
-
Previous Article
Channel leadership and recycling channel in closed-loop supply chain: The case of recycling price by the recycling party
- JIMO Home
- This Issue
-
Next Article
Equilibrium periodic dividend strategies with non-exponential discounting for spectrally positive Lévy processes
A lattice method for option evaluation with regime-switching asset correlation structure
Adam Smith Business School, University of Glasow, Glasgow G12 8QQ, UK |
This paper develops a lattice method for option evaluation in the presence of regime shifts in the correlation structure of assets, aiming at investigating whether the option prices reflect such shifts. We try to investigate whether option prices reflect switches in the correlation between the underlying asset of an option and risk-free rates.We develop and test two models.In the first model we allow all the parameters to follow a regime-switching process while in the second model, in order to isolate the regime-switching correlation effect on the option prices, we allow only the correlation to follow a regime-switching process. We use pentanomial lattices to represent the evolution of the regime-switching underlying assets. This is then applied in our empirical analysis, which focuses on crude oil. We use grid- and patternsearch based techniques to fit our models. Our findings suggest that prices of market traded options reflect the regime-switches and that a model which considers these switches produces significantly more accurate results than a single-regime model. We demonstrate that there is an asymmetry between parameter values obtained from historical data (backward looking) and those that are implied by traded options (for- ward looking) by employing the Kim filter to estimate our model.
References:
[1] |
N. P. B. Bollen, Valuing options in regime-switching models, Journal of Derivatives, 6 (1998), 38-49. Google Scholar |
[2] |
N. P. B. Bollen, S. F. Gray and R. E. Whaley, Regime switching in foreign exchange rates: Evidence from currency option prices, Journal of Econometrics, 94 (2000), 239-276. Google Scholar |
[3] |
P. P. Boyle, A Lattice Framework for Option Pricing with Two State variables, Journal of Financial and Quantitative Analysis, 1988. Google Scholar |
[4] |
J. C. Cox, S. A. Ross and M. Rubinstein,
Option pricing: A Simplified approach, Journal of Financial Economics, 7 (1979), 229-263.
|
[5] |
J. C. Duan,
A GARCH option pricing model, Mathematical Finance, 5 (1995), 13-32.
doi: 10.1111/j.1467-9965.1995.tb00099.x. |
[6] |
J. C. Duan, I. Popova and P. Ritchken,
Option pricing under regime switching, Quantitative Finance, 2 (2002), 116-132.
doi: 10.1088/1469-7688/2/2/303. |
[7] |
S. F. Gray, Modeling the conditional distribution of interest rates as a regime-switching process, Journal of Financial Economics, 42 (1996), 27-62. Google Scholar |
[8] |
J. D. Hamilton,
Rational expectations econometric analysis of changes in regime: An investigation of the term structure of interest rates,, Journal og Econometric Dynamics and Control, 12 (1988), 385-423.
doi: 10.1016/0165-1889(88)90047-4. |
[9] |
J. Hull and A. White, The pricing of options assets with stochastic volatilities, The Journal of Finance, 42 (1987), 281-300. Google Scholar |
[10] |
C. J. Kim,
Dynamic linear models with Markov-switching,, Journal of Econometrics, 60 (1994), 1-22.
doi: 10.1016/0304-4076(94)90036-1. |
[11] |
C. J. Kim, Charles R.Nelson State-Space Models with Regime Switching. Classical and Gibbs-Sampling Approaches with Applications, Massachusetts Institution of Technology, United States of America, 1999. Google Scholar |
[12] |
V. Naik, Option valuation and hedging strategies with jumps in the volatility of asset returns, The Journal of Finance, 47 (1993), 1969-1984. Google Scholar |
[13] |
G. W. Swhwert, Business cycles, financial crises, and risky asset volatility, Carnegie-Rochester Conference Series on Public Policy, 31 (1989), 83-126. Google Scholar |
[14] |
C. M. Turner, R. Startz and C. R. Nelson, A markov model of heteroscedasticity, riskm and learning in the risky asset market, Journal of Financial Economics, 25 (1989), 3-22. Google Scholar |
[15] |
D. D. Yao, Q. Zhang and X. Y. Zhou, A regime-switching model for european option pricing,, Stochastic Processes, Optimization, and Control Theory: Applications in Financial Engineering, Queueing Networks, and Manufacturing Systems, Springer US, 94 (2006), 281–300.
