\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Network data envelopment analysis with fuzzy non-discretionary factors

  • * Corresponding author: C.-F. Hu

    * Corresponding author: C.-F. Hu
Abstract Full Text(HTML) Figure(2) / Table(3) Related Papers Cited by
  • Network data envelopment analysis (DEA) concerns using the DEA technique to measure the relative efficiency of a system, taking into account its internal structure. The results are more meaningful and informative than those obtained from the conventional DEA models. This work proposed a new network DEA model based on the fuzzy concept even though the inputs and outputs data are crisp numbers. The model is then extended to investigate the network DEA with fuzzy non-discretionary variables. An illustrative application assessing the impact of information technology (IT) on firm performance is included. The results reveal that modeling the IT budget as a fuzzy non-discretionary factor improves the system performance of firms in a banking industry.

    Mathematics Subject Classification: Primary: 90B50, 90C08; Secondary: 91B06.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  General network systems [12]

    Figure 2.  Network system discussed in [18]

    Table 1.  Data set for assessing IT impact on firm performance

    DMU
    j
    IT Fixed No. of Deposits Profit Fraction
    $ \rm {budget}$ $ {\mbox{assets}} $ $ {\mbox{employees }}$ of loans
    $({$ \ \mbox{billions})}$ $({$ \ \mbox{billions})} $ $ ({$ \ \mbox{billions})} $ $({$ \ \mbox{billions})} $ $ ({$ \ \mbox{billions})} $ ${\mbox{recovered}}$
    $ X_1 $ $ X_2 $ $ X_3 $ $ Z $ $ Y_1$ $ Y_2 $
    1 $ 0.150 $ $ 0.713 $ $ 13.3 $ $ 14.478 $ $ 0.232 $ $ 0.986 $
    2 $ 0.170 $ $ 1.071 $ $ 16.9 $ $ 19.502 $ $ 0.340 $ $ 0.986 $
    3 $ 0.235 $ $ 1.224 $ $ 24.0 $ $ 20.952 $ $ 0.363 $ $ 0.986 $
    4 $ 0.211 $ $ 0.363 $ $ 15.6 $ $ 13.902 $ $ 0.211 $ $ 0.982 $
    5 $ 0.133 $ $ 0.409 $ $ 18.485 $ $ 15.206 $ $ 0.237 $ $ 0.984 $
    6 $ 0.497 $ $ 5.846 $ $ 56.42 $ $ 81.186 $ $ 1.103 $ $ 0.955 $
    7 $ 0.060 $ $ 0.918 $ $ 56.42 $ $ 81.186 $ $ 1.103 $ $ 0.986 $
    8 $ 0.071 $ $ 1.235 $ $ 12.0 $ $ 11.441 $ $ 0.199 $ $ 0.985 $
    9 $ 1.500 $ $ 18.120 $ $ 89.51 $ $ 124.072 $ $ 1.858 $ $ 0.972 $
    10 $ 0.120 $ $ 1.821 $ $ 19.8 $ $ 17.425 $ $ 0.274 $ $ 0.983 $
    11 $ 0.120 $ $ 1.915 $ $ 19.8 $ $ 17.425 $ $ 0.274 $ $ 0.983 $
    12 $ 0.050 $ $ 0.874 $ $ 13.1 $ $ 14.342 $ $ 0.177 $ $ 0.985 $
    13 $ 0.370 $ $ 6.918 $ $ 12.5 $ $ 32.491 $ $ 0.648 $ $ 0.945 $
    14 $ 0.440 $ $ 4.432 $ $ 41.9 $ $ 47.653 $ $ 0.639 $ $ 0.979 $
    15 $ 0.431 $ $ 4.504 $ $ 41.1 $ $ 52.63 $ $ 0.741 $ $ 0.981 $
    16 $ 0.110 $ $ 1.241 $ $ 14.4 $ $ 17.493 $ $ 0.243 $ $ 0.988 $
    17 $ 0.053 $ $ 0.450 $ $ 7.6 $ $ 9.512 $ $ 0.067 $ $ 0.980 $
    18 $ 0.345 $ $ 5.892 $ $ 15.5 $ $ 42.469 $ $ 1.002 $ $ 0.948 $
    19 $ 0.128 $ $ 0.973 $ $ 12.6 $ $ 18.987 $ $ 0.243 $ $ 0.985 $
    20 $ 0.055 $ $ 0.444 $ $ 5.9 $ $ 7.546 $ $ 0.153 $ $ 0.987 $
    21 $ 0.057 $ $ 0.508 $ $ 5.7 $ $ 7.595 $ $ 0.123 $ $ 0.987 $
    22 $ 0.098 $ $ 0.370 $ $ 14.1 $ $ 16.906 $ $ 0.233 $ $ 0.981 $
    23 $ 0.104 $ $ 0.395 $ $ 14.6 $ $ 17.264 $ $ 0.263 $ $ 0.983 $
    24 $ 0.206 $ $ 2.680 $ $ 19.6 $ $ 36.430 $ $ 0.601 $ $ 0.982 $
    25 $ 0.067 $ $ 0.781 $ $ 10.5 $ $ 11.581 $ $ 0.120 $ $ 0.987 $
    26 $ 0.100 $ $ 0.872 $ $ 12.1 $ $ 22.207 $ $ 0.248 $ $ 0.972 $
    27 $ 0.0106 $ $ 1.757 $ $ 12.7 $ $ 20.670 $ $ 0.253 $ $ 0.988 $
     | Show Table
    DownLoad: CSV

