[1]
|
A. Ben-Tal, A. Goryashko, E. Guslitzer and A. Nemirovski, Adjustable robust solutions of uncertain linear programs, Math. Program., 99 (2004), 351-376.
doi: 10.1007/s10107-003-0454-y.
|
[2]
|
A. Ben-Tal and A. Nemirovski, Robust convex optimization, Math. Oper. Res., 23 (1998), 769-1024.
doi: 10.1287/moor.23.4.769.
|
[3]
|
C. Chen, Simulated annealing-based optimal wind-thermal coordination scheduling, IET Generation, Transmission & Distribution, 1 (2007), 447-455.
doi: 10.1049/iet-gtd:20060208.
|
[4]
|
C. M. Correa-Posada and P. Sánchez-Martín, Integrated power and natural gas model for energy adequacy in short-term operation, IEEE Transactions on Power Systems, 30 (2015), 3347-3355.
doi: 10.1109/TPWRS.2014.2372013.
|
[5]
|
C. Duan, L. Jiang, W. Fang and J. Liu, Data-driven affinely adjustable distributionally robust unit commitment, IEEE Transactions on Power Systems, 33 (2018), 1385-1398.
doi: 10.1109/TPWRS.2017.2741506.
|
[6]
|
C. Duan, L. Jiang, W. Fang, J. Liu and S. Liu, Data-driven distributionally robust energy-reserve-storage dispatch, IEEE Transactions on Industrial Informatics, 14 (2018), 2826-2836.
doi: 10.1109/TII.2017.2771355.
|
[7]
|
F. Fang, Q. H. Wang and Y. Shi, A novel optimal operational strategy for the CCHP system based on two operating modes, IEEE Transactions on Power Systems, 27 (2012), 1032-1041.
doi: 10.1109/TPWRS.2011.2175490.
|
[8]
|
F. Farmani, M. Parvizimosaed, H. Monsef and A. Rahimi-Kian, A conceptual model of a smart energy management system for a residential building equipped with CCHP system, Internat. J. Electrical Power Energy Systems, 95 (2018), 523-536.
doi: 10.1016/j.ijepes.2017.09.016.
|
[9]
|
H. Gao, J. Liu, L. Wang and Z. Wei, Decentralized energy management for networked microgrids in future distribution systems, IEEE Transactions on Power Systems, 33 (2018), 3599-3610.
doi: 10.1109/TPWRS.2017.2773070.
|
[10]
|
W. Gu, S. Lu, Z. Wu, X. Zhang, J. Zhou, B. Zhao and J. Wang, Residential CCHP microgrid with load aggregator: Operation mode, pricing strategy, and optimal dispatch, Appl. Energy, 205 (2017), 173-186.
doi: 10.1016/j.apenergy.2017.07.045.
|
[11]
|
Y. Guo, J. Xiong, S. Xu and W. Su, Two-stage economic operation of microgrid-like electric vehicle parking deck, IEEE Transactions on Smart Grid, 7 (2016), 1703-1712.
doi: 10.1109/TSG.2015.2424912.
|
[12]
|
Z. Guo and X. Xiao, Wind power assessment based on a WRF wind simulation with developed power curve modeling methods, Abstract Appl. Anal., 2014 (2014), 1-15.
doi: 10.1155/2014/941648.
|
[13]
|
N. Haouas and P. R. Bertrand, Wind farm power forecasting, Math. Probl. Eng., 2013 (2013), 5pp.
doi: 10.1155/2013/163565.
|
[14]
|
R. Hashemi, A developed offline model for optimal operation of combined heating and cooling and power systems, IEEE Transactions on Energy Conversion, 24 (2009), 222-229.
doi: 10.1109/TEC.2008.2002330.
|
[15]
|
S. Jin, Z. Mao, H. Li and W. Qi, Dynamic operation management of a renewable microgrid including battery energy storage, Math. Probl. Eng., 2018 (2018), 19pp.
doi: 10.1155/2018/5852309.
|
[16]
|
Y. Lee and R. Baldick, A frequency-constrained stochastic economic dispatch model, IEEE Transactions on Power Systems, 28 (2013), 2301-2312.
doi: 10.1109/TPWRS.2012.2236108.