doi: 10.1007/0-387-33815-2_14. |
show all references
References:
[1] |
N. P. B. Bollen, Valuing options in regime-switching models, Journal of Derivatives, 6 (1998), 38-49. Google Scholar |
[2] |
N. P. B. Bollen, S. F. Gray and R. E. Whaley, Regime switching in foreign exchange rates: Evidence from currency option prices, Journal of Econometrics, 94 (2000), 239-276. Google Scholar |
[3] |
P. P. Boyle, A Lattice Framework for Option Pricing with Two State variables, Journal of Financial and Quantitative Analysis, 1988. Google Scholar |
[4] |
J. C. Cox, S. A. Ross and M. Rubinstein,
Option pricing: A Simplified approach, Journal of Financial Economics, 7 (1979), 229-263.
|
[5] |
J. C. Duan,
A GARCH option pricing model, Mathematical Finance, 5 (1995), 13-32.
doi: 10.1111/j.1467-9965.1995.tb00099.x. |
[6] |
J. C. Duan, I. Popova and P. Ritchken,
Option pricing under regime switching, Quantitative Finance, 2 (2002), 116-132.
doi: 10.1088/1469-7688/2/2/303. |
[7] |
S. F. Gray, Modeling the conditional distribution of interest rates as a regime-switching process, Journal of Financial Economics, 42 (1996), 27-62. Google Scholar |
[8] |
J. D. Hamilton,
Rational expectations econometric analysis of changes in regime: An investigation of the term structure of interest rates,, Journal og Econometric Dynamics and Control, 12 (1988), 385-423.
doi: 10.1016/0165-1889(88)90047-4. |
[9] |
J. Hull and A. White, The pricing of options assets with stochastic volatilities, The Journal of Finance, 42 (1987), 281-300. Google Scholar |
[10] |
C. J. Kim,
Dynamic linear models with Markov-switching,, Journal of Econometrics, 60 (1994), 1-22.
doi: 10.1016/0304-4076(94)90036-1. |
[11] |
C. J. Kim, Charles R.Nelson State-Space Models with Regime Switching. Classical and Gibbs-Sampling Approaches with Applications, Massachusetts Institution of Technology, United States of America, 1999. Google Scholar |
[12] |
V. Naik, Option valuation and hedging strategies with jumps in the volatility of asset returns, The Journal of Finance, 47 (1993), 1969-1984. Google Scholar |
[13] |
G. W. Swhwert, Business cycles, financial crises, and risky asset volatility, Carnegie-Rochester Conference Series on Public Policy, 31 (1989), 83-126. Google Scholar |
[14] |
C. M. Turner, R. Startz and C. R. Nelson, A markov model of heteroscedasticity, riskm and learning in the risky asset market, Journal of Financial Economics, 25 (1989), 3-22. Google Scholar |
[15] |
D. D. Yao, Q. Zhang and X. Y. Zhou, A regime-switching model for european option pricing,, Stochastic Processes, Optimization, and Control Theory: Applications in Financial Engineering, Queueing Networks, and Manufacturing Systems, Springer US, 94 (2006), 281–300.
