.  Google Scholar

[5]

Q. N. CaoK. E. Stecke and J. Zhang, The impact of limited supply on a firm's bundling strategy, Prod. Oper. Management, 24 (2015), 1931-1944.  doi: 10.1111/poms.12388.  Google Scholar

[6]

W. CaoB. Jiang and D. M. Zhou, The effects of demand uncertainty on channel structure, European J. Oper. Res., 207 (2010), 1471-1488.  doi: 10.1016/j.ejor.2010.06.001.  Google Scholar

[7]

A. ChakravartyA. Mild and A. Taudes, Bundling decisions in supply chains, European J. Oper. Res., 231 (2013), 617-630.  doi: 10.1016/j.ejor.2013.06.026.  Google Scholar

[8]

J. ChenH. Zhang and Y. Sun, Implementing coordination contracts in a manufacturer Stackelberg dual-channel supply chain, Omega, 40 (2012), 571-583.  doi: 10.1016/j.omega.2011.11.005.  Google Scholar

[9]

Y. C. ChenS. C. Fang and U. P. Wen, Pricing policies for substitutable products in a supply chain with Internet and traditional channels, European J. Oper. Res., 224 (2013), 542-551.  doi: 10.1016/j.ejor.2012.09.003.  Google Scholar

[10]

W. Y. K. ChiangD. Chhajed and J. D. Hess, Direct marketing, indirect profits: A strategic analysis of dual-channel supply-chain design, Management Sci., 49 (2003), 1-20.  doi: 10.1287/mnsc.49.1.1.12749.  Google Scholar

[11]

P. K. ChintaguntaJ. H. Chu and J. Cebollada, Quantifying transaction costs in online/off-line grocery channel choice, Marketing Sci., 31 (2012), 96-114.  doi: 10.1287/mksc.1110.0678.  Google Scholar

[12]

S. C. Choi, Price competition in a channel structure with a common retailer, Marketing Sci., 10 (1991), 271-296.  doi: 10.1287/mksc.10.4.271.  Google Scholar

[13]

B. DanG. Y. Xu and C. Liu, Pricing policies in a dual-channel supply chain with retail services, Internat. J. Prod. Econ., 139 (2012), 312-320.  doi: 10.1016/j.ijpe.2012.05.014.  Google Scholar

[14]

F. Gao and X. M. Su, Omnichannel retail operations with buy-online-and-pick-up-in-store, Management Sci., 63 (2016), 1-15.  doi: 10.1287/mnsc.2016.2473.  Google Scholar

[15]

M. GirjuA. Prasad and B. T. Ratchford, Pure components versus pure bundling in a marketing channel, J. Retailing, 89 (2013), 423-437.  doi: 10.1016/j.jretai.2013.06.001.  Google Scholar

[16]

U. GurlerS. Oztop and A. Sen, Optimal bundle formation and pricing of two products with limited stock, Internat. J. Prod. Econ., 118 (2009), 442-462.  doi: 10.1016/j.ijpe.2008.11.012.  Google Scholar

[17]

W. Hanson and R. K. Martin, Optimal bundle pricing, Management Sci., 36 (1990), 155-174.  doi: 10.1287/mnsc.36.2.155.  Google Scholar

[18]

Y. Y. HeJ. ZhangQ. L. Gou and G. B. Bi, Supply chain decisions with reference quality effect under the O2O environment, Ann. Oper. Res., 268 (2018), 273-292.  doi: 10.1007/s10479-016-2224-2.  Google Scholar

[19]

D. Honhon and X. J. A. Pan, Improving profits by bundling vertically differentiated products, Prod. Oper. Management, 26 (2017), 1481-1497.  doi: 10.1111/poms.12686.  Google Scholar

[20]

W. Hu and Y. J. Li, Retail service for mixed retail and e-tail channels, Ann. Oper. Res., 192 (2012), 151-171.  doi: 10.1007/s10479-010-0818-7.  Google Scholar

[21]

G. W. HuaS. Y. Wang and T. C. E. Cheng, Price and lead time decisions in dual-channel supply chains, European Internat. J. Prod. Econ., 205 (2010), 113-126.  doi: 10.1016/j.ejor.2009.12.012.  Google Scholar

[22]

J. N. JiZ. Y. Zhang and L. Yang, Comparisons of initial carbon allowance allocation rules in an O2O retail supply chain with the cap-and-trade regulation, Internat. J. Prod. Econ., 187 (2017), 68-84.  doi: 10.1016/j.ijpe.2017.02.011.  Google Scholar

[23]

