
-
Previous Article
A better dominance relation and heuristics for Two-Machine No-Wait Flowshops with Maximum Lateness Performance Measure
- JIMO Home
- This Issue
-
Next Article
A multi-objective decision-making model for supplier selection considering transport discounts and supplier capacity constraints
Worst-case analysis of Gini mean difference safety measure
Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India |
The paper introduces the worst-case portfolio optimization models within the robust optimization framework for maximizing return through either the mean or median metrics. The risk in the portfolio is quantified by Gini mean difference. We put forward the worst-case models under the mixed and interval+polyhedral uncertainty sets. The proposed models turn out to be linear and mixed integer linear programs under the mixed uncertainty set, and semidefinite program under interval+polyhedral uncertainty set. The performance comparison of the proposed models on the listed stocks of Euro Stoxx 50, Dow Jones Global Titans 50, S & P Asia 50, consistently exhibit advantage over their conventional non-robust counterpart models on various risk parameters including the standard deviation, worst return, value at risk, conditional value at risk and maximum drawdown of the portfolio.
References:
[1] |
P. Artzner, F. Delbaen, J.-M. Eber and D. Heath,
Coherent measures of risk, Math. Finance, 9 (1999), 203-228.
doi: 10.1111/1467-9965.00068. |
[2] |
A. Ben-Tal, D. Den Hertog and J.-P. Vial,
Deriving robust counterparts of nonlinear uncertain inequalities, Math. Program., 149 (2015), 265-299.
doi: 10.1007/s10107-014-0750-8. |
[3] |
S. Benati,
Using medians in portfolio optimization, J. Oper. Res. Soc., 66 (2015), 720-731.
doi: 10.1057/jors.2014.57. |
[4] |
M. Berkhouch, G. Lakhnati and M. B. Righi,
Extended gini-type measures of risk and variability, Appl. Math. Finance, 25 (2018), 295-314.
doi: 10.1080/1350486X.2018.1538806. |
[5] |
D. Bertsimas and M. Sim,
The price of robustness, Oper. Res., 52 (2004), 35-53.
doi: 10.1287/opre.1030.0065. |
[6] |
M. J. Best and R. R. Grauer,
On the sensitivity of mean-variance-efficient portfolios to changes in asset means: Some analytical and computational results, Rev. Financial Studies, 4 (1991), 315-342.
doi: 10.1093/rfs/4.2.315. |
[7] |
F. Black and R. Litterman,
Global portfolio optimization, Financial Analysts Journal, 48 (1992), 28-43.
doi: 10.2469/faj.v48.n5.28. |
[8] |
B. Bower and P. Wentz, Portfolio optimization: MAD vs. Markowitz, Rose-Hulman Undergraduate Mathematics Journal, 6 (2005), 3. Google Scholar |
[9] |
C. Chen and R. H. Kwon,
Robust portfolio selection for index tracking, Comput. Oper. Res., 39 (2012), 829-837.
doi: 10.1016/j.cor.2010.08.019. |
[10] |
W. Chen and S. Tan,
Robust portfolio selection based on asymmetric measures of variability of stock returns, J. Comput. Appl. Math., 232 (2009), 295-304.
doi: 10.1016/j.cam.2009.06.010. |
[11] |
L. El Ghaoui, M. Oks and F. Oustry,
Worst-case value-at-risk and robust portfolio optimization: A conic programming approach, Oper. Res., 51 (2003), 543-556.
doi: 10.1287/opre.51.4.543.16101. |
[12] |
M. Feng, A. Wächter and J. Staum,
Practical algorithms for value-at-risk portfolio optimization problems, Quantitative Finance Lett., 3 (2015), 1-9.
doi: 10.1080/21649502.2014.995214. |
[13] |
E. Furman, R. Wang and R. Zitikis,
Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks, J. Banking Finance, 83 (2017), 70-84.
doi: 10.2139/ssrn.2836281. |
[14] |
C. Gerstenberger and D. Vogel,
On the efficiency of Gini's mean difference, Stat. Methods Appl., 24 (2015), 569-596.
doi: 10.1007/s10260-015-0315-x. |
[15] |
M. Gharakhani, F. Zarea Fazlelahi and S. Sadjadi,
A robust optimization approach for index tracking problem, J. Computer Sci., 10 (2014), 2450-2463.
doi: 10.3844/jcssp.2014.2450.2463. |
[16] |
D. Goldfarb and G. Iyengar,
Robust portfolio selection problems, Math. Oper. Res., 28 (2003), 1-38.
doi: 10.1287/moor.28.1.1.14260. |
[17] |
J.-Y. Gotoh, K. Shinozaki and A. Takeda,
Robust portfolio techniques for mitigating the fragility of CVaR minimization and generalization to coherent risk measures, Quant. Finance, 13 (2013), 1621-1635.
doi: 10.1080/14697688.2012.738930. |
[18] |
J. A. Hall, B. W. Brorsen and S. H. Irwin,
The distribution of futures prices: A test of the stable paretian and mixture of normals hypotheses, J. Financial Quantitative Anal., 24 (1989), 105-116.
doi: 10.2307/2330751. |
[19] |
R. Ji, M. A. Lejeune and S. Y. Prasad,
Properties, formulations, and algorithms for portfolio optimization using mean-Gini criteria, Ann. Oper. Res., 248 (2017), 305-343.
doi: 10.1007/s10479-016-2230-4. |
[20] |
M. Kapsos, N. Christofides and B. Rustem,
Worst-case robust Omega ratio, European J. Oper. Res., 234 (2014), 499-507.
doi: 10.1016/j.ejor.2013.04.025. |
[21] |
G. Kara, A. Özmen and G.-W. Weber,
Stability advances in robust portfolio optimization under parallelepiped uncertainty, CEJOR Cent. Eur. J. Oper. Res., 27 (2019), 241-261.
doi: 10.1007/s10100-017-0508-5. |
[22] |
C. Keating and W. F. Shadwick, A universal performance measure, J. Performance Measurement, 6 (2002), 59-84. Google Scholar |
[23] |
H. Konno and H. Yamazaki,
Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Management Sci., 37 (1991), 519-531.
doi: 10.1287/mnsc.37.5.519. |
[24] |
R. H. Kwon and D. Wu,
Factor-based robust index tracking, Optim. Eng., 18 (2017), 443-466.