doi: 10.1007/0-387-33815-2_14. |






Jump | Probability | Underlying Asset Price |
Up | $ \pi_{u} $ | $ S_{u} $ |
Horizontal | $\pi_{0} $ | $ S $ |
Down | $ \pi_{d} $ | $ S_{d} $ |
Jump | Probability | Underlying Asset Price |
Up | $ \pi_{u} $ | $ S_{u} $ |
Horizontal | $\pi_{0} $ | $ S $ |
Down | $ \pi_{d} $ | $ S_{d} $ |
Event | Probability | Underlying Asset Price | |
Asset 1 | Asset 2 | ||
$ E_{1} $ | $ \pi_{1} $ | $ S_{p}u_{p} $ | $ S_{b}u_{b} $ |
$ E_{2} $ | $ \pi_{2} $ | $ S_{p}u_{p} $ | $ S_{b}d_{b} $ |
$ E_{3} $ | $ \pi_{3} $ | $ S_{p}d_{p} $ | $ S_{b}d_{b} $ |
$ E_{4} $ | $ \pi_{4} $ | $ S_{p}d_{p} $ | $ S_{b}u_{b} $ |
$ E_{5} $ | $ \pi_{5} $ | $ S_{p} $ | $ S_{b} $ |
Event | Probability | Underlying Asset Price | |
Asset 1 | Asset 2 | ||
$ E_{1} $ | $ \pi_{1} $ | $ S_{p}u_{p} $ | $ S_{b}u_{b} $ |
$ E_{2} $ | $ \pi_{2} $ | $ S_{p}u_{p} $ | $ S_{b}d_{b} $ |
$ E_{3} $ | $ \pi_{3} $ | $ S_{p}d_{p} $ | $ S_{b}d_{b} $ |
$ E_{4} $ | $ \pi_{4} $ | $ S_{p}d_{p} $ | $ S_{b}u_{b} $ |
$ E_{5} $ | $ \pi_{5} $ | $ S_{p} $ | $ S_{b} $ |
Strike Price | Market Price | Predicted by Lattice | Predicted by BS |
16 | 4.9 | 3.881616 | 3.9936 |
17 | 2.85 | 3.127282 | 3.0613 |
18 | 2.35 | 2.373772 | 2.2162 |
19 | 1.65 | 1.629733 | 1.5029 |
20 | 0.95 | 0.949999 | 0.9500 |
21 | 0.4 | 0.399999 | 0.5587 |
22 | 0.2 | 0.200003 | 0.3059 |
23 | 0.2 | 0.136097 | 0.1565 |
24 | 0.1 | 0.105053 | 0.0750 |
25 | 0.15 | 0.088113 | 0.0339 |
Sum of absolute differences | 1.110163 | 2.573241 |
Strike Price | Market Price | Predicted by Lattice | Predicted by BS |
16 | 4.9 | 3.881616 | 3.9936 |
17 | 2.85 | 3.127282 | 3.0613 |
18 | 2.35 | 2.373772 | 2.2162 |
19 | 1.65 | 1.629733 | 1.5029 |
20 | 0.95 | 0.949999 | 0.9500 |
21 | 0.4 | 0.399999 | 0.5587 |
22 | 0.2 | 0.200003 | 0.3059 |
23 | 0.2 | 0.136097 | 0.1565 |
24 | 0.1 | 0.105053 | 0.0750 |
25 | 0.15 | 0.088113 | 0.0339 |
Sum of absolute differences | 1.110163 | 2.573241 |
Strike Price | Market Price | Predicted by Lattice | Predicted by BS |
16 | 5 | 4.4153631 | 4.3208036 |
17 | 3.8 | 3.7998973 | 3.5464351 |
18 | 2.45 | 2.3996588 | 2.8585724 |
19 | 2.25 | 1.9270998 | 2.2636265 |
20 | 1.6 | 1.5997621 | 1.7622281 |
21 | 1.35 | 1.3087541 | 1.3499542 |
22 | 0.95 | 1.0205032 | 1.0186664 |
23 | 1.05 | 1.1713058 | 0.7580323 |
24 | 0.6 | 0.6000609 | 0.5569055 |
25 | 0.5 | 0.4960518 | 0.4043912 |
Sum of absolute differences | 0.4890502 | 1.1145081 |
Strike Price | Market Price | Predicted by Lattice | Predicted by BS |
16 | 5 | 4.4153631 | 4.3208036 |
17 | 3.8 | 3.7998973 | 3.5464351 |
18 | 2.45 | 2.3996588 | 2.8585724 |
19 | 2.25 | 1.9270998 | 2.2636265 |
20 | 1.6 | 1.5997621 | 1.7622281 |
21 | 1.35 | 1.3087541 | 1.3499542 |
22 | 0.95 | 1.0205032 | 1.0186664 |
23 | 1.05 | 1.1713058 | 0.7580323 |
24 | 0.6 | 0.6000609 | 0.5569055 |
25 | 0.5 | 0.4960518 | 0.4043912 |
Sum of absolute differences | 0.4890502 | 1.1145081 |
Strike Price | Market Price | Predicted by Lattice | Predicted by BS |
16 | 5 | 4.4153631 | 4.3208036 |