    Table 2.  The system efficiency, $ \theta_p^{\ast}, $ and the membership degree, $ \alpha_p, p = 1, 2, \cdots, 27. $

    DMU
    j
    Model (2)
    $ \theta^{\ast} $
    ${ \text{Model (6)}}$ DMU
    j
    Model (2)
    $ \theta^{\ast} $
    $ { \text{Model (6)}}$
    $\alpha^{\ast}$ $ 1-\alpha^{\ast}$ $ \alpha^{\ast} $ $ 1-\alpha^{\ast} $
    $ 1 $ $ 0.6388 $ $ 0.3612 $$ 0.6388 $ $ 15 $ $ 0.6582 $ $ 0.3418 $$ 0.6582 $
    $ 2 $ $ 0.6507 $ $ 0.3493 $ $ 0.6507 $ $ 16 $ $ 0.6646 $ $ 0.3354 $$ 0.6646 $
    $ 3 $ $ 0.5179 $ $ 0.4821 $$ 0.5179 $ $ 17 $ $ 0.7177 $ $ 0.2823 $$ 0.7177 $
    $ 4 $ $ 0.5986 $ $ 0.4014 $ $ 0.5986 $ $ 18 $ $ 1.0000 $ $ 0.0000 $$ 1.0000 $
    $ 5 $ $ 0.5556 $ $ 0.4444 $ $ 0.5556 $ $ 19 $ $ 0.8144 $ $ 0.1856 $$ 0.8144 $
    $ 6 $ $ 0.7599 $ $ 0.2401 $$ 0.7599 $ $ 20 $ $ 0.6940 $ $ 0.3060 $$ 0.6940 $
    $ 7 $ $ 1.0000 $ $ 0.0000 $$ 1.0000 $ $ 21 $ $ 0.7067 $ $ 0.2933 $$ 0.7067 $
    $ 8 $ $ 0.5352 $ $ 0.4648 $$ 0.5352 $ $ 22 $ $ 0.7942 $ $ 0.2058 $$ 0.7942 $
    $ 9 $ $ 0.6249 $ $ 0.3751 $ $ 0.6249 $ $ 23 $ $ 0.7802 $ $ 0.2198 $$ 0.7802 $
    $ 10 $ $ 0.4961 $ $ 0.5039 $ $ 0.4961 $ $ 24 $ $ 0.9300 $ $ 0.0700 $$ 0.9300 $
    $ 11 $ $ 0.4945 $ $ 0.5055 $ $ 0.4945 $ $ 25 $ $ 0.6270 $ $ 0.3730 $$ 0.6270 $
    $ 12 $ $ 0.6685 $ $ 0.3315 $ $ 0.6685 $ $ 26 $ $ 1.0000 $ $ 0.0000 $$ 1.0000 $
    $ 13 $ $ 0.9487 $ $ 0.0513 $ $ 0.9487 $ $ 27 $ $ 1.0000 $ $ 0.0000 $$ 1.0000 $
    $ 14 $ $ 0.5880 $ $ 0.4120 $$ 0.5880 $
     | Show Table
    DownLoad: CSV

    Table 3.  The results of solving the proposed fuzzy non-discretionary Model (14)

