
-
Previous Article
Performance analysis and optimization research of multi-channel cognitive radio networks with a dynamic channel vacation scheme
- JIMO Home
- This Issue
-
Next Article
Adjustable robust optimization in enabling optimal day-ahead economic dispatch of CCHP-MG considering uncertainties of wind-solar power and electric vehicle
Genetic algorithm for obstacle location-allocation problems with customer priorities
1. | Department of Industrial Management, School of Management and Accounting, Shahid Beheshti University, G.C., Tehran, Iran |
2. | Mario J. Gabelli School of Business, Roger Williams University, 1 Old Ferry Road, Bristol, RI 02809, USA |
3. | Kar Higher Education Institute, Tehran, Iran |
In this paper we propose a metaheuristic approach to solve a customer priority based location-allocation problem in presence of obstacles and location-dependent supplier capacities. In many network optimization problems presence of obstacles prohibits feasibility of a regular network design. This includes a wide range of applications including disaster relief and pandemic disease containment problems in healthcare management. We focus on this application since fast and efficient allocation of suppliers to demand nodes is a critical process that impacts the results of the containment strategy. In this study, we propose an integrated mixed-integer program with location-based capacity decisions that considers customer priorities in the network design. We propose an efficient multi-stage genetic algorithm that solves the problem in continuous space. The computational findings show the best allocation strategies derived from proposed algorithms.
References:
[1] |
A. Ahmadi-Javid, P. Seyedi and S. S. Syam,
A survey of healthcare facility location, Computers and Operations Research, 79 (2017), 223-263.
doi: 10.1016/j.cor.2016.05.018. |
[2] |
H. Alt and E. Welzl,
Visibility graphs and obstacle-avoiding shortest paths, Mathematical Methods of Operations Research, 32 (1988), 145-164.
doi: 10.1007/BF01928918. |
[3] |
Y. P. Aneja and M. Parlar,
Algorithms for Weber facility location in the presence of forbidden regions and/or barriers to travel, Transportation Science, 28 (1994), 70-76.
doi: 10.1287/trsc.28.1.70. |
[4] |
A. B. Arabani and R. Z. Farahani, Facility location dynamics: An overview of classifications and applications, Computers and Industrial Engineering, 62 (2012), 408-420. Google Scholar |
[5] |
J. Brimberg, P. Hansen, N. Mladenović and E. D. Taillard,
Improvements and comparison of heuristics for solving the uncapacitated multisource Weber problem, Operations Research, 48 (2000), 444-460.
doi: 10.1287/opre.48.3.444.12431. |
[6] |
S. E. Butt and T. M. Cavalier,
An efficient algorithm for facility location in the presence of forbidden regions, European Journal of Operational Research, 90 (1996), 56-70.
doi: 10.1016/0377-2217(94)00297-5. |
[7] |
E. Durmaz, N. Aras and İ. K. Altınel,
Discrete approximation heuristics for the capacitated continuous locationallocation problem with probabilistic customer locations, Computers and Operations Research, 36 (2009), 2139-2148.
doi: 10.1016/j.cor.2008.08.003. |
[8] |
D. Gong, M. Gen, W. Xu and G. Yamazaki, Hybrid evolutionary method for obstacle location-allocation problem, Computers and Industrial Engineering, 29 (1995), 525-530. Google Scholar |
[9] |
D. J. Gong, M. Gen, G. Yamazaki and W. X. Xu,
Hybrid evolutionary method for capacitated location-allocation problem, Computers and Industrial Engineering, 33 (1997), 577-580.
doi: 10.1016/S0360-8352(97)00197-6. |
[10] |
S. C. Ho,
An iterated tabu search heuristic for the single source capacitated facility location problem, Applied Soft Computing, 27 (2015), 169-178.