doi: 10.1007/s11081-016-9314-5. |
[25] |
P. Li, Y. Han and Y. Xia,
Portfolio optimization using asymmetry robust mean absolute deviation model, Finance Res. Lett., 18 (2016), 353-362.
doi: 10.1016/j.frl.2016.05.014. |
[26] |
B. G. Lindsay, Mixture models: Theory, geometry and applications, in NSF-CBMS Regional Conference Series in Probability and Statistics, (1995), 1–163. Google Scholar |
[27] |
S.-T. Liu,
The mean-absolute deviation portfolio selection problem with interval-valued returns, J. Comput. Appl. Math., 235 (2011), 4149-4157.
doi: 10.1016/j.cam.2011.03.008. |
[28] |
R. Mansini, W. Ogryczak and M. G. Speranza,
Conditional value at risk and related linear programming models for portfolio optimization, Ann. Oper. Res., 152 (2007), 227-256.
doi: 10.1007/s10479-006-0142-4. |
[29] |
R. Mansini, W. Ogryczak and M. G. Speranza, Tail Gini's risk measures and related linear programming models for portfolio optimization, in HERCMA Conference Proceedings, CD, LEA Publishers, Athens, 2007. Google Scholar |
[30] |
H. Markowitz,
Portfolio selection, J. Finance, 7 (1952), 77-91.
doi: 10.1111/j.1540-6261.1952.tb01525.x. |
[31] |
Y. Moon and T. Yao,
A robust mean absolute deviation model for portfolio optimization, Comput. Oper. Res., 38 (2011), 1251-1258.
doi: 10.1016/j.cor.2010.10.020. |
[32] |
K. Natarajan, D. Pachamanova and M. Sim,
Constructing risk measures from uncertainty sets, Oper. Res., 57 (2009), 1129-1141.
doi: 10.1287/opre.1080.0683. |
[33] |
W. Ogryczak, Risk measurement: Mean absolute deviation versus Gini's mean difference, in Decision Theory and Optimization in Theory and Practice–Proc. 9th Workshop GOR WG Chemnitz, 1999, 33–51. Google Scholar |
[34] |
D. Peel and G. J. McLachlan, Robust mixture modelling using the t distribution, Statistics Comput., 10 (2000), 339-348. Google Scholar |
[35] |
K. Postek, D. den Hertog and B. Melenberg,
Computationally tractable counterparts of distributionally robust constraints on risk measures, SIAM Rev., 58 (2016), 603-650.
doi: 10.1137/151005221. |
[36] |
R. T. Rockafellar and S. Uryasev,
Optimization of conditional value-at-risk, J. Risk, 2 (2000), 21-42.
doi: 10.1007/978-1-4757-6594-6_17. |
[37] |
M. Rudolf, H.-J. Wolter and H. Zimmermann,
A linear model for tracking error minimization, J. Banking Finance, 23 (1999), 85-103.
doi: 10.1016/S0378-4266(98)00076-4. |
[38] |
R. Sehgal and A. Mehra, Robust reward–risk ratio portfolio optimization, Internat. Transactions Oper. Res., (2019).
doi: 10.1111/itor.12652. |
[39] |
R. N. Sengupta and R. Kumar,
Robust and reliable portfolio optimization formulation of a chance constrained problem, Foundations Comput. Decision Sci., 42 (2017), 83-117.
doi: 10.1515/fcds-2017-0004. |
[40] |
H. Shalit and S. Yitzhaki,
Mean-Gini, portfolio theory, and the pricing of risky assets, J. Finance, 39 (1984), 1449-1468.
doi: 10.1111/j.1540-6261.1984.tb04917.x. |
[41] |
H. Shalit and S. Yitzhaki,
The mean-Gini efficient portfolio frontier, J. Financial Res., 28 (2005), 59-75.
doi: 10.1111/j.1475-6803.2005.00114.x. |
[42] |
A. Sharma, S. Agrawal and A. Mehra,
Enhanced indexing for risk averse investors using relaxed second order stochastic dominance, Optim. Eng., 18 (2017), 407-442.
doi: 10.1007/s11081-016-9329-y. |
[43] |
A. Sharma, S. Utz and A. Mehra,
Omega-CVaR portfolio optimization and its worst case analysis, OR Spectrum, 39 (2017), 505-539.
doi: 10.1007/s00291-016-0462-y. |
[44] |
W. F. Sharpe, Mean-absolute-deviation characteristic lines for securities and portfolios, Management Sci., 18 (1971), B–1.
doi: 10.1287/mnsc.18.2.B1. |
[45] |
S. Yitzhaki, Stochastic dominance, mean variance, and Gini's mean difference, American Economic Review, 72 (1982), 178-185. Google Scholar |
[46] |
M. R. Young,
A minimax portfolio selection rule with linear programming solution, Management Sci., 44 (1998), 673-683.
doi: 10.1287/mnsc.44.5.673. |
[47] |
X. Zheng, X. Sun, D. Li and Y. Xu,
On zero duality gap in nonconvex quadratic programming problems, J. Global Optim., 52 (2012), 229-242.
doi: 10.1007/s10898-011-9660-y. |
[48] |
S. Zhu and M. Fukushima,
Worst-case conditional value-at-risk with application to robust portfolio management, Oper. Res., 57 (2009), 1155-1168.
doi: 10.1287/opre.1080.0684. |
[49] |
S. Zhu, D. Li and S. Wang,
Robust portfolio selection under downside risk measures, Quant. Finance, 9 (2009), 869-885.
doi: 10.1080/14697680902852746. |
show all references
References:
[1] |
P. Artzner, F. Delbaen, J.-M. Eber and D. Heath,
Coherent measures of risk, Math. Finance, 9 (1999), 203-228.
doi: 10.1111/1467-9965.00068. |
[2] |
A. Ben-Tal, D. Den Hertog and J.-P. Vial,
Deriving robust counterparts of nonlinear uncertain inequalities, Math. Program., 149 (2015), 265-299.
doi: 10.1007/s10107-014-0750-8. |
[3] |
S. Benati,
Using medians in portfolio optimization, J. Oper. Res. Soc., 66 (2015), 720-731.
doi: 10.1057/jors.2014.57. |
[4] |
M. Berkhouch, G. Lakhnati and M. B. Righi,
Extended gini-type measures of risk and variability, Appl. Math. Finance, 25 (2018), 295-314.
