
-
Previous Article
The optimal solution to a principal-agent problem with unknown agent ability
- JIMO Home
- This Issue
-
Next Article
Robust equilibrium control-measure policy for a DC pension plan with state-dependent risk aversion under mean-variance criterion
Network data envelopment analysis with fuzzy non-discretionary factors
1. | Department of International Business, Kao Yuan University, Kaohsiung, 82151, Taiwan |
2. | Department of Mechanical and Automation Engineering, I-Shou University, Kaohsiung, 84001, Taiwan |
3. | Department of Applied Mathematics, Tunghai University, Taichung 40704, Taiwan |
4. | Department of Applied Mathematics, National Chiayi University, Chiayi, 60004, Taiwan |
Network data envelopment analysis (DEA) concerns using the DEA technique to measure the relative efficiency of a system, taking into account its internal structure. The results are more meaningful and informative than those obtained from the conventional DEA models. This work proposed a new network DEA model based on the fuzzy concept even though the inputs and outputs data are crisp numbers. The model is then extended to investigate the network DEA with fuzzy non-discretionary variables. An illustrative application assessing the impact of information technology (IT) on firm performance is included. The results reveal that modeling the IT budget as a fuzzy non-discretionary factor improves the system performance of firms in a banking industry.
References:
[1] |
R. D. Banker and R. Morey,
Efficiency analysis for exogenously fixed inputs and outputs, Oper. Res., 34 (1986), 501-653.
doi: 10.1287/opre.34.4.513. |
[2] |
M. Barat, G. Tohidi and M. Sanei,
DEA for nonhomogeneous mixed networks, Asia Pac. Manag. Rev., 24 (2018), 161-166.
doi: 10.1016/j.apmrv.2018.02.003. |
[3] |
R. E. Bellman and L. A. Zadeh, Decision making in a fuzzy environment, Manag. Sci., 17 (1970), B141–B164.
doi: 10.1287/mnsc.17.4.B141. |
[4] |
L. Castelli, R. Pesenti and W. Ukovich,
DEA-like models for the efficiency evaluation of hierarchically structured units, Eur. J. Oper. Res., 154 (2004), 465-476.
doi: 10.1016/S0377-2217(03)00182-6. |
[5] |
J. Zhu, Data Envelopment Analysis: A Handbook of Modeling Internal Structures and Networks, International Series in Operations Research & Management Science, 238. Springer, New York, 2016.
doi: 10.1007/978-1-4899-7684-0. |
[6] |
J. M. Cordero-Ferrera, F. Pedraja-Chaparro and D. Santín-González,
Enhancing the inclusion of non-discretionary inputs in DEA, J. Oper. Res. Soc., 61 (2010), 574-584.
doi: 10.1057/jors.2008.189. |
[7] |
R. Färe and S. Grosskopf, Intertemporal Production Frontiers: With Dynamic DEA, Boston: Kluwer Academic Publishers, 1996. Google Scholar |
[8] |
R. Färe and S. Grosskopf, Network DEA, Socio. Econ. Plann. Sci., 4 (2000), 35-49. Google Scholar |
[9] |
D. U. A. Galagedera,
Modelling social responsibility in mutual fund performance appraisal: A two-stage data envelopment analysis model with non-discretionary first stage output, Eur. J. Oper. Res., 273 (2019), 376-389.
doi: 10.1016/j.ejor.2018.08.011. |
[10] |
B. Golany and Y. Roll,
Some extensions of techniques to handle non-discretionary factors in data envelopment analysis, J. Prod. Anal., 4 (1993), 419-432.
doi: 10.1007/BF01073549. |
[11] |
C. Kao,
Network data envelopment analysis: A review, Eur. J. Oper. Res., 239 (2014), 1-16.
doi: 10.1016/j.ejor.2014.02.039. |
[12] |
C. Kao,
Efficiency decomposition and aggregation in network data envelopment analysis, Eur. J. Oper. Res., 255 (2016), 778-786.
doi: 10.1016/j.ejor.2016.05.019. |
[13] |
C. Kao and S.-N. Hwang,
Efficiency measurement for network systems: IT impact on firm performance, Decis. Support Syst., 48 (2010), 437-446.