doi: 10.1016/j.asoc.2014.11.004. |
[11] |
C. R. Houck, J. A. Joines and M. G. Kay,
Comparison of genetic algorithms, random restart and two-opt switching for solving large location-allocation problems, Computers and Operations Research, 23 (1996), 587-596.
doi: 10.1016/0305-0548(95)00063-1. |
[12] |
J. H. Jaramillo, J. Bhadury and R. Batta,
On the use of genetic algorithms to solve location problems, Computers and Operations Research, 29 (2002), 761-779.
doi: 10.1016/S0305-0548(01)00021-1. |
[13] |
J. Kalcsics, S. Nickel, M. A. Pozo, J. Puerto and A. M. Rodríguez-Chía,
The multicriteria $p$-facility median location problem on networks, European Journal of Operational Research, 235 (2014), 484-493.
doi: 10.1016/j.ejor.2014.01.003. |
[14] |
I. N. Katz and L. Cooper,
Facility location in the presence of forbidden regions. I: Formulation and the case of Euclidean distance with one forbidden circle, European Journal of Operational Research, 6 (1981), 166-173.
doi: 10.1016/0377-2217(81)90203-4. |
[15] |
K. Klamroth,
A reduction result for location problems with polyhedral barriers, European Journal of Operational Research, 130 (2001), 486-497.
doi: 10.1016/S0377-2217(99)00399-9. |
[16] |
J. Krarup and P. M. Pruzan,
The simple plant location problem: Survey and synthesis, European Journal of Operational Research, 12 (1983), 36-81.
doi: 10.1016/0377-2217(83)90181-9. |
[17] |
R. E. Kuenne and R. M. Soland,
Exact and approximate solutions to the multisource Weber problem, Mathematical Programming, 3 (1972), 193-209.
doi: 10.1007/BF01584989. |
[18] |
G. Laporte, F. V. Louveaux and L. van Hamme,
Exact solution to a location problem with stochastic demands, Transportation Science, 28 (1994), 95-103.
doi: 10.1287/trsc.28.2.95. |
[19] |
G. Laporte, S. Nickel and F. S. da Gama, Location Science, Springer, Berlin, 2015.
doi: 978-3-319-13111-5. |
[20] |
R. C. Larson and G. Sadiq,
Facility locations with the Manhattan metric in the presence of barriers to travel, Operations Research, 31 (1983), 652-669.
doi: 10.1287/opre.31.4.652. |
[21] |
B. Li, I. Hernandez, A. B. Milburn and J. E. Ramirez-Marquez,
Integrating uncertain user-generated demand data when locating facilities for disaster response commodity distribution, Socio-Economic Planning Sciences, 62 (2018), 84-103.
doi: 10.1016/j.seps.2017.09.003. |
[22] |
R. Logendran and M. P. Terrell,
Uncapacitated plant location-allocation problems with price sensitive stochastic demands, Computers and Operations Research, 15 (1988), 189-198.
doi: 10.1016/0305-0548(88)90011-1. |
[23] |
R. G. McGarvey and T. M. Cavalier,
A global optimal approach to facility location in the presence of forbidden regions, Computers and Industrial Engineering, 45 (2003), 1-15.
doi: 10.1016/S0360-8352(03)00028-7. |
[24] |
M. T. Melo, S. Nickel and F. Saldanha-da-Gama,
Facility location and supply chain management - a review, European journal of operational research, 196 (2009), 401-412.
doi: 10.1016/j.ejor.2008.05.007. |
[25] |
S. M. Mousavi, S. T. A. Niaki, E. Mehdizadeh and M. R. Tavarroth,
The capacitated multi-facility locationallocation problem with probabilistic customer location and demand: Two hybrid metaheuristics algorithms, International Journal of Systems Science, 44 (2013), 1897-1912.
doi: 10.1080/00207721.2012.670301. |
[26] |
J. A. Paul and R. Batta,
Models for hospital location and capacity allocation for an area prone to natural disasters, International Journal of Operational Research, 3 (2008), 473-496.