Y. C. JiangY. Z. LiuH. WangJ. Shang and S. Ding, Online pricing with bundling and coupon discounts, Internat. J. Prod. Res., 56 (2018), 1773-1788.  doi: 10.1080/00207543.2015.1112443.  Google Scholar

[24]

Q. H. Lu and N. Liu, Pricing games of mixed conventional and e-commerce distribution channels, Comput. Industrial Engineering, 64 (2013), 122-132.  doi: 10.1016/j.cie.2012.09.018.  Google Scholar

[25]

Z. LuoX. ChenJ. Chen and X. J. Wang, Optimal pricing policies for differentiated brands under different supply chain power structures, European J. Oper. Res., 259 (2017), 437-451.  doi: 10.1016/j.ejor.2016.10.046.  Google Scholar

[26]

Z. LuoX. Chen and M. Kai, The effect of customer value and power structure on retail supply chain product choice and pricing decisions, Omega, 77 (2018), 115-126.  doi: 10.1016/j.omega.2017.06.003.  Google Scholar

[27]

S. MayerR. Klein and S. Seiermann, A simulation-based approach to price optimisation of the mixed bundling problem with capacity constraints, Internat. J. Prod. Econ., 145 (2013), 584-598.  doi: 10.1016/j.ijpe.2013.05.014.  Google Scholar

[28]

A. MehraS. Kumar and J. S. Raju, Competitive strategies for brick-and-mortar stores to counter "showrooming", Management Sci., 64 (2018), 3076-3090.  doi: 10.1287/mnsc.2017.2764.  Google Scholar

[29]

A. PrasadR. Venkatesh and V. Mahajan, Optimal bundling of technological products with network externality, Management Sci., 56 (2010), 2224-2236.  doi: 10.1287/mnsc.1100.1259.  Google Scholar

[30]

A. PrasadR. Venkatesh and V. Mahajan, Product bundling or reserved product pricing? Price discrimination with myopic and strategic consumers, Internat. J. Res. Marketing, 32 (2015), 1-8.  doi: 10.1016/j.ijresmar.2014.06.004.  Google Scholar

[31]

A. PrasadR. Venkatesh and V. Mahajan, Temporal product bundling with myopic and strategic consumers: Manifestations and relative effectiveness, Quantitative Marketing Economics, 15 (2017), 341-368.  doi: 10.1007/s11129-017-9189-6.  Google Scholar

[32]

J. K. RyanD. Sun and X. Y. Zhao, Coordinating a supply chain with a manufacturer-owned online channel: A dual channel model under price competition, IEEE Transac. Engineering Manag., 60 (2013), 247-259.  doi: 10.1109/TEM.2012.2207903.  Google Scholar

[33]

M. Sarkar and Y. H. Lee, Optimum pricing strategy for complementary products with reservation price in a supply chain model, J. Ind. Manag. Optim., 13 (2017), 1579-1612.  doi: 10.3934/jimo.2017007.  Google Scholar

[34]

M. Sheikhzadeh and E. Elahi, Product bundling: Impacts of product heterogeneity and risk considerations, Internat. J. Prod. Econ., 144 (2013), 209-222.  doi: 10.1016/j.ijpe.2013.02.006.  Google Scholar

[35]

W. WangG. Li and T. C. E. Cheng, Channel selection in a supply chain with a multi-channel retailer: The role of channel operating costs, Internat. J. Prod. Econ., 173 (2016), 54-65.  doi: 10.1016/j.ijpe.2015.12.004.  Google Scholar

[36]

J. P. XieL. LiangL. H. Liu and P. Ieromonachou, Coordination contracts of dual-channel with cooperation advertising in closed-loop supply chains, Internat. J. Prod. Econ., 183 (2017), 528-538.  doi: 10.1016/j.ijpe.2016.07.026.  Google Scholar

[37]

R. L. Yan and S. Bandyopadhyay, The profit benefits of bundle pricing of complementary products, J. Retailing Consumer Services, 18 (2011), 355-361.  doi: 10.1016/j.jretconser.2011.04.001.  Google Scholar

[38]

R. L. YanC. MyersJ. Wang and S. Ghose, Bundling products to success: The influence of complementarity and advertising, J. Retailing Consumer Services, 21 (2014), 48-53.  doi: 10.1016/j.jretconser.2013.07.007.  Google Scholar

[39]

R. L. Yan and Z. Pei, Retail services and firm profit in a dual-channel market, J. Retailing Consumer Services, 16 (2009), 306-314.  doi: 10.1016/j.jretconser.2009.02.006.  Google Scholar

[40]

D. Q. Yao and J. J. Liu, Competitive pricing of mixed retail and e-tail distribution channels, Omega, 33 (2005), 235-247.  doi: 10.1016/j.omega.2004.04.007.  Google Scholar