doi: 10.1080/1350486X.2018.1538806. |
[5] |
D. Bertsimas and M. Sim,
The price of robustness, Oper. Res., 52 (2004), 35-53.
doi: 10.1287/opre.1030.0065. |
[6] |
M. J. Best and R. R. Grauer,
On the sensitivity of mean-variance-efficient portfolios to changes in asset means: Some analytical and computational results, Rev. Financial Studies, 4 (1991), 315-342.
doi: 10.1093/rfs/4.2.315. |
[7] |
F. Black and R. Litterman,
Global portfolio optimization, Financial Analysts Journal, 48 (1992), 28-43.
doi: 10.2469/faj.v48.n5.28. |
[8] |
B. Bower and P. Wentz, Portfolio optimization: MAD vs. Markowitz, Rose-Hulman Undergraduate Mathematics Journal, 6 (2005), 3. Google Scholar |
[9] |
C. Chen and R. H. Kwon,
Robust portfolio selection for index tracking, Comput. Oper. Res., 39 (2012), 829-837.
doi: 10.1016/j.cor.2010.08.019. |
[10] |
W. Chen and S. Tan,
Robust portfolio selection based on asymmetric measures of variability of stock returns, J. Comput. Appl. Math., 232 (2009), 295-304.
doi: 10.1016/j.cam.2009.06.010. |
[11] |
L. El Ghaoui, M. Oks and F. Oustry,
Worst-case value-at-risk and robust portfolio optimization: A conic programming approach, Oper. Res., 51 (2003), 543-556.
doi: 10.1287/opre.51.4.543.16101. |
[12] |
M. Feng, A. Wächter and J. Staum,
Practical algorithms for value-at-risk portfolio optimization problems, Quantitative Finance Lett., 3 (2015), 1-9.
doi: 10.1080/21649502.2014.995214. |
[13] |
E. Furman, R. Wang and R. Zitikis,
Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks, J. Banking Finance, 83 (2017), 70-84.
doi: 10.2139/ssrn.2836281. |
[14] |
C. Gerstenberger and D. Vogel,
On the efficiency of Gini's mean difference, Stat. Methods Appl., 24 (2015), 569-596.
doi: 10.1007/s10260-015-0315-x. |
[15] |
M. Gharakhani, F. Zarea Fazlelahi and S. Sadjadi,
A robust optimization approach for index tracking problem, J. Computer Sci., 10 (2014), 2450-2463.
doi: 10.3844/jcssp.2014.2450.2463. |
[16] |
D. Goldfarb and G. Iyengar,
Robust portfolio selection problems, Math. Oper. Res., 28 (2003), 1-38.
doi: 10.1287/moor.28.1.1.14260. |
[17] |
J.-Y. Gotoh, K. Shinozaki and A. Takeda,
Robust portfolio techniques for mitigating the fragility of CVaR minimization and generalization to coherent risk measures, Quant. Finance, 13 (2013), 1621-1635.
doi: 10.1080/14697688.2012.738930. |
[18] |
J. A. Hall, B. W. Brorsen and S. H. Irwin,
The distribution of futures prices: A test of the stable paretian and mixture of normals hypotheses, J. Financial Quantitative Anal., 24 (1989), 105-116.
doi: 10.2307/2330751. |
[19] |
R. Ji, M. A. Lejeune and S. Y. Prasad,
Properties, formulations, and algorithms for portfolio optimization using mean-Gini criteria, Ann. Oper. Res., 248 (2017), 305-343.
doi: 10.1007/s10479-016-2230-4. |
[20] |
M. Kapsos, N. Christofides and B. Rustem,
Worst-case robust Omega ratio, European J. Oper. Res., 234 (2014), 499-507.
doi: 10.1016/j.ejor.2013.04.025. |
[21] |
G. Kara, A. Özmen and G.-W. Weber,
Stability advances in robust portfolio optimization under parallelepiped uncertainty, CEJOR Cent. Eur. J. Oper. Res., 27 (2019), 241-261.
doi: 10.1007/s10100-017-0508-5. |
[22] |
C. Keating and W. F. Shadwick, A universal performance measure, J. Performance Measurement, 6 (2002), 59-84. Google Scholar |
[23] |
H. Konno and H. Yamazaki,
Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Management Sci., 37 (1991), 519-531.
doi: 10.1287/mnsc.37.5.519. |
[24] |
R. H. Kwon and D. Wu,
Factor-based robust index tracking, Optim. Eng., 18 (2017), 443-466.
doi: 10.1007/s11081-016-9314-5. |
[25] |
P. Li, Y. Han and Y. Xia,
Portfolio optimization using asymmetry robust mean absolute deviation model, Finance Res. Lett., 18 (2016), 353-362.
doi: 10.1016/j.frl.2016.05.014. |
[26] |
B. G. Lindsay, Mixture models: Theory, geometry and applications, in NSF-CBMS Regional Conference Series in Probability and Statistics, (1995), 1–163. Google Scholar |
[27] |
S.-T. Liu,
The mean-absolute deviation portfolio selection problem with interval-valued returns, J. Comput. Appl. Math., 235 (2011), 4149-4157.
doi: 10.1016/j.cam.2011.03.008. |
[28] |
R. Mansini, W. Ogryczak and M. G. Speranza,
Conditional value at risk and related linear programming models for portfolio optimization, Ann. Oper. Res., 152 (2007), 227-256.
doi: 10.1007/s10479-006-0142-4. |
[29] |
R. Mansini, W. Ogryczak and M. G. Speranza, Tail Gini's risk measures and related linear programming models for portfolio optimization, in HERCMA Conference Proceedings, CD, LEA Publishers, Athens, 2007. Google Scholar |
[30] |
H. Markowitz,
Portfolio selection, J. Finance, 7 (1952), 77-91.
doi: 10.1111/j.1540-6261.1952.tb01525.x. |
[31] |
Y. Moon and T. Yao,
A robust mean absolute deviation model for portfolio optimization, Comput. Oper. Res., 38 (2011), 1251-1258.
doi: 10.1016/j.cor.2010.10.020. |
[32] |
K. Natarajan, D. Pachamanova and M. Sim,
Constructing risk measures from uncertainty sets, Oper. Res., 57 (2009), 1129-1141.
