\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Adjustable robust optimization in enabling optimal day-ahead economic dispatch of CCHP-MG considering uncertainties of wind-solar power and electric vehicle

  • * Corresponding author: Yang Liu

    * Corresponding author: Yang Liu 
Abstract Full Text(HTML) Figure(9) / Table(11) Related Papers Cited by
  • At present, electric vehicles (EVs), small-scale wind power, and solar power have been increasingly integrated into modern power system via the combined cooling heating and power based microgrid (CCHP-MG). However, inside the microgrid the uncertainties of EVs charging, wind power, and solar power significantly impact the economy of CCHP-MG operation. Therefore to improve the economy deteriorated by the uncertainties, this paper presents a two-stage adjustable robust optimization to achieve the minimal operational cost for CCHP-MG. Before the realizations of the uncertainties, the day-ahead stage as the first stage decides an operational strategy that can withstand the worst-case uncertainties. As long as the uncertainties are observed, the real-time stage as the second stage adjusts the operational units to compensate the errors caused by the day-ahead operational strategy. Due to the difficulties of the model solution, this paper further adopts the duality theory, Big-M method, and column-and-constraint generation (C & CG) decomposition to convert the model into two tractable mixed integer linear programming (MILP) problems. Further, C & CG iteration algorithm is also employed to solve the MILPs, which can ultimately provide an optimal economic day-ahead dispatch strategy capable of handling uncertainties. The experimental results demonstrate the effectiveness of the presented approach.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  CCHP-MG system structure

    Figure 2.  Details of data

    Figure 3.  Intervals and stochastic scenarios of uncertainty sets with 30% prediction error

    Figure 4.  Day-ahead dispatch decision of D-DED

    Figure 5.  Day-ahead dispatch decision of S-DED

    Figure 6.  Day-ahead dispatch decision of R-DED

    Figure 7.  Day-ahead dispatch decision of A-DED

    Figure 8.  RESs utilization results of A-DED with different budgets

    Figure 9.  RESs utilization results of A-DED with different prediction errors

    Table 1.  Steps of C & CG iteration algorithm

    C & CG Iteration Algorithm
    Step 1 (Initialization): Set an initial scenario ${\boldsymbol{u}_1} $ and convergence gap $\delta $. Initialize upper bound $ U_0=+\infty$, lower bound $L_0=-\infty $, and iteration number $ k = 1$.
    Step 2 (Solve MP): Input the scenario set $ \boldsymbol{u}_1$ into (95) to solve MP. Record the optimal solution ($\boldsymbol{x}_k $, $\boldsymbol{y}_l $), the optimal value $ \alpha$ of objective, and $\boldsymbol{c}^{\top}\boldsymbol{x}$. Update the lower bound $ L_k = \alpha$, $l = 1, 2, \ldots, k $.
    Step 3 (Solve SP): Input $\boldsymbol{x}_k $ into (98) to solve SP. Record the optimal solution ($\boldsymbol{u}_{k}^{0}$, $\boldsymbol{y}_{k}^{0} $) and the optimal value $\beta $ of objective. Set the worst scenario $\boldsymbol{u}_{k+1} $ to $\boldsymbol{u}_{k}^{0} $. Update the upper bound $ U_k=\beta +\boldsymbol{c}^{\top}\boldsymbol{x}$.
    Step 4 (Check Convergence): If $U_k - L_k\leq d $, terminate the algorithm and record the optimal value $\nu$ as the expected cost. Otherwise, add constraints (99) and real-time adjustment variables $\boldsymbol{y}_{k+1} $ correspondingly to $ \boldsymbol{u}_{k+1}$; return to Step 2 and set $k = k+1 $.
     | Show Table
    DownLoad: CSV

    Table 6.  CGs parameters

    CG $P^{min}$ $P^{max}$ $R^{Up}$ $R^{Dn}$ $a$ $b$ $\lambda^{Up}$ $\lambda^{Dn}$
    (kW) (kW) (kW/min) (kW/min) ($/kWh) ($/kWh) ($/kWh) ($/kWh)
    MT 50 550 6 6 0.67 0 2.5 1.5
    FC 50 240 2 2 0.60 0 2.5 1.5
    EB 20 500 5 4 - - 0.5 0.5
     | Show Table
    DownLoad: CSV