doi: 10.1504/IJOR.2008.019170. |
[27] |
F. Pérez-Galarce, L. J. Canales, C. Vergara and A. Candia-Véjar, An optimization model for the location of disaster refuges, Socio-Economic Planning Sciences, 59 (2017), 56-66. Google Scholar |
[28] |
C. S. ReVelle and H. A. Eiselt,
Location analysis: A synthesis and survey, European Journal of Operational Research, 165 (2005), 1-19.
doi: 10.1016/j.ejor.2003.11.032. |
[29] |
C. S. ReVelle, H. A. Eiselt and M. S. Daskin,
A bibliography for some fundamental problem categories in discrete location science, European Journal of Operational Research, 184 (2008), 817-848.
doi: 10.1016/j.ejor.2006.12.044. |
[30] |
S. Salhi and M. D. H. Gamal,
A genetic algorithm based approach for the uncapacitated continuous locationallocation problem, Annals of Operations Research, 123 (2003), 203-222.
doi: 10.1023/A:1026131531250. |
[31] |
T. Santoso, S. Ahmed, M. Goetschalckx and A. Shapiro,
A stochastic programming approach for supply chain network design under uncertainty, European Journal of Operational Research, 167 (2005), 96-115.
doi: 10.1016/j.ejor.2004.01.046. |
[32] |
A. Schöbel, Location of Dimensional Facilities in a Continuous Space, in: Laporte G., Nickel S., Saldanha da Gama F. (eds), Location Science, Berlin: Springer, 2015. Google Scholar |
[33] |
S. R. Shariff, N. H. Moin and M. Omar,
Location allocation modeling for healthcare facility planning in Malaysia, Computers and Industrial Engineering, 62 (2012), 1000-1010.
doi: 10.1016/j.cie.2011.12.026. |
[34] |
H. D. Sherali, T. B. Carter and A. G. Hobeika,
A location-allocation model and algorithm for evacuation planning under hurricane/flood conditions, Transportation Research Part B: Methodological, 25 (1991), 439-452.
doi: 10.1016/0191-2615(91)90037-J. |
[35] |
Z. Stanimirović, A genetic algorithm approach for the capacitated single allocation p-hub median problem, Computing and Informatics, 29 (2012), 117-132. Google Scholar |
[36] |
J. Taniguchi, X. Wang, M. Gen and T. Yokota, Hybrid genetic algorithm with fuzzy logic controller for obstacle location-allocation problem, IEEJ Transactions on Electronics, Information and Systems, 124 (2004), 2027-2033. Google Scholar |
[37] |
A. Verma and G. M. Gaukler,
Pre-positioning disaster response facilities at safe locations: An evaluation of deterministic and stochastic modeling approaches, Computers and Operations Research, 62 (2015), 197-209.
doi: 10.1016/j.cor.2014.10.006. |
[38] |
N. Vidyarthi and S. Jayaswal,
Efficient solution of a class of locationallocation problems with stochastic demand and congestion, Computers and Operations Research, 48 (2014), 20-30.
doi: 10.1016/j.cor.2014.02.014. |
[39] |
J. Zhou and B. D. Liu,
New stochastic models for capacitated location-allocation problem, Computers and Industrial Engineering, 45 (2003), 111-125.
doi: 10.1016/S0360-8352(03)00021-4. |
show all references
References:
[1] |
A. Ahmadi-Javid, P. Seyedi and S. S. Syam,
A survey of healthcare facility location, Computers and Operations Research, 79 (2017), 223-263.
doi: 10.1016/j.cor.2016.05.018. |
[2] |
H. Alt and E. Welzl,
Visibility graphs and obstacle-avoiding shortest paths, Mathematical Methods of Operations Research, 32 (1988), 145-164.
doi: 10.1007/BF01928918. |
[3] |
Y. P. Aneja and M. Parlar,
Algorithms for Weber facility location in the presence of forbidden regions and/or barriers to travel, Transportation Science, 28 (1994), 70-76.