doi: 10.1287/opre.1080.0683. |
[33] |
W. Ogryczak, Risk measurement: Mean absolute deviation versus Gini's mean difference, in Decision Theory and Optimization in Theory and Practice–Proc. 9th Workshop GOR WG Chemnitz, 1999, 33–51. Google Scholar |
[34] |
D. Peel and G. J. McLachlan, Robust mixture modelling using the t distribution, Statistics Comput., 10 (2000), 339-348. Google Scholar |
[35] |
K. Postek, D. den Hertog and B. Melenberg,
Computationally tractable counterparts of distributionally robust constraints on risk measures, SIAM Rev., 58 (2016), 603-650.
doi: 10.1137/151005221. |
[36] |
R. T. Rockafellar and S. Uryasev,
Optimization of conditional value-at-risk, J. Risk, 2 (2000), 21-42.
doi: 10.1007/978-1-4757-6594-6_17. |
[37] |
M. Rudolf, H.-J. Wolter and H. Zimmermann,
A linear model for tracking error minimization, J. Banking Finance, 23 (1999), 85-103.
doi: 10.1016/S0378-4266(98)00076-4. |
[38] |
R. Sehgal and A. Mehra, Robust reward–risk ratio portfolio optimization, Internat. Transactions Oper. Res., (2019).
doi: 10.1111/itor.12652. |
[39] |
R. N. Sengupta and R. Kumar,
Robust and reliable portfolio optimization formulation of a chance constrained problem, Foundations Comput. Decision Sci., 42 (2017), 83-117.
doi: 10.1515/fcds-2017-0004. |
[40] |
H. Shalit and S. Yitzhaki,
Mean-Gini, portfolio theory, and the pricing of risky assets, J. Finance, 39 (1984), 1449-1468.
doi: 10.1111/j.1540-6261.1984.tb04917.x. |
[41] |
H. Shalit and S. Yitzhaki,
The mean-Gini efficient portfolio frontier, J. Financial Res., 28 (2005), 59-75.
doi: 10.1111/j.1475-6803.2005.00114.x. |
[42] |
A. Sharma, S. Agrawal and A. Mehra,
Enhanced indexing for risk averse investors using relaxed second order stochastic dominance, Optim. Eng., 18 (2017), 407-442.
doi: 10.1007/s11081-016-9329-y. |
[43] |
A. Sharma, S. Utz and A. Mehra,
Omega-CVaR portfolio optimization and its worst case analysis, OR Spectrum, 39 (2017), 505-539.
doi: 10.1007/s00291-016-0462-y. |
[44] |
W. F. Sharpe, Mean-absolute-deviation characteristic lines for securities and portfolios, Management Sci., 18 (1971), B–1.
doi: 10.1287/mnsc.18.2.B1. |
[45] |
S. Yitzhaki, Stochastic dominance, mean variance, and Gini's mean difference, American Economic Review, 72 (1982), 178-185. Google Scholar |
[46] |
M. R. Young,
A minimax portfolio selection rule with linear programming solution, Management Sci., 44 (1998), 673-683.
doi: 10.1287/mnsc.44.5.673. |
[47] |
X. Zheng, X. Sun, D. Li and Y. Xu,
On zero duality gap in nonconvex quadratic programming problems, J. Global Optim., 52 (2012), 229-242.
doi: 10.1007/s10898-011-9660-y. |
[48] |
S. Zhu and M. Fukushima,
Worst-case conditional value-at-risk with application to robust portfolio management, Oper. Res., 57 (2009), 1155-1168.
doi: 10.1287/opre.1080.0684. |
[49] |
S. Zhu, D. Li and S. Wang,
Robust portfolio selection under downside risk measures, Quant. Finance, 9 (2009), 869-885.
doi: 10.1080/14697680902852746. |





period | weekly average |
weakly sd |
1-9 weeks | 3.606 | 19.559 |
10-18 weeks | 7.111 | 42.395 |
19-27 weeks | -2.078 | 23.281 |
period | weekly average |
weakly sd |
1-9 weeks | 3.606 | 19.559 |
10-18 weeks | 7.111 | 42.395 |
19-27 weeks | -2.078 | 23.281 |
average | 0.458 | 1.541 | -0.143 | 0.127 | |
sd | 21.973 | 22.432 | 21.183 | 22.164 | |
median | -0.404 | 3.035 | 1.032 | -0.717 | |
min | -59.257 | -67.184 | -57.742 | -51.915 | |
(DI) | max | 55.669 | 63.717 | 57.2492 | 65.108 |
neg returns | 80 | 72 | 77 | 82 | |
53.369 | 55.862 | 50.934 | 49.827 | ||
50.236 | 48.982 | 46.816 | 47.84 | ||
49.945 | 44.695 | 43.091 | 46.16 | ||
40.909 | 35.241 | 38.74 | 43.921 | ||
MD | 213.407 | 156.96 | 173.27 | 224.3 | |
average | 5.348 | 5.315 | 3.652 | 3.934 | |
sd | 24.384 | 23.277 | 19.905 | 21.320 | |
median | 7.812 | 5.212 | 5.081 | 5.634 | |
min | -69.647 | -82.617 | -71.400 | -52.323 | |
(DII) | max | 145.054 | 104.310 | 63.899 | 81.426 |
neg returns | 56 | 57 | 55 | 61 | |
57.914 | 53.802 | 57.633 | 47.689 | ||
49.836 | 47.188 | 48.391 | 43.867 | ||
43.523 | 38.888 | 37.368 | 41.209 | ||
33.153 | 34.584 | 31.053 | 37.39 | ||
MD | 118.11 | 146.64 | 111.057 | 149.49 | |
average | 4.188 | 5.561 | 3.968 | 2.365 | |
sd | 23.907 | 30.314 | 19.597 | 24.278 | |