[41]

R. ZhangB. Liu and W. L. Wang, Pricing decisions in a dual channels system with different power structures, Economic Modelling, 29 (2012), 523-533.  doi: 10.1016/j.econmod.2011.08.024.  Google Scholar

Figure 1.  Different sales strategies
Figure 2.  Game order dominated by supplier in independent sales
Figure 3.  Game order dominated by the e-retailer in independent sales
Figure 4.  Effect of $ \beta $ in a supplier-dominated market
Figure 5.  Effect of $ \beta $ in an e-retailer-dominated market
Figure 6.  Effect of $ \gamma $ in a supplier-dominated market
Figure 7.  Effect of $ \gamma $ in an e-retailer-dominated market
Table 1.  Recently published works on bundling
Literature Selling price Strategy Situation
Gurler et al. [7] Independent and bundled sales price Bundle pricing and inventory levels Inventory constraints and stochastic model
Prasad et al. [9] Mixed bundling Different bundling and network externality Technological products and network externality
Sheikhzadeh et al. [17] Bundled sales price Pure bundling and independent policy Product heterogeneity and risk considerations
Jiang et al. [19] Online pricing with bundling Online pricing strategy Coupon discounts Customer’s purchase preference and coupon
Prasad et al. [29] Inter-temporal pricing Pure components, pure bundling, and mixed bundling Myopic and strategic consumers
This study Independent and bundled sales price Channel selection, Online and offline sales E-commerce and differentmarket-dominant powers
Literature Selling price Strategy Situation
Gurler et al. [7] Independent and bundled sales price Bundle pricing and inventory levels Inventory constraints and stochastic model
Prasad et al. [9] Mixed bundling Different bundling and network externality Technological products and network externality
Sheikhzadeh et al. [17] Bundled sales price Pure bundling and independent policy Product heterogeneity and risk considerations
Jiang et al. [19] Online pricing with bundling Online pricing strategy Coupon discounts Customer’s purchase preference and coupon
Prasad et al. [29] Inter-temporal pricing Pure components, pure bundling, and mixed bundling Myopic and strategic consumers
This study Independent and bundled sales price Channel selection, Online and offline sales E-commerce and differentmarket-dominant powers
Table 2.  Notation and explanation
Notation Explanation
$ w_i $ The supplier's unit wholesale price, where $ i=1,2 $
$ p_1 $ Unit sale price through e-retailer's offline channel
$ p_2 $ Unit sale price through e-retailer's online channel
$ c_1 $ Unit sale cost through e-retailer's offline channel
$ c_2 $ Unit sale cost through e-retailer's online channel
$ a $ Maximum market size
$ \mu $ The proportion of offline demand
$ \beta $ The self-price sensitivity coefficient
$ \gamma $ The cross-price sensitivity coefficient
$ w_{12} $ The wholesale price of two bundled products
$ p_{12} $ The sale price of two bundled products
$ c_{12} $ The sale cost of two bundled products
Notation Explanation
$ w_i $ The supplier's unit wholesale price, where $ i=1,2 $
$ p_1 $ Unit sale price through e-retailer's offline channel
$ p_2 $ Unit sale price through e-retailer's online channel
$ c_1 $ Unit sale cost through e-retailer's offline channel
$ c_2 $ Unit sale cost through e-retailer's online channel
$ a $ Maximum market size
$ \mu $ The proportion of offline demand
$ \beta $ The self-price sensitivity coefficient
$ \gamma $ The cross-price sensitivity coefficient
$ w_{12} $ The wholesale price of two bundled products
$ p_{12} $ The sale price of two bundled products
$ c_{12} $ The sale cost of two bundled products
[1]

Shoya Kawakami. Two notes on the O'Hara energies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 953-970. doi: 10.3934/dcdss.2020384

[2]

Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021002

[3]

Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125

[4]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

[5]

Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020181

[6]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[7]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165

[8]

Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020173

[9]

Wenyan Zhuo, Honglin Yang, Leopoldo Eduardo Cárdenas-Barrón, Hong Wan. Loss-averse supply chain decisions with a capital constrained retailer. Journal of Industrial & Management Optimization, 2021, 17 (2) : 711-732. doi: 10.3934/jimo.2019131

[10]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[11]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[12]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[13]

Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020175

[14]

Xiao-Xu Chen, Peng Xu, Jiao-Jiao Li, Thomas Walker, Guo-Qiang Yang. Decision-making in a retailer-led closed-loop supply chain involving a third-party logistics provider. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021014

[15]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[16]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[17]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[18]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[19]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[20]

Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]