doi: 10.1287/trsc.28.1.70. |
[4] |
A. B. Arabani and R. Z. Farahani, Facility location dynamics: An overview of classifications and applications, Computers and Industrial Engineering, 62 (2012), 408-420. Google Scholar |
[5] |
J. Brimberg, P. Hansen, N. Mladenović and E. D. Taillard,
Improvements and comparison of heuristics for solving the uncapacitated multisource Weber problem, Operations Research, 48 (2000), 444-460.
doi: 10.1287/opre.48.3.444.12431. |
[6] |
S. E. Butt and T. M. Cavalier,
An efficient algorithm for facility location in the presence of forbidden regions, European Journal of Operational Research, 90 (1996), 56-70.
doi: 10.1016/0377-2217(94)00297-5. |
[7] |
E. Durmaz, N. Aras and İ. K. Altınel,
Discrete approximation heuristics for the capacitated continuous locationallocation problem with probabilistic customer locations, Computers and Operations Research, 36 (2009), 2139-2148.
doi: 10.1016/j.cor.2008.08.003. |
[8] |
D. Gong, M. Gen, W. Xu and G. Yamazaki, Hybrid evolutionary method for obstacle location-allocation problem, Computers and Industrial Engineering, 29 (1995), 525-530. Google Scholar |
[9] |
D. J. Gong, M. Gen, G. Yamazaki and W. X. Xu,
Hybrid evolutionary method for capacitated location-allocation problem, Computers and Industrial Engineering, 33 (1997), 577-580.
doi: 10.1016/S0360-8352(97)00197-6. |
[10] |
S. C. Ho,
An iterated tabu search heuristic for the single source capacitated facility location problem, Applied Soft Computing, 27 (2015), 169-178.
doi: 10.1016/j.asoc.2014.11.004. |
[11] |
C. R. Houck, J. A. Joines and M. G. Kay,
Comparison of genetic algorithms, random restart and two-opt switching for solving large location-allocation problems, Computers and Operations Research, 23 (1996), 587-596.
doi: 10.1016/0305-0548(95)00063-1. |
[12] |
J. H. Jaramillo, J. Bhadury and R. Batta,
On the use of genetic algorithms to solve location problems, Computers and Operations Research, 29 (2002), 761-779.
doi: 10.1016/S0305-0548(01)00021-1. |
[13] |
J. Kalcsics, S. Nickel, M. A. Pozo, J. Puerto and A. M. Rodríguez-Chía,
The multicriteria $p$-facility median location problem on networks, European Journal of Operational Research, 235 (2014), 484-493.
doi: 10.1016/j.ejor.2014.01.003. |
[14] |
I. N. Katz and L. Cooper,
Facility location in the presence of forbidden regions. I: Formulation and the case of Euclidean distance with one forbidden circle, European Journal of Operational Research, 6 (1981), 166-173.
doi: 10.1016/0377-2217(81)90203-4. |
[15] |
K. Klamroth,
A reduction result for location problems with polyhedral barriers, European Journal of Operational Research, 130 (2001), 486-497.
doi: 10.1016/S0377-2217(99)00399-9. |
[16] |
J. Krarup and P. M. Pruzan,
The simple plant location problem: Survey and synthesis, European Journal of Operational Research, 12 (1983), 36-81.
doi: 10.1016/0377-2217(83)90181-9. |
[17] |
R. E. Kuenne and R. M. Soland,
Exact and approximate solutions to the multisource Weber problem, Mathematical Programming, 3 (1972), 193-209.
doi: 10.1007/BF01584989. |
[18] |
G. Laporte, F. V. Louveaux and L. van Hamme,
Exact solution to a location problem with stochastic demands, Transportation Science, 28 (1994), 95-103.