    Table 7.  Penalty prices

    $\lambda_{Wind}$ ($/kWh) $\lambda_{Solar}$ ($/kWh) $\lambda_{Load}$ ($/kWh)
    0.536 0.536 5
     | Show Table
    DownLoad: CSV

    Table 8.  Electricity market prices

    Hour Day-ahead stage Real-time stage
    $\lambda_{Buy}^{DA}$ $\lambda_{Sell}^{DA}$ $\lambda_{Buy}^{RT}$ $\lambda_{Sell}^{RT}$
    ($/kWh) ($/kWh) ($/kWh) ($/kWh)
    (00:00-08:00) 1.35 1.04 2.70 0.11
    (08:00-09:00, 12:00-19:00) 0.90 0.69 1.80 0.07
    (09:00-12:00, 19:00-24:00) 0.50 0.39 1.00 0.04
     | Show Table
    DownLoad: CSV

    Table 9.  Energy storage system parameters

    $P_{Cha}^{min}/P_{Cha}^{max}$ $P_{Dis}^{min}/P_{Dis}^{max}$ $\eta_{ESS}^{Cha}/\eta_{ESS}^{Dis}$ $\delta_{ESS}$ $E_{ESS}^{max}$ $E_{ESS}^{min}$ $E_{ESS}(0)$
    (kW) (kW) (kWh) (kWh) (kWh)
    0/200 0/200 0.9/0.9 0.001 480 120 120
     | Show Table
    DownLoad: CSV

    Table 10.  Heat storage system parameters

    $Q_{Cha}^{min}/Q_{Cha}^{max}$ $Q_{Dis}^{min}/Q_{Dis}^{max}$ $\eta_{HSS}^{Cha}/\eta_{HSS}^{Dis}$ $\delta_{HSS}$ $E_{HSS}^{max}$ $E_{HSS}^{min}$ $E_{HSS}(0)$
    (kW) (kW) (kWh) (kWh) (kWh)
    0/200 0/200 0.9/0.9 0.01 600 0 0
     | Show Table
    DownLoad: CSV

    Table 2.  Comparison of efficiencies and costs of different methods

    Method Time (s) Day-ahead Cost($) Expected Actual ($)
    $C_{MT}$ $C_{FC}$ $C_{DA}$ Cost ($) RT SUM
    D-DED 6.52 5422.48 2251.42 5972.69 5972.69 613.25 6585.95
    S-DED 1695.69 5336.95 2099.66 6011.19 6449.07 566.70 6577.90
    R-DED 6.92 5425.33 1146.89 6503.61 10916.15 457.79 6961.91
    A-DED 8.37 5422.83 1796.67 6203.84 8305.34 367.47 6571.81
     | Show Table
    DownLoad: CSV

    Table 3.  Comparison of electricity transactions of different methods

    Method Day-ahead Transaction Actual Transaction
    Revenue ($) Loss ($) State Revenue ($) Loss ($) State
    D-DED 1701.19 - Profit 1303.22 - Profit
    S-DED 1425.36 - Profit 1051.32 - Profit
    R-DED - 68.61 Loss - 275.65 Loss
    A-DED 1015.67 - Profit 671.63 - Profit
     | Show Table
    DownLoad: CSV

    Table 4.  Comparison of A-DED with different budgets

    $\Gamma $ Iteration Time (s) Day-ahead Cost ($) Expected Actual
    Number $C_{MT}$ $C_{FC}$ $C_{Grid}^{DA}$ $C_{DA}$ Cost ($) SUM ($)
    4 1 17.5 5422.8 1945.8 -1249.8 6118.6 7580.2 6568.5
    8 2 28.7 5422.8 1596.3 -715.1 6304.1 8975.5 6753.4
    12 3 36.2 5422.8 1332.3 -323.9 6431.6 9981.2 6880.8
    16 5 37.1 5422.8 1237.5 -203.4 6457.3 10594.5 6900.3
    20 6 42.0 5422.8 1180.7 -118.4 6485.0 10809.4 6928.3
     | Show Table
    DownLoad: CSV