median | 2.817 | 3.380 | 4.128 | 2.592 | |
min | -93.670 | -108.797 | -82.422 | -88.448 | |
(DIII) | max | 87.815 | 79.020 | 62.667 | 74.162 |
neg returns | 68 | 72 | 62 | 70 | |
61.937 | 73.741 | 52.024 | 63.487 | ||
51.816 | 61.994 | 40.559 | 52.514 | ||
46.458 | 47.761 | 28.247 | 51.358 | ||
28.933 | 41.034 | 22.291 | 32.79 | ||
MD | 157.024 | 106.34 | 190.67 | 188.84 | |
average | 1.926 | 1.852 | 1.120 | 0.232 | |
sd | 23.337 | 25.528 | 21.178 | 23.817 | |
median | 3.853 | 2.276 | 1.655 | 1.307 | |
min | -65.330 | -80.298 | -67.686 | -68.472 | |
(DIV) | max | 54.355 | 72.800 | 50.498 | 60.039 |
neg returns | 71 | 70 | 73 | 76 | |
57.727 | 61.945 | 58.193 | 58.013 | ||
50.202 | 56.738 | 50.081 | 52.9 | ||
52.377 | 52.549 | 48.15 | 48.715 | ||
36.036 | 48.283 | 31.815 | 43.657 | ||
MD | 180.98 | 233.87 | 170.43 | 191.327 |
average | 0.458 | 1.541 | -0.143 | 0.127 | |
sd | 21.973 | 22.432 | 21.183 | 22.164 | |
median | -0.404 | 3.035 | 1.032 | -0.717 | |
min | -59.257 | -67.184 | -57.742 | -51.915 | |
(DI) | max | 55.669 | 63.717 | 57.2492 | 65.108 |
neg returns | 80 | 72 | 77 | 82 | |
53.369 | 55.862 | 50.934 | 49.827 | ||
50.236 | 48.982 | 46.816 | 47.84 | ||
49.945 | 44.695 | 43.091 | 46.16 | ||
40.909 | 35.241 | 38.74 | 43.921 | ||
MD | 213.407 | 156.96 | 173.27 | 224.3 | |
average | 5.348 | 5.315 | 3.652 | 3.934 | |
sd | 24.384 | 23.277 | 19.905 | 21.320 | |
median | 7.812 | 5.212 | 5.081 | 5.634 | |
min | -69.647 | -82.617 | -71.400 | -52.323 | |
(DII) | max | 145.054 | 104.310 | 63.899 | 81.426 |
neg returns | 56 | 57 | 55 | 61 | |
57.914 | 53.802 | 57.633 | 47.689 | ||
49.836 | 47.188 | 48.391 | 43.867 | ||
43.523 | 38.888 | 37.368 | 41.209 | ||
33.153 | 34.584 | 31.053 | 37.39 | ||
MD | 118.11 | 146.64 | 111.057 | 149.49 | |
average | 4.188 | 5.561 | 3.968 | 2.365 | |
sd | 23.907 | 30.314 | 19.597 | 24.278 | |
median | 2.817 | 3.380 | 4.128 | 2.592 | |
min | -93.670 | -108.797 | -82.422 | -88.448 | |
(DIII) | max | 87.815 | 79.020 | 62.667 | 74.162 |
neg returns | 68 | 72 | 62 | 70 | |
61.937 | 73.741 | 52.024 | 63.487 | ||
51.816 | 61.994 | 40.559 | 52.514 | ||
46.458 | 47.761 | 28.247 | 51.358 | ||
28.933 | 41.034 | 22.291 | 32.79 | ||
MD | 157.024 | 106.34 | 190.67 | 188.84 | |
average | 1.926 | 1.852 | 1.120 | 0.232 | |
sd | 23.337 | 25.528 | 21.178 | 23.817 | |
median | 3.853 | 2.276 | 1.655 | 1.307 | |
min | -65.330 | -80.298 | -67.686 | -68.472 | |
(DIV) | max | 54.355 | 72.800 | 50.498 | 60.039 |
neg returns | 71 | 70 | 73 | 76 | |
57.727 | 61.945 | 58.193 | 58.013 | ||
50.202 | 56.738 | 50.081 | 52.9 | ||
52.377 | 52.549 | 48.15 | 48.715 | ||
36.036 | 48.283 | 31.815 | 43.657 | ||
MD | 180.98 | 233.87 | 170.43 | 191.327 |
(DI) | |||||
average | -6.039 | -6.859 | 1.1184 | -4.035 | |
sd | 43.196 | 52.886 | 24.373 | 40.885 | |
median | -19.16 | -18.64 | -2.775 | -10.72 | |
UP-DOWN | min | -80.7 | -87.88 | -41.22 | -64.31 |
max | 112.33 | 139.21 | 67.997 | 109.74 | |
neg returns | 12 | 13 | 11 | 12 | |
MD | 151.538 | 151.107 | 52.69 | 95.87 | |
average | -3.582 | -1.58 | -3.62 | -2.333 | |
sd | 39.36 | 44.553 | 38.817 | 39.861 | |
median | -8.466 | -3.124 | -7.898 | -7.301 | |
DOWN-DOWN | min | -76.31 | -122.3 | -77.25 | -93.32 |
max | 116.87 | 73.054 | 113.99 | 80.892 | |
neg returns | 12 | 12 | 12 | 11 | |
MD | 209.357 | 241.872 | 206.61 | 240.81 | |
average | 4.5948 | 6.5533 | 6.3614 | 9.0281 | |
sd | 17.897 | 24.9 | 18.545 | 21.693 | |
median | 0.7725 | 4.0728 | 6.5631 | 11.843 | |
DOWN-UP | min | -26.7 | -32.28 | -17.9 | -29.67 |
max | 42.982 | 60.549 | 50.299 | 37.346 | |
neg returns | 9 | 7 | 9 | 7 | |
MD | 36.5 | 41.1155 | 31.584 | 29.673 | |
average | 4.5768 | 4.0462 | 5.1412 | 5.5771 | |
sd | 19.647 | 28.427 | 18.428 | 16.52 | |
median | 2.6147 | 5.4864 | 0.6005 | 6.9434 | |
UP-UP | min | -28.86 | -39.84 | -25.75 | -35.76 |
max | 36.136 | 50.381 | 37.729 | 29.958 | |
neg returns | 10 | 8 | 10 | 6 | |
MD | 48.181 | 87.913 | 35.078 | 40.38 | |
(DII) | |||||
average | -5.029 | -3.828 | -5.007 | 1.4072 | |
sd | 66.172 | 72.696 | 61.369 | 58.82 | |
median | -5.895 | -0.19 | 8.9474 | 3.7326 | |
UP-DOWN | min | -179.4 | -193.8 | -154.4 | -150.6 |
max | 129.46 | 146.11 | 126.09 | 140.28 | |
neg returns | 10 | 10 | 9 | 9 | |