doi: 10.1287/trsc.28.2.95. |
[19] |
G. Laporte, S. Nickel and F. S. da Gama, Location Science, Springer, Berlin, 2015.
doi: 978-3-319-13111-5. |
[20] |
R. C. Larson and G. Sadiq,
Facility locations with the Manhattan metric in the presence of barriers to travel, Operations Research, 31 (1983), 652-669.
doi: 10.1287/opre.31.4.652. |
[21] |
B. Li, I. Hernandez, A. B. Milburn and J. E. Ramirez-Marquez,
Integrating uncertain user-generated demand data when locating facilities for disaster response commodity distribution, Socio-Economic Planning Sciences, 62 (2018), 84-103.
doi: 10.1016/j.seps.2017.09.003. |
[22] |
R. Logendran and M. P. Terrell,
Uncapacitated plant location-allocation problems with price sensitive stochastic demands, Computers and Operations Research, 15 (1988), 189-198.
doi: 10.1016/0305-0548(88)90011-1. |
[23] |
R. G. McGarvey and T. M. Cavalier,
A global optimal approach to facility location in the presence of forbidden regions, Computers and Industrial Engineering, 45 (2003), 1-15.
doi: 10.1016/S0360-8352(03)00028-7. |
[24] |
M. T. Melo, S. Nickel and F. Saldanha-da-Gama,
Facility location and supply chain management - a review, European journal of operational research, 196 (2009), 401-412.
doi: 10.1016/j.ejor.2008.05.007. |
[25] |
S. M. Mousavi, S. T. A. Niaki, E. Mehdizadeh and M. R. Tavarroth,
The capacitated multi-facility locationallocation problem with probabilistic customer location and demand: Two hybrid metaheuristics algorithms, International Journal of Systems Science, 44 (2013), 1897-1912.
doi: 10.1080/00207721.2012.670301. |
[26] |
J. A. Paul and R. Batta,
Models for hospital location and capacity allocation for an area prone to natural disasters, International Journal of Operational Research, 3 (2008), 473-496.
doi: 10.1504/IJOR.2008.019170. |
[27] |
F. Pérez-Galarce, L. J. Canales, C. Vergara and A. Candia-Véjar, An optimization model for the location of disaster refuges, Socio-Economic Planning Sciences, 59 (2017), 56-66. Google Scholar |
[28] |
C. S. ReVelle and H. A. Eiselt,
Location analysis: A synthesis and survey, European Journal of Operational Research, 165 (2005), 1-19.
doi: 10.1016/j.ejor.2003.11.032. |
[29] |
C. S. ReVelle, H. A. Eiselt and M. S. Daskin,
A bibliography for some fundamental problem categories in discrete location science, European Journal of Operational Research, 184 (2008), 817-848.
doi: 10.1016/j.ejor.2006.12.044. |
[30] |
S. Salhi and M. D. H. Gamal,
A genetic algorithm based approach for the uncapacitated continuous locationallocation problem, Annals of Operations Research, 123 (2003), 203-222.
doi: 10.1023/A:1026131531250. |
[31] |
T. Santoso, S. Ahmed, M. Goetschalckx and A. Shapiro,
A stochastic programming approach for supply chain network design under uncertainty, European Journal of Operational Research, 167 (2005), 96-115.
doi: 10.1016/j.ejor.2004.01.046. |
[32] |
A. Schöbel, Location of Dimensional Facilities in a Continuous Space, in: Laporte G., Nickel S., Saldanha da Gama F. (eds), Location Science, Berlin: Springer, 2015. Google Scholar |
[33] |
S. R. Shariff, N. H. Moin and M. Omar,
Location allocation modeling for healthcare facility planning in Malaysia, Computers and Industrial Engineering, 62 (2012), 1000-1010.
doi: 10.1016/j.cie.2011.12.026. |
[34] |
H. D. Sherali, T. B. Carter and A. G. Hobeika,
A location-allocation model and algorithm for evacuation planning under hurricane/flood conditions, Transportation Research Part B: Methodological, 25 (1991), 439-452.