    Table 5.  Comparison of A-DED with different budgets

    Error Iteration Time Day-ahead Cost ($) Expected Actual ($)
    Number (s) $C_{MT}$ $C_{FC}$ $C_{Grid}^{DA}$ $C_{DA}$ Cost ($) RT SUM
    10% 1 15.3 5422.5 2098.4 -1500.2 6020.2 7152.4 103.5 6123.7
    20% 3 36.3 5422.8 1715.5 -914.3 6224.8 8562.3 235.7 6460.5
    30% 3 29.2 5422.8 1332.7 -323.9 6431.4 9987.2 449.4 6880.8
    40% 4 30.3 5409.2 1050.6 176.8 6636.0 11425.6 479.9 7385.9
    50% 8 36.4 5306.4 937.1 752.9 6996.3 13021.7 1023.3 8019.6
     | Show Table
    DownLoad: CSV

    Table 11.  Energy conversion coefficients

    $\eta_{MT}^{EH}$ $\eta_{EB}^{EH}$ $\eta_{MT}^{HC}$ $\eta_{EB}^{HC}$ $\eta_{HSS}^{HC}$
    0.8 0.8 0.8 0.8 0.8
     | Show Table
    DownLoad: CSV
  • [1] A. Ben-TalA. GoryashkoE. Guslitzer and A. Nemirovski, Adjustable robust solutions of uncertain linear programs, Math. Program., 99 (2004), 351-376.  doi: 10.1007/s10107-003-0454-y.
    [2] A. Ben-Tal and A. Nemirovski, Robust convex optimization, Math. Oper. Res., 23 (1998), 769-1024.  doi: 10.1287/moor.23.4.769.
    [3] C. Chen, Simulated annealing-based optimal wind-thermal coordination scheduling, IET Generation, Transmission & Distribution, 1 (2007), 447-455.  doi: 10.1049/iet-gtd:20060208.
    [4] C. M. Correa-Posada and P. Sánchez-Martín, Integrated power and natural gas model for energy adequacy in short-term operation, IEEE Transactions on Power Systems, 30 (2015), 3347-3355.  doi: 10.1109/TPWRS.2014.2372013.
    [5] C. DuanL. JiangW. Fang and J. Liu, Data-driven affinely adjustable distributionally robust unit commitment, IEEE Transactions on Power Systems, 33 (2018), 1385-1398.  doi: 10.1109/TPWRS.2017.2741506.
    [6] C. DuanL. JiangW. FangJ. Liu and S. Liu, Data-driven distributionally robust energy-reserve-storage dispatch, IEEE Transactions on Industrial Informatics, 14 (2018), 2826-2836.  doi: 10.1109/TII.2017.2771355.
    [7] F. FangQ. H. Wang and Y. Shi, A novel optimal operational strategy for the CCHP system based on two operating modes, IEEE Transactions on Power Systems, 27 (2012), 1032-1041.  doi: 10.1109/TPWRS.2011.2175490.
    [8] F. FarmaniM. ParvizimosaedH. Monsef and A. Rahimi-Kian, A conceptual model of a smart energy management system for a residential building equipped with CCHP system, Internat. J. Electrical Power Energy Systems, 95 (2018), 523-536.  doi: 10.1016/j.ijepes.2017.09.016.
    [9] H. GaoJ. LiuL. Wang and Z. Wei, Decentralized energy management for networked microgrids in future distribution systems, IEEE Transactions on Power Systems, 33 (2018), 3599-3610.  doi: 10.1109/TPWRS.2017.2773070.
    [10] W. GuS. LuZ. WuX. ZhangJ. ZhouB. Zhao and J. Wang, Residential CCHP microgrid with load aggregator: Operation mode, pricing strategy, and optimal dispatch, Appl. Energy, 205 (2017), 173-186.  doi: 10.1016/j.apenergy.2017.07.045.
    [11] Y. GuoJ. XiongS. Xu and W. Su, Two-stage economic operation of microgrid-like electric vehicle parking deck, IEEE Transactions on Smart Grid, 7 (2016), 1703-1712.  doi: 10.1109/TSG.2015.2424912.
    [12] Z. Guo and X. Xiao, Wind power assessment based on a WRF wind simulation with developed power curve modeling methods, Abstract Appl. Anal., 2014 (2014), 1-15.  doi: 10.1155/2014/941648.
    [13] N. Haouas and P. R. Bertrand, Wind farm power forecasting, Math. Probl. Eng., 2013 (2013), 5pp. doi: 10.1155/2013/163565.
    [14] R. Hashemi, A developed offline model for optimal operation of combined heating and cooling and power systems, IEEE Transactions on Energy Conversion, 24 (2009), 222-229.  doi: 10.1109/TEC.2008.2002330.