MD | 235.221 | 236.219 | 222.13 | 150.582 | |
average | -1.545 | 0.006 | -2.109 | -2.249 | |
sd | 34.09 | 30.876 | 35.189 | 33.007 | |
median | -4.819 | -3.358 | -4.806 | -4.546 | |
DOWN-DOWN | min | -67.06 | -48.79 | -61.39 | -90.7 |
max | 115.75 | 72.059 | 122.57 | 76.009 | |
neg returns | 11 | 11 | 12 | 13 | |
MD | 162.256 | 113.9822 | 173.88 | 159.283 | |
average | -6.301 | -6.031 | -2.023 | -4.701 | |
sd | 17.096 | 24.228 | 15.888 | 19.831 | |
median | -4.875 | -9.129 | -3.986 | -6.138 | |
DOWN-UP | min | -37.04 | -47 | -33.08 | -39.68 |
max | 28.022 | 53.495 | 38.54 | 58.312 | |
neg returns | 15 | 12 | 13 | 14 | |
MD | 132.87 | 142.629 | 92.60 | 119.743 | |
average | 2.7559 | 2.8771 | 5.6723 | 7.6174 | |
sd | 21.022 | 28.97 | 12.812 | 18.045 | |
median | 5.1358 | 2.4316 | 4.687 | 4.2454 | |
UP-UP | min | -38.74 | -46.22 | -18.15 | -31.4 |
max | 51.007 | 65.855 | 36.726 | 48.432 | |
neg returns | 9 | 8 | 6 | 6 | |
MD | 47.811 | 109.512 | 18.517 | 36.649 |
(DI) | |||||
average | -6.039 | -6.859 | 1.1184 | -4.035 | |
sd | 43.196 | 52.886 | 24.373 | 40.885 | |
median | -19.16 | -18.64 | -2.775 | -10.72 | |
UP-DOWN | min | -80.7 | -87.88 | -41.22 | -64.31 |
max | 112.33 | 139.21 | 67.997 | 109.74 | |
neg returns | 12 | 13 | 11 | 12 | |
MD | 151.538 | 151.107 | 52.69 | 95.87 | |
average | -3.582 | -1.58 | -3.62 | -2.333 | |
sd | 39.36 | 44.553 | 38.817 | 39.861 | |
median | -8.466 | -3.124 | -7.898 | -7.301 | |
DOWN-DOWN | min | -76.31 | -122.3 | -77.25 | -93.32 |
max | 116.87 | 73.054 | 113.99 | 80.892 | |
neg returns | 12 | 12 | 12 | 11 | |
MD | 209.357 | 241.872 | 206.61 | 240.81 | |
average | 4.5948 | 6.5533 | 6.3614 | 9.0281 | |
sd | 17.897 | 24.9 | 18.545 | 21.693 | |
median | 0.7725 | 4.0728 | 6.5631 | 11.843 | |
DOWN-UP | min | -26.7 | -32.28 | -17.9 | -29.67 |
max | 42.982 | 60.549 | 50.299 | 37.346 | |
neg returns | 9 | 7 | 9 | 7 | |
MD | 36.5 | 41.1155 | 31.584 | 29.673 | |
average | 4.5768 | 4.0462 | 5.1412 | 5.5771 | |
sd | 19.647 | 28.427 | 18.428 | 16.52 | |
median | 2.6147 | 5.4864 | 0.6005 | 6.9434 | |
UP-UP | min | -28.86 | -39.84 | -25.75 | -35.76 |
max | 36.136 | 50.381 | 37.729 | 29.958 | |
neg returns | 10 | 8 | 10 | 6 | |
MD | 48.181 | 87.913 | 35.078 | 40.38 | |
(DII) | |||||
average | -5.029 | -3.828 | -5.007 | 1.4072 | |
sd | 66.172 | 72.696 | 61.369 | 58.82 | |
median | -5.895 | -0.19 | 8.9474 | 3.7326 | |
UP-DOWN | min | -179.4 | -193.8 | -154.4 | -150.6 |
max | 129.46 | 146.11 | 126.09 | 140.28 | |
neg returns | 10 | 10 | 9 | 9 | |
MD | 235.221 | 236.219 | 222.13 | 150.582 | |
average | -1.545 | 0.006 | -2.109 | -2.249 | |
sd | 34.09 | 30.876 | 35.189 | 33.007 | |
median | -4.819 | -3.358 | -4.806 | -4.546 | |
DOWN-DOWN | min | -67.06 | -48.79 | -61.39 | -90.7 |
max | 115.75 | 72.059 | 122.57 | 76.009 | |
neg returns | 11 | 11 | 12 | 13 | |
MD | 162.256 | 113.9822 | 173.88 | 159.283 | |
average | -6.301 | -6.031 | -2.023 | -4.701 | |
sd | 17.096 | 24.228 | 15.888 | 19.831 | |
median | -4.875 | -9.129 | -3.986 | -6.138 | |
DOWN-UP | min | -37.04 | -47 | -33.08 | -39.68 |
max | 28.022 | 53.495 | 38.54 | 58.312 | |
neg returns | 15 | 12 | 13 | 14 | |
MD | 132.87 | 142.629 | 92.60 | 119.743 | |
average | 2.7559 | 2.8771 | 5.6723 | 7.6174 | |
sd | 21.022 | 28.97 | 12.812 | 18.045 | |
median | 5.1358 | 2.4316 | 4.687 | 4.2454 | |
UP-UP | min | -38.74 | -46.22 | -18.15 | -31.4 |
max | 51.007 | 65.855 | 36.726 | 48.432 | |
neg returns | 9 | 8 | 6 | 6 | |
MD | 47.811 | 109.512 | 18.517 | 36.649 |
(DIII) | |||||
average | -0.2681 | -3.322 | 0.499 | -0.047 | |
sd | 19.1129 | 35.824 | 18.919 | 18.732 | |
median | 2.61737 | 1.5277 | 2.3188 | -0.6 | |
UP-DOWN | min | -44.737 | -55.41 | -40.08 | -45.67 |
max | 34.6569 | 77.502 | 35.718 | 32.997 | |
neg returns | 9 | 10 | 9 | 11 | |
MD | 74.493 | 159.476 | 68.053 | 64.932 | |
average | -3.1162 | 0.4164 | -4.551 | -4.109 | |
sd | 21.5749 | 28.782 | 19.827 | 21.41 | |
median | 2.12342 | -0.945 | -2.471 | -2.008 | |
DOWN-DOWN | min | -48.014 | -48.23 | -63.18 | -66.7 |
max | 30.412 | 66.157 | 25.402 | 25.383 | |
neg returns | 9 | 10 | 11 | 10 | |
MD | 119.543 | 106.662 | 117.954 | 122.734 | |
average | 11.2417 | 30.789 | 4.1896 | 8.3275 | |
sd | 20.3046 | 48.878 | 16.079 | 19.256 | |