17 | 3.8 | 3.7998973 | 3.5464351 |
18 | 2.45 | 2.3996588 | 2.8585724 |
19 | 2.25 | 1.9270998 | 2.2636265 |
20 | 1.6 | 1.5997621 | 1.7622281 |
21 | 1.35 | 1.3087541 | 1.3499542 |
22 | 0.95 | 1.0205032 | 1.0186664 |
23 | 1.05 | 1.1713058 | 0.7580323 |
24 | 0.6 | 0.6000609 | 0.5569055 |
25 | 0.5 | 0.4960518 | 0.4043912 |
Sum of absolute differences | 0.4890502 | 1.1145081 |
Strike Price | Market Price | Predicted by Lattice | Predicted by BS |
16 | 5 | 4.4153631 | 4.3208036 |
17 | 3.8 | 3.7998973 | 3.5464351 |
18 | 2.45 | 2.3996588 | 2.8585724 |
19 | 2.25 | 1.9270998 | 2.2636265 |
20 | 1.6 | 1.5997621 | 1.7622281 |
21 | 1.35 | 1.3087541 | 1.3499542 |
22 | 0.95 | 1.0205032 | 1.0186664 |
23 | 1.05 | 1.1713058 | 0.7580323 |
24 | 0.6 | 0.6000609 | 0.5569055 |
25 | 0.5 | 0.4960518 | 0.4043912 |
Sum of absolute differences | 0.4890502 | 1.1145081 |
Strike | Price | Predicted |
16 | 4.9 | 1.625144372 |
17 | 2.85 | 1.269327353 |
18 | 2.35 | 0.940833993 |
19 | 1.65 | 0.626509398 |
20 | 0.95 | 0.420399871 |
21 | 0.4 | 0.245524212 |
22 | 0.2 | 0.158808617 |
23 | 0.2 | 0.079890983 |
24 | 0.1 | 0.045583587 |
25 | 0.15 | 0.023566284 |
Strike | Price | Predicted |
16 | 4.9 | 1.625144372 |
17 | 2.85 | 1.269327353 |
18 | 2.35 | 0.940833993 |
19 | 1.65 | 0.626509398 |
20 | 0.95 | 0.420399871 |
21 | 0.4 | 0.245524212 |
22 | 0.2 | 0.158808617 |
23 | 0.2 | 0.079890983 |
24 | 0.1 | 0.045583587 |
25 | 0.15 | 0.023566284 |
[1] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[2] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[3] |
Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349 |
[4] |
Shuyang Dai, Fengru Wang, Jerry Zhijian Yang, Cheng Yuan. A comparative study of atomistic-based stress evaluation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020322 |
[5] |
Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020370 |
[6] |
Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040 |
[7] |
Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350 |
[8] |
Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020118 |
[9] |
François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221 |
[10] |
Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333 |
[11] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
[12] |
Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2021001 |
[13] |
Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172 |
[14] |
Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275 |
[15] |
Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020402 |
[16] |
Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013 |
[17] |
Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020180 |
[18] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[19] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[20] |
Qing-Hu Hou, Yarong Wei. Telescoping method, summation formulas, and inversion pairs. Electronic Research Archive, , () : -. doi: 10.3934/era.2021007 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]