doi: 10.1016/0191-2615(91)90037-J. |
[35] |
Z. Stanimirović, A genetic algorithm approach for the capacitated single allocation p-hub median problem, Computing and Informatics, 29 (2012), 117-132. Google Scholar |
[36] |
J. Taniguchi, X. Wang, M. Gen and T. Yokota, Hybrid genetic algorithm with fuzzy logic controller for obstacle location-allocation problem, IEEJ Transactions on Electronics, Information and Systems, 124 (2004), 2027-2033. Google Scholar |
[37] |
A. Verma and G. M. Gaukler,
Pre-positioning disaster response facilities at safe locations: An evaluation of deterministic and stochastic modeling approaches, Computers and Operations Research, 62 (2015), 197-209.
doi: 10.1016/j.cor.2014.10.006. |
[38] |
N. Vidyarthi and S. Jayaswal,
Efficient solution of a class of locationallocation problems with stochastic demand and congestion, Computers and Operations Research, 48 (2014), 20-30.
doi: 10.1016/j.cor.2014.02.014. |
[39] |
J. Zhou and B. D. Liu,
New stochastic models for capacitated location-allocation problem, Computers and Industrial Engineering, 45 (2003), 111-125.
doi: 10.1016/S0360-8352(03)00021-4. |






Parameter | Value |
Number of customers | 17 |
Number of distribution centers | 3 |
Number of forbidden areas | 1 |
The radius of margin | 15 |
The coordinates of margin center | (50, 30) |
Number of corners of each of regions | 5 |
Parameter | Value |
Number of customers | 17 |
Number of distribution centers | 3 |
Number of forbidden areas | 1 |
The radius of margin | 15 |
The coordinates of margin center | (50, 30) |
Number of corners of each of regions | 5 |
Objective Function | ||||||||
Instance | m | n | R-SCOLAP | SCOLAP | GCOLAP1 | GCOLAP2 | MIP gap | GA gap |
1 | 2 | 8 | 0.0435 | 19.41 | 25.44 | 26.96 | 0 | 0.31 |
2 | 2 | 10 | 0.0443 | 30.56 | 36.57 | 34.21 | 0 | 0.2 |
3 | 2 | 12 | 0.0424 | 33.26 | 39.18 | 47.41 | 0 | 0.18 |
4 | 2 | 15 | 0.0493 | 65.52 | 80.89 | 77.46 | 0 | 0.23 |
5 | 3 | 17 | 0.0443 | 65.5 | 87.34 | 105.68 | 0 | 0.33 |
6 | 3 | 20 | 0.0542 | 138.12 | 177.07 | 139.72 | 0.00009 | 0.28 |
7 | 3 | 25 | 0.0677 | 163.25 | 209.29 | 214.77 | 0.0001 | 0.28 |
8 | 3 | 30 | 0.0723 | 273.86 | 329.96 | 277.23 | 0.00254 | 0.2 |
9 | 4 | 35 | 0.0738 | - | 249.24 | 501.61 | - | - |
10 | 4 | 40 | 0.0881 | - | 387.83 | 500.64 | - | - |
11 | 4 | 44 | 0.0733 | - | 618.62 | 645.86 | - | - |
12 | 5 | 47 | 0.077 | - | 721.32 | 941.63 | - | - |
13 | 5 | 50 | 0.138 | - | 835.72 | 1122.76 | - | - |
14 | 5 | 55 | 0.0971 | - | 854.85 | 1025.11 | - | - |
15 | 6 | 60 | 0.1343 | - | 1542.82 | 1825.43 | - | - |
16 | 6 | 65 | 0.1067 | - | 1382.88 | 1738.93 | - | - |
17 | 7 | 70 | 0.1536 | - | 1699.78 | 2836.1 | - | - |
18 | 7 | 74 | 0.1206 | - | 2021.15 | 2590.2 | - | - |
19 | 8 | 78 | 0.1088 | - | 2145.16 | 3079.13 | - | - |
20 | 8 | 82 | 0.1156 | - | 3210.13 | 3450.84 | - | - |
Objective Function | ||||||||
Instance | m | n | R-SCOLAP | SCOLAP | GCOLAP1 | GCOLAP2 | MIP gap | GA gap |
1 | 2 | 8 | 0.0435 | 19.41 | 25.44 | 26.96 | 0 | 0.31 |