    [15] S. Jin, Z. Mao, H. Li and W. Qi, Dynamic operation management of a renewable microgrid including battery energy storage, Math. Probl. Eng., 2018 (2018), 19pp. doi: 10.1155/2018/5852309.
    [16] Y. Lee and R. Baldick, A frequency-constrained stochastic economic dispatch model, IEEE Transactions on Power Systems, 28 (2013), 2301-2312.  doi: 10.1109/TPWRS.2012.2236108.
    [17] B. LiX. QianJ. SunK. L. Teo and C. Yue, A model of distributionally robust two-stage stochastic convex programming with linear recourse, Appl. Math. Model., 58 (2018), 86-97.  doi: 10.1016/j.apm.2017.11.039.
    [18] B. LiJ. Sun and K. L. Teo, A distributionally robust approach to a class of three-stage stochastic linear programs, Pac. J. Optim., 15 (2019), 219-236. 
    [19] B. LiJ. SunH. Xu and M Zhang, A class of two-stage distributionally robust games, J. Ind. Manag. Optim., 15 (2019), 387-400.  doi: 10.3934/jimo.2018048.
    [20] G. LiG. Li and M. Zhou, Model and application of renewable energy accommodation capacity calculation considering utilization level of inter-provincial tie-line, Protection and Control of Modern Power Systems, 4 (2019), 1-1.  doi: 10.1186/s41601-019-0115-7.
    [21] G. LiR. ZhangT. JiangH. ChenL. BaiH. Cui and X. Li, Optimal dispatch strategy for integrated energy systems with cchp and wind power, Appl. Energy, 192 (2017), 408-419.  doi: 10.1016/j.apenergy.2016.08.139.
    [22] G. LiR. ZhangT. JiangH. ChenL. Bai and X. Li, Security-constrained bi-level economic dispatch model for integrated natural gas and electricity systems considering wind power and power-to-gas process, Appl. Energy, 194 (2017), 696-704.  doi: 10.1016/j.apenergy.2016.07.077.
    [23] Y. LiuY. LiuJ. LiuM. LiT. LiuG. Taylor and K. Zuo, A MapReduce based high performance neural network in enabling fast stability assessment of power systems, Math. Probl. Eng., 2017 (2017), 1-12.  doi: 10.1155/2017/4030146.
    [24] Y. Liu and N. C. Nair, A two-stage stochastic dynamic economic dispatch model considering wind uncertainty, IEEE Transactions on Sustainable Energy, 7 (2016), 819-829.  doi: 10.1109/TSTE.2015.2498614.
    [25] C. MarinoM. MarufuzzamanM. Hu and M. D. Sarder, Developing a CCHP-microgrid operation decision model under uncertainty, Comput. Industrial Eng., 115 (2018), 354-367.  doi: 10.1016/j.cie.2017.11.021.
    [26] M. H. Sarparandeh and M. Ehsan, Pricing of vehicle-to-grid services in a microgrid by Nash bargaining theory, Math. Probl. Eng., 2017 (2017). doi: 10.1155/2017/1840140.
    [27] X. Shen, Y. Liu and Y. Liu, A multistage solution approach for dynamic reactive power optimization based on interval uncertainty, Math. Probl. Eng., 2018 (2018), 10pp. doi: 10.1155/2018/3854812.
    [28] R. Shi, C. Sun, Z. Zhou, L. Zhang, and Z. Liang, A robust economic dispatch of residential microgrid with wind power and electric vehicle integration, Chinese Control and Decision Conference (CCDC), 2016, 3672–3676. doi: 10.1109/CCDC.2016.7531621.
    [29] J. SoaresB. CanizesM. A. F. GhazviniZ. Vale and G. K. Venayagamoorthy, Two-stage stochastic model using benders' decomposition for large-scale energy resource management in smart grids, IEEE Transactions on Industry Appl., 53 (2017), 5905-5914.  doi: 10.1109/TIA.2017.2723339.
    [30] Y. TanY. CaoC. LiY. LiJ. Zhou and Y. Song, A two-stage stochastic programming approach considering risk level for distribution networks operation with wind power, IEEE Systems Journal, 10 (2016), 117-126.  doi: 10.1109/JSYST.2014.2350027.