median | 11.6296 | 39.14 | 7.2174 | 8.4051 | |
DOWN-UP | min | -27.77 | -71 | -33.04 | -40.3 |
max | 41.2838 | 98.964 | 25.703 | 46.593 | |
neg returns | 4 | 6 | 7 | 5 | |
MD | 27.77 | 78.851 | 36.124 | 48.21 | |
average | 1.05369 | -3.017 | 0.2775 | -0.183 | |
sd | 38.8387 | 42.249 | 34.946 | 31.665 | |
median | 2.73823 | 3.0081 | 1.0448 | 3.6441 | |
UP-UP | min | -77.25 | -79.58 | -69.68 | -59.33 |
max | 66.1491 | 66.947 | 56.4 | 40.851 | |
neg returns | 9 | 10 | 10 | 9 | |
MD | 131.452 | 166.753 | 127.845 | 124.788 | |
(DIV) | |||||
average | -23.233 | -28.74 | -24.08 | -23.28 | |
sd | 94.011 | 107.97 | 87.816 | 88.499 | |
median | -27.104 | -37.74 | -26.68 | -29.55 | |
UP-DOWN | min | -197.61 | -222.9 | -192.2 | -170 |
max | 224.871 | 271.88 | 225.58 | 216.6 | |
neg returns | 13 | 13 | 13 | 14 | |
MD | 517.924 | 576.729 | 507.51 | 489.529 | |
average | 0.58685 | 1.1156 | -0.835 | 0.5133 | |
sd | 28.4234 | 58.191 | 29.021 | 33.774 | |
median | -3.4995 | -1.348 | -2.763 | -7.861 | |
DOWN-DOWN | min | -36.563 | -79.36 | -46.89 | -47.11 |
max | 65.827 | 152.43 | 70.592 | 96.089 | |
neg returns | 11 | 10 | 10 | 11 | |
MD | 137.989 | 285.251 | 160.875 | 164.657 | |
average | 7.63253 | 3.1941 | 6.4851 | 10.284 | |
sd | 16.2213 | 15.549 | 15.238 | 19.419 | |
median | 8.10496 | 2.7367 | 9.7434 | 10.025 | |
DOWN-UP | min | -27.858 | -24.52 | -24.91 | -30.12 |
max | 47.6872 | 28.554 | 34.307 | 39.199 | |
neg returns | 5 | 7 | 7 | 7 | |
MD | 42.35 | 40.646 | 35.51 | 53.741 | |
average | 34.0544 | 30.368 | 17.863 | 15.659 | |
sd | 56.3158 | 63.198 | 47.088 | 67.943 | |
median | 51.5261 | 43.3 | 20.626 | 19.016 | |
UP-UP | min | -124.52 | -136.7 | -97.17 | -109.3 |
max | 100.258 | 152.26 | 111.24 | 174.18 | |
neg returns | 4 | 7 | 6 | 7 | |
MD | 124.517 | 144.539 | 97.174 | 139.654 |
(DIII) | |||||
average | -0.2681 | -3.322 | 0.499 | -0.047 | |
sd | 19.1129 | 35.824 | 18.919 | 18.732 | |
median | 2.61737 | 1.5277 | 2.3188 | -0.6 | |
UP-DOWN | min | -44.737 | -55.41 | -40.08 | -45.67 |
max | 34.6569 | 77.502 | 35.718 | 32.997 | |
neg returns | 9 | 10 | 9 | 11 | |
MD | 74.493 | 159.476 | 68.053 | 64.932 | |
average | -3.1162 | 0.4164 | -4.551 | -4.109 | |
sd | 21.5749 | 28.782 | 19.827 | 21.41 | |
median | 2.12342 | -0.945 | -2.471 | -2.008 | |
DOWN-DOWN | min | -48.014 | -48.23 | -63.18 | -66.7 |
max | 30.412 | 66.157 | 25.402 | 25.383 | |
neg returns | 9 | 10 | 11 | 10 | |
MD | 119.543 | 106.662 | 117.954 | 122.734 | |
average | 11.2417 | 30.789 | 4.1896 | 8.3275 | |
sd | 20.3046 | 48.878 | 16.079 | 19.256 | |
median | 11.6296 | 39.14 | 7.2174 | 8.4051 | |
DOWN-UP | min | -27.77 | -71 | -33.04 | -40.3 |
max | 41.2838 | 98.964 | 25.703 | 46.593 | |
neg returns | 4 | 6 | 7 | 5 | |
MD | 27.77 | 78.851 | 36.124 | 48.21 | |
average | 1.05369 | -3.017 | 0.2775 | -0.183 | |
sd | 38.8387 | 42.249 | 34.946 | 31.665 | |
median | 2.73823 | 3.0081 | 1.0448 | 3.6441 | |
UP-UP | min | -77.25 | -79.58 | -69.68 | -59.33 |
max | 66.1491 | 66.947 | 56.4 | 40.851 | |
neg returns | 9 | 10 | 10 | 9 | |
MD | 131.452 | 166.753 | 127.845 | 124.788 | |
(DIV) | |||||
average | -23.233 | -28.74 | -24.08 | -23.28 | |
sd | 94.011 | 107.97 | 87.816 | 88.499 | |
median | -27.104 | -37.74 | -26.68 | -29.55 | |
UP-DOWN | min | -197.61 | -222.9 | -192.2 | -170 |
max | 224.871 | 271.88 | 225.58 | 216.6 | |
neg returns | 13 | 13 | 13 | 14 | |
MD | 517.924 | 576.729 | 507.51 | 489.529 | |
average | 0.58685 | 1.1156 | -0.835 | 0.5133 | |
sd | 28.4234 | 58.191 | 29.021 | 33.774 | |
median | -3.4995 | -1.348 | -2.763 | -7.861 | |
DOWN-DOWN | min | -36.563 | -79.36 | -46.89 | -47.11 |
max | 65.827 | 152.43 | 70.592 | 96.089 | |
neg returns | 11 | 10 | 10 | 11 | |
MD | 137.989 | 285.251 | 160.875 | 164.657 | |
average | 7.63253 | 3.1941 | 6.4851 | 10.284 | |
sd | 16.2213 | 15.549 | 15.238 | 19.419 | |
median | 8.10496 | 2.7367 | 9.7434 | 10.025 | |
DOWN-UP | min | -27.858 | -24.52 | -24.91 | -30.12 |
max | 47.6872 | 28.554 | 34.307 | 39.199 | |
neg returns | 5 | 7 | 7 | 7 | |
MD | 42.35 | 40.646 | 35.51 | 53.741 | |
average | 34.0544 | 30.368 | 17.863 | 15.659 | |
sd | 56.3158 | 63.198 | 47.088 | 67.943 | |
median | 51.5261 | 43.3 | 20.626 | 19.016 | |
UP-UP | min | -124.52 | -136.7 | -97.17 | -109.3 |