2 | 2 | 10 | 0.0443 | 30.56 | 36.57 | 34.21 | 0 | 0.2 |
3 | 2 | 12 | 0.0424 | 33.26 | 39.18 | 47.41 | 0 | 0.18 |
4 | 2 | 15 | 0.0493 | 65.52 | 80.89 | 77.46 | 0 | 0.23 |
5 | 3 | 17 | 0.0443 | 65.5 | 87.34 | 105.68 | 0 | 0.33 |
6 | 3 | 20 | 0.0542 | 138.12 | 177.07 | 139.72 | 0.00009 | 0.28 |
7 | 3 | 25 | 0.0677 | 163.25 | 209.29 | 214.77 | 0.0001 | 0.28 |
8 | 3 | 30 | 0.0723 | 273.86 | 329.96 | 277.23 | 0.00254 | 0.2 |
9 | 4 | 35 | 0.0738 | - | 249.24 | 501.61 | - | - |
10 | 4 | 40 | 0.0881 | - | 387.83 | 500.64 | - | - |
11 | 4 | 44 | 0.0733 | - | 618.62 | 645.86 | - | - |
12 | 5 | 47 | 0.077 | - | 721.32 | 941.63 | - | - |
13 | 5 | 50 | 0.138 | - | 835.72 | 1122.76 | - | - |
14 | 5 | 55 | 0.0971 | - | 854.85 | 1025.11 | - | - |
15 | 6 | 60 | 0.1343 | - | 1542.82 | 1825.43 | - | - |
16 | 6 | 65 | 0.1067 | - | 1382.88 | 1738.93 | - | - |
17 | 7 | 70 | 0.1536 | - | 1699.78 | 2836.1 | - | - |
18 | 7 | 74 | 0.1206 | - | 2021.15 | 2590.2 | - | - |
19 | 8 | 78 | 0.1088 | - | 2145.16 | 3079.13 | - | - |
20 | 8 | 82 | 0.1156 | - | 3210.13 | 3450.84 | - | - |
[1] |
Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021017 |
[2] |
Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021002 |
[3] |
Vadim Azhmyakov, Juan P. Fernández-Gutiérrez, Erik I. Verriest, Stefan W. Pickl. A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure. Journal of Industrial & Management Optimization, 2021, 17 (2) : 669-686. doi: 10.3934/jimo.2019128 |
[4] |
Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134 |
[5] |
Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112 |
[6] |
Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020295 |
[7] |
Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325 |
[8] |
Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020180 |
[9] |
Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021011 |
[10] |
Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020171 |
[11] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[12] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[13] |
Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005 |
[14] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[15] |
Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021018 |
[16] |
João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321 |
[17] |
Linhao Xu, Marya Claire Zdechlik, Melissa C. Smith, Min B. Rayamajhi, Don L. DeAngelis, Bo Zhang. Simulation of post-hurricane impact on invasive species with biological control management. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4059-4071. doi: 10.3934/dcds.2020038 |
[18] |
David W. K. Yeung, Yingxuan Zhang, Hongtao Bai, Sardar M. N. Islam. Collaborative environmental management for transboundary air pollution problems: A differential levies game. Journal of Industrial & Management Optimization, 2021, 17 (2) : 517-531. doi: 10.3934/jimo.2019121 |
[19] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 |
[20] |
Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]