    [31] L. TianS. Shi and Z. Jia, A statistical model for charging power demand of electric vehicles, Power System Technology, 11 (2010), 126-130.  doi: 10.13335/j.1000-3673.pst.2010.11.020.
    [32] T. A. Victoire and A. Jeyakumar, Hybrid PSO–CSQP for economic dispatch with valve-point effect, Electric Power Systems Research, 71 (2004), 51-59.  doi: 10.1016/j.epsr.2003.12.017.
    [33] D. C. Walters and G. B. Sheble, Genetic algorithm solution of economic dispatch with valve point loading, IEEE Transactions on Power Systems, 8 (1993), 1325-1332.  doi: 10.1109/59.260861.
    [34] J. WangJ. WangC. Liu and and J. Ruiz, Stochastic unit commitment with sub-hourly dispatch constraints, Appl. Energy, 105 (2013), 418-422.  doi: 10.1016/j.apenergy.2013.01.008.
    [35] P. Wei and Y. Liu, The integration of wind-solar-hydropower generation in enabling economic robust dispatch, Math. Probl. Eng., 2019 (2019), 12pp. doi: 10.1155/2019/4634131.
    [36] H. WuX HouB. Zhao and C. Zhu, Economical dispatch of microgrid considering plug-in electric vehicles, Automation of Electric Power Systems, 38 (2014), 77-84.  doi: 10.7500/AEPS20130911002.
    [37] T. WuQ. YangZ. Bao and W. Yan, Coordinated energy dispatching in microgrid with wind power generation and plug-in electric vehicles, IEEE Transactions on Smart Grid, 4 (2013), 1453-1463.  doi: 10.1109/TSG.2013.2268870.
    [38] W. WuJ. ChenB. Zhang and H. Sun, A robust wind power optimization method for look-ahead power dispatch, IEEE Transactions on Sustainable Energy, 5 (2014), 507-515.  doi: 10.1109/TSTE.2013.2294467.
    [39] Y. XiangJ. Liu and Y. Liu, Robust energy management of microgrid with uncertain renewable generation and load, IEEE Transactions on Smart Grid, 7 (2016), 1034-1043.  doi: 10.1109/TSG.2014.2385801.
    [40] L. XieY. GuX. Zhu and M. G. Genton, Short-term spatio-temporal wind power forecast in robust look-ahead power system dispatch, IEEE Transactions on Smart Grid, 5 (2014), 511-520.  doi: 10.1109/TSG.2013.2282300.
    [41] P. XiongP. Jirutitijaroen and C. Singh, A distributionally robust optimization model for unit commitment considering uncertain wind power generation, IEEE Transactions on Power Systems, 32 (2017), 39-49.  doi: 10.1109/TPWRS.2016.2544795.
    [42] P. Xiong and C. Singh, Distributionally robust optimization for energy and reserve toward a low-carbon electricity market, Electric Power Systems Res., 149 (2017), 137-145.  doi: 10.1016/j.epsr.2017.04.008.
    [43] Y. Yang, Practical robust optimization method for unit commitment of a system with integrated wind resource, Math. Probl. Eng., 2017 (2017), 13pp. doi: 10.1155/2017/5208290.
    [44] J. Yu, Q. Feng, Y. Li and J. Cao, Stochastic optimal dispatch of virtual power plant considering correlation of distributed generations, Math. Probl. Eng., 2015 (2015). doi: 10.1155/2015/135673.
    [45] B. Zeng and L. Zhao, Solving two-stage robust optimization problems using a column-and-constraint generation method, Oper. Res. Lett., 41 (2013), 457-461.  doi: 10.1016/j.orl.2013.05.003.
    [46] Y. Zhang, J. Meng, B. Guo and T. Zhang, An improved dispatch strategy of a grid-connected hybrid energy system with high penetration level of renewable energy, Math. Probl. Eng., 2014 (2014), 18pp. doi: 10.1155/2014/602063.
    [47] Y. Zhao, C. Li, M. Zhao, S. Xu, H. Gao and L. Song, Model design on emergency power supply of electric vehicle, Math. Probl. Eng., 2017 (2017), 6pp. doi: 10.1155/2017/9697051.
  • 加载中

Figures(9)

Tables(11)

SHARE

Article Metrics

HTML views(1505) PDF downloads(509) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return