max | 100.258 | 152.26 | 111.24 | 174.18 | |
neg returns | 4 | 7 | 6 | 7 | |
MD | 124.517 | 144.539 | 97.174 | 139.654 |
average | -9.9697 | -17.83 | -9.51 | -5.5184 | -8.024 | |
sd | 7.95041 | 12.595 | 5.629 | 19.863 | 12.937 | |
(DI) | med | -8.499 | -13.149 | -7.412 | -6.5741 | -6.643 |
min | -20.925 | -36.073 | -17.7 | -27.913 | -25.07 | |
max | -1.9555 | -8.9473 | -5.514 | 18.987 | 6.2582 | |
average | -1.505 | -0.2718 | -0.303 | -5.5184 | -1.547 | |
sd | 15.727 | 16.813 | 15.154 | 19.863 | 17.94 | |
(DII) | med | 4.52 | 0.3627 | 2.1474 | -6.5741 | 1.4017 |
min | -24.706 | -20.442 | -20.77 | -27.913 | -26.07 | |
max | 9.631 | 18.629 | 15.258 | 18.987 | 17.077 | |
average | 4.60903 | 4.288 | 0.1445 | 0.3184 | 5.2191 | |
sd | 23.0986 | 28.943 | 17.512 | 25.937 | 17.18 | |
(DIII) | med | 8.31506 | 9.593 | 3.2971 | 2.3598 | 9.9122 |
min | -24.436 | -33.33 | -21.39 | -33.356 | -18.75 | |
max | 26.2417 | 31.299 | 15.372 | 29.91 | 19.8 | |
average | -12.383 | -18.126 | -11.54 | -18.126 | -7.655 | |
sd | 14.3273 | 24.613 | 18.997 | 24.613 | 18.297 | |
(DIV) | med | -13.526 | -6.7408 | -9.971 | -6.7408 | -6.39 |
min | -28.661 | -54.996 | -35.76 | -54.996 | -30.83 | |
max | 6.17971 | -4.0262 | 9.5596 | -4.0262 | 12.992 |
average | -9.9697 | -17.83 | -9.51 | -5.5184 | -8.024 | |
sd | 7.95041 | 12.595 | 5.629 | 19.863 | 12.937 | |
(DI) | med | -8.499 | -13.149 | -7.412 | -6.5741 | -6.643 |
min | -20.925 | -36.073 | -17.7 | -27.913 | -25.07 | |
max | -1.9555 | -8.9473 | -5.514 | 18.987 | 6.2582 | |
average | -1.505 | -0.2718 | -0.303 | -5.5184 | -1.547 | |
sd | 15.727 | 16.813 | 15.154 | 19.863 | 17.94 | |
(DII) | med | 4.52 | 0.3627 | 2.1474 | -6.5741 | 1.4017 |
min | -24.706 | -20.442 | -20.77 | -27.913 | -26.07 | |
max | 9.631 | 18.629 | 15.258 | 18.987 | 17.077 | |
average | 4.60903 | 4.288 | 0.1445 | 0.3184 | 5.2191 | |
sd | 23.0986 | 28.943 | 17.512 | 25.937 | 17.18 | |
(DIII) | med | 8.31506 | 9.593 | 3.2971 | 2.3598 | 9.9122 |
min | -24.436 | -33.33 | -21.39 | -33.356 | -18.75 | |
max | 26.2417 | 31.299 | 15.372 | 29.91 | 19.8 | |
average | -12.383 | -18.126 | -11.54 | -18.126 | -7.655 | |
sd | 14.3273 | 24.613 | 18.997 | 24.613 | 18.297 | |
(DIV) | med | -13.526 | -6.7408 | -9.971 | -6.7408 | -6.39 |
min | -28.661 | -54.996 | -35.76 | -54.996 | -30.83 | |
max | 6.17971 | -4.0262 | 9.5596 | -4.0262 | 12.992 |
[1] |
Bing Liu, Ming Zhou. Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin. Journal of Industrial & Management Optimization, 2021, 17 (2) : 937-952. doi: 10.3934/jimo.2020005 |
[2] |
Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130 |
[3] |
Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020104 |
[4] |
Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133 |
[5] |
Junkee Jeon. Finite horizon portfolio selection problems with stochastic borrowing constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 733-763. doi: 10.3934/jimo.2019132 |
[6] |
Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020166 |
[7] |
Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109 |
[8] |
Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100 |
[9] |
Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017 |
[10] |
Sergio Zamora. Tori can't collapse to an interval. Electronic Research Archive, , () : -. doi: 10.3934/era.2021005 |
[11] |
Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090 |
[12] |
Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167 |
[13] |
Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020365 |
[14] |
Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021011 |
[15] |
Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350 |
[16] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[17] |
Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270 |
[18] |
Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020120 |
[19] |
Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, 2021, 20 (2) : 511-532. doi: 10.3934/cpaa.2020278 |
[20] |
Yong-Jung Kim, Hyowon Seo, Changwook Yoon. Asymmetric dispersal and evolutional selection in two-patch system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3571-3593. doi: 10.3934/dcds.2020043 |
2019 Impact Factor: 1.366
Tools
Article outline
Figures and Tables
[Back to Top]