|
[17]
|
B. Li, X. Qian, J. Sun, K. L. Teo and C. Yue, A model of distributionally robust two-stage stochastic convex programming with linear recourse, Appl. Math. Model., 58 (2018), 86-97.
doi: 10.1016/j.apm.2017.11.039.
|
[18]
|
B. Li, J. Sun and K. L. Teo, A distributionally robust approach to a class of three-stage stochastic linear programs, Pac. J. Optim., 15 (2019), 219-236.
|
[19]
|
B. Li, J. Sun, H. Xu and M Zhang, A class of two-stage distributionally robust games, J. Ind. Manag. Optim., 15 (2019), 387-400.
doi: 10.3934/jimo.2018048.
|
[20]
|
G. Li, G. Li and M. Zhou, Model and application of renewable energy accommodation capacity calculation considering utilization level of inter-provincial tie-line, Protection and Control of Modern Power Systems, 4 (2019), 1-1.
doi: 10.1186/s41601-019-0115-7.
|
[21]
|
G. Li, R. Zhang, T. Jiang, H. Chen, L. Bai, H. Cui and X. Li, Optimal dispatch strategy for integrated energy systems with cchp and wind power, Appl. Energy, 192 (2017), 408-419.
doi: 10.1016/j.apenergy.2016.08.139.
|
[22]
|
G. Li, R. Zhang, T. Jiang, H. Chen, L. Bai and X. Li, Security-constrained bi-level economic dispatch model for integrated natural gas and electricity systems considering wind power and power-to-gas process, Appl. Energy, 194 (2017), 696-704.
doi: 10.1016/j.apenergy.2016.07.077.
|
[23]
|
Y. Liu, Y. Liu, J. Liu, M. Li, T. Liu, G. Taylor and K. Zuo, A MapReduce based high performance neural network in enabling fast stability assessment of power systems, Math. Probl. Eng., 2017 (2017), 1-12.
doi: 10.1155/2017/4030146.
|
[24]
|
Y. Liu and N. C. Nair, A two-stage stochastic dynamic economic dispatch model considering wind uncertainty, IEEE Transactions on Sustainable Energy, 7 (2016), 819-829.
doi: 10.1109/TSTE.2015.2498614.
|
[25]
|
C. Marino, M. Marufuzzaman, M. Hu and M. D. Sarder, Developing a CCHP-microgrid operation decision model under uncertainty, Comput. Industrial Eng., 115 (2018), 354-367.
doi: 10.1016/j.cie.2017.11.021.
|
[26]
|
M. H. Sarparandeh and M. Ehsan, Pricing of vehicle-to-grid services in a microgrid by Nash bargaining theory, Math. Probl. Eng., 2017 (2017).
doi: 10.1155/2017/1840140.
|
[27]
|
X. Shen, Y. Liu and Y. Liu, A multistage solution approach for dynamic reactive power optimization based on interval uncertainty, Math. Probl. Eng., 2018 (2018), 10pp.
doi: 10.1155/2018/3854812.
|
[28]
|
R. Shi, C. Sun, Z. Zhou, L. Zhang, and Z. Liang, A robust economic dispatch of residential microgrid with wind power and electric vehicle integration, Chinese Control and Decision Conference (CCDC), 2016, 3672–3676.
doi: 10.1109/CCDC.2016.7531621.
|
[29]
|
J. Soares, B. Canizes, M. A. F. Ghazvini, Z. Vale and G. K. Venayagamoorthy, Two-stage stochastic model using benders' decomposition for large-scale energy resource management in smart grids, IEEE Transactions on Industry Appl., 53 (2017), 5905-5914.
doi: 10.1109/TIA.2017.2723339.
|
[30]
|
Y. Tan, Y. Cao, C. Li, Y. Li, J. Zhou and Y. Song, A two-stage stochastic programming approach considering risk level for distribution networks operation with wind power, IEEE Systems Journal, 10 (2016), 117-126.
doi: 10.1109/JSYST.2014.2350027.
|
[31]
|
L. Tian, S. Shi and Z. Jia, A statistical model for charging power demand of electric vehicles, Power System Technology, 11 (2010), 126-130.
doi: 10.13335/j.1000-3673.pst.2010.11.020.