    $ \begin{array}{c} \mbox{DMU}\\ j \end{array} $Fuzzy non-discretionary input
    $ \bar{X}_{1j}^{\ast} $ $ \bar{X}_{2j}^{\ast} $ $ \bar{X}_{3j}^{\ast} $ $ \alpha^{\ast} $ $ 1-\alpha^{\ast} $Rank
    10.11020.52369.63350.26540.734618
    20.12600.772312.42590.25890.741117
    30.15860.807916.13280.32530.674725
    40.15060.256410.90130.28640.713621
    50.09210.279311.21650.30770.692323
    60.40084.634245.42890.19360.806410
    70.06000.918056.42000.00001.00001
    80.04850.76778.09880.31730.682724
    91.090813.147164.85290.27280.727220
    100.07981.071512.82950.33510.664926
    110.07971.099712.74160.33580.664227
    120.03760.65449.78830.24900.751014
    130.35195.329111.89000.04880.95125
    140.31163.104729.59290.29180.708222
    150.32123.277230.49690.25470.745316
    160.08240.894310.77290.25120.748815
    170.04130.35095.88710.22020.779811
    180.34505.892015.50000.00001.00001
    190.10800.815410.61510.15650.84357
    200.04210.33494.49480.23430.765713
    210.04410.39044.36860.22680.773212
    220.08130.304311.67750.17070.82938
    230.08530.321611.95540.18020.81989
    240.19252.412518.31760.06540.93466
    250.04880.54487.53420.27170.728319
    260.10000.872012.10000.00001.00001
    270.01061.757012.70000.00001.00001
     | Show Table
    DownLoad: CSV
  • [1] R. D. Banker and R. Morey, Efficiency analysis for exogenously fixed inputs and outputs, Oper. Res., 34 (1986), 501-653.  doi: 10.1287/opre.34.4.513.
    [2] M. BaratG. Tohidi and M. Sanei, DEA for nonhomogeneous mixed networks, Asia Pac. Manag. Rev., 24 (2018), 161-166.  doi: 10.1016/j.apmrv.2018.02.003.
    [3] R. E. Bellman and L. A. Zadeh, Decision making in a fuzzy environment, Manag. Sci., 17 (1970), B141–B164. doi: 10.1287/mnsc.17.4.B141.
    [4] L. CastelliR. Pesenti and W. Ukovich, DEA-like models for the efficiency evaluation of hierarchically structured units, Eur. J. Oper. Res., 154 (2004), 465-476.  doi: 10.1016/S0377-2217(03)00182-6.
    [5] J. Zhu, Data Envelopment Analysis: A Handbook of Modeling Internal Structures and Networks, International Series in Operations Research & Management Science, 238. Springer, New York, 2016. doi: 10.1007/978-1-4899-7684-0.
    [6] J. M. Cordero-FerreraF. Pedraja-Chaparro and D. Santín-González, Enhancing the inclusion of non-discretionary inputs in DEA, J. Oper. Res. Soc., 61 (2010), 574-584.  doi: 10.1057/jors.2008.189.
    [7] R. Färe and S. Grosskopf, Intertemporal Production Frontiers: With Dynamic DEA, Boston: Kluwer Academic Publishers, 1996.
    [8] R. Färe and S. Grosskopf, Network DEA, Socio. Econ. Plann. Sci., 4 (2000), 35-49. 
    [9] D. U. A. Galagedera, Modelling social responsibility in mutual fund performance appraisal: A two-stage data envelopment analysis model with non-discretionary first stage output, Eur. J. Oper. Res., 273 (2019), 376-389.  doi: 10.1016/j.ejor.2018.08.011.
    [10] B. Golany and Y. Roll, Some extensions of techniques to handle non-discretionary factors in data envelopment analysis, J. Prod. Anal., 4 (1993), 419-432.  doi: 10.1007/BF01073549.
    [11] C. Kao, Network data envelopment analysis: A review, Eur. J. Oper. Res., 239 (2014), 1-16.  doi: 10.1016/j.ejor.2014.02.039.
    [12] C. Kao, Efficiency decomposition and aggregation in network data envelopment analysis, Eur. J. Oper. Res., 255 (2016), 778-786.  doi: 10.1016/j.ejor.2016.05.019.
    [13] C. Kao and S.-N. Hwang, Efficiency measurement for network systems: IT impact on firm performance, Decis. Support Syst., 48 (2010), 437-446.  doi: 10.1016/j.dss.2009.06.002.
    [14] R. J. Kauffman and P. Weill, An evaluative framework for research on the performance effects of information technology investment, Proceedings of the 10th International Conference on Information Systems, (1989), 377–388. doi: 10.1145/75034.75066.
    [15] M. A. MunizJ. ParadiJ. Ruggiero and Z. Yang, Evaluating alternative DEA models used to control for non-discretionary inputs, Comput. Oper. Res., 33 (2006), 1173-1183. 
    [16] L. Simar and P. W. Wilson, Estimation and inference in two-stage, semi-parametric models of production processes, J. Econom., 136 (1997), 31-64.  doi: 10.1016/j.jeconom.2005.07.009.
    [17] M. TalebR. Ramli and R. Khalid, Developing a two-stage approach of super efficiency slack-based measure in the presence of non-discretionary factors and mixed integer-valued data envelopment analysis, Expert. Syst. Appl., 103 (2018), 14-24.  doi: 10.1016/j.eswa.2018.02.037.
    [18] C. H. WangR. Gopal and S. Zionts, Use of data envelopment analysis in assessing information technology impact on firm performance, Ann. Oper. Res., 73 (1997), 191-213. 
    [19] M. Zerafat Angiz L and A. Mustafa, Fuzzy interpretation of efficiency in data envelopment analysis and its application in a non-discretionary model, Knowl.-Based Syst., 49 (2013), 145-151. 
  • 加载中

Figures(2)

Tables(3)

SHARE

Article Metrics

HTML views(1016) PDF downloads(539) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return