|
[32]
|
T. A. Victoire and A. Jeyakumar, Hybrid PSO–CSQP for economic dispatch with valve-point effect, Electric Power Systems Research, 71 (2004), 51-59.
doi: 10.1016/j.epsr.2003.12.017.
|
[33]
|
D. C. Walters and G. B. Sheble, Genetic algorithm solution of economic dispatch with valve point loading, IEEE Transactions on Power Systems, 8 (1993), 1325-1332.
doi: 10.1109/59.260861.
|
[34]
|
J. Wang, J. Wang, C. Liu and and J. Ruiz, Stochastic unit commitment with sub-hourly dispatch constraints, Appl. Energy, 105 (2013), 418-422.
doi: 10.1016/j.apenergy.2013.01.008.
|
[35]
|
P. Wei and Y. Liu, The integration of wind-solar-hydropower generation in enabling economic robust dispatch, Math. Probl. Eng., 2019 (2019), 12pp.
doi: 10.1155/2019/4634131.
|
[36]
|
H. Wu, X Hou, B. Zhao and C. Zhu, Economical dispatch of microgrid considering plug-in electric vehicles, Automation of Electric Power Systems, 38 (2014), 77-84.
doi: 10.7500/AEPS20130911002.
|
[37]
|
T. Wu, Q. Yang, Z. Bao and W. Yan, Coordinated energy dispatching in microgrid with wind power generation and plug-in electric vehicles, IEEE Transactions on Smart Grid, 4 (2013), 1453-1463.
doi: 10.1109/TSG.2013.2268870.
|
[38]
|
W. Wu, J. Chen, B. Zhang and H. Sun, A robust wind power optimization method for look-ahead power dispatch, IEEE Transactions on Sustainable Energy, 5 (2014), 507-515.
doi: 10.1109/TSTE.2013.2294467.
|
[39]
|
Y. Xiang, J. Liu and Y. Liu, Robust energy management of microgrid with uncertain renewable generation and load, IEEE Transactions on Smart Grid, 7 (2016), 1034-1043.
doi: 10.1109/TSG.2014.2385801.
|
[40]
|
L. Xie, Y. Gu, X. Zhu and M. G. Genton, Short-term spatio-temporal wind power forecast in robust look-ahead power system dispatch, IEEE Transactions on Smart Grid, 5 (2014), 511-520.
doi: 10.1109/TSG.2013.2282300.
|
[41]
|
P. Xiong, P. Jirutitijaroen and C. Singh, A distributionally robust optimization model for unit commitment considering uncertain wind power generation, IEEE Transactions on Power Systems, 32 (2017), 39-49.
doi: 10.1109/TPWRS.2016.2544795.
|
[42]
|
P. Xiong and C. Singh, Distributionally robust optimization for energy and reserve toward a low-carbon electricity market, Electric Power Systems Res., 149 (2017), 137-145.
doi: 10.1016/j.epsr.2017.04.008.
|
[43]
|
Y. Yang, Practical robust optimization method for unit commitment of a system with integrated wind resource, Math. Probl. Eng., 2017 (2017), 13pp.
doi: 10.1155/2017/5208290.
|
[44]
|
J. Yu, Q. Feng, Y. Li and J. Cao, Stochastic optimal dispatch of virtual power plant considering correlation of distributed generations, Math. Probl. Eng., 2015 (2015).
doi: 10.1155/2015/135673.
|
[45]
|
B. Zeng and L. Zhao, Solving two-stage robust optimization problems using a column-and-constraint generation method, Oper. Res. Lett., 41 (2013), 457-461.
doi: 10.1016/j.orl.2013.05.003.
|
[46]
|
Y. Zhang, J. Meng, B. Guo and T. Zhang, An improved dispatch strategy of a grid-connected hybrid energy system with high penetration level of renewable energy, Math. Probl. Eng., 2014 (2014), 18pp.
doi: 10.1155/2014/602063.
|
[47]
|
Y. Zhao, C. Li, M. Zhao, S. Xu, H. Gao and L. Song, Model design on emergency power supply of electric vehicle, Math. Probl. Eng., 2017 (2017), 6pp.
doi: 10.1155/2017/9697051.
|