doi: 10.1016/j.dss.2009.06.002. |
[14] |
R. J. Kauffman and P. Weill, An evaluative framework for research on the performance effects of information technology investment, Proceedings of the 10th International Conference on Information Systems, (1989), 377–388.
doi: 10.1145/75034.75066. |
[15] |
M. A. Muniz, J. Paradi, J. Ruggiero and Z. Yang, Evaluating alternative DEA models used to control for non-discretionary inputs, Comput. Oper. Res., 33 (2006), 1173-1183. Google Scholar |
[16] |
L. Simar and P. W. Wilson,
Estimation and inference in two-stage, semi-parametric models of production processes, J. Econom., 136 (1997), 31-64.
doi: 10.1016/j.jeconom.2005.07.009. |
[17] |
M. Taleb, R. Ramli and R. Khalid,
Developing a two-stage approach of super efficiency slack-based measure in the presence of non-discretionary factors and mixed integer-valued data envelopment analysis, Expert. Syst. Appl., 103 (2018), 14-24.
doi: 10.1016/j.eswa.2018.02.037. |
[18] |
C. H. Wang, R. Gopal and S. Zionts, Use of data envelopment analysis in assessing information technology impact on firm performance, Ann. Oper. Res., 73 (1997), 191-213. Google Scholar |
[19] |
M. Zerafat Angiz L and A. Mustafa, Fuzzy interpretation of efficiency in data envelopment analysis and its application in a non-discretionary model, Knowl.-Based Syst., 49 (2013), 145-151. Google Scholar |
show all references
References:
[1] |
R. D. Banker and R. Morey,
Efficiency analysis for exogenously fixed inputs and outputs, Oper. Res., 34 (1986), 501-653.
doi: 10.1287/opre.34.4.513. |
[2] |
M. Barat, G. Tohidi and M. Sanei,
DEA for nonhomogeneous mixed networks, Asia Pac. Manag. Rev., 24 (2018), 161-166.
doi: 10.1016/j.apmrv.2018.02.003. |
[3] |
R. E. Bellman and L. A. Zadeh, Decision making in a fuzzy environment, Manag. Sci., 17 (1970), B141–B164.
doi: 10.1287/mnsc.17.4.B141. |
[4] |
L. Castelli, R. Pesenti and W. Ukovich,
DEA-like models for the efficiency evaluation of hierarchically structured units, Eur. J. Oper. Res., 154 (2004), 465-476.
doi: 10.1016/S0377-2217(03)00182-6. |
[5] |
J. Zhu, Data Envelopment Analysis: A Handbook of Modeling Internal Structures and Networks, International Series in Operations Research & Management Science, 238. Springer, New York, 2016.
doi: 10.1007/978-1-4899-7684-0. |
[6] |
J. M. Cordero-Ferrera, F. Pedraja-Chaparro and D. Santín-González,
Enhancing the inclusion of non-discretionary inputs in DEA, J. Oper. Res. Soc., 61 (2010), 574-584.
doi: 10.1057/jors.2008.189. |
[7] |
R. Färe and S. Grosskopf, Intertemporal Production Frontiers: With Dynamic DEA, Boston: Kluwer Academic Publishers, 1996. Google Scholar |
[8] |
R. Färe and S. Grosskopf, Network DEA, Socio. Econ. Plann. Sci., 4 (2000), 35-49. Google Scholar |
[9] |
D. U. A. Galagedera,
Modelling social responsibility in mutual fund performance appraisal: A two-stage data envelopment analysis model with non-discretionary first stage output, Eur. J. Oper. Res., 273 (2019), 376-389.
doi: 10.1016/j.ejor.2018.08.011. |
[10] |
B. Golany and Y. Roll,
Some extensions of techniques to handle non-discretionary factors in data envelopment analysis, J. Prod. Anal., 4 (1993), 419-432.
doi: 10.1007/BF01073549. |
[11] |
C. Kao,
Network data envelopment analysis: A review, Eur. J. Oper. Res., 239 (2014), 1-16.
doi: 10.1016/j.ejor.2014.02.039. |
[12] |
C. Kao,
Efficiency decomposition and aggregation in network data envelopment analysis, Eur. J. Oper. Res., 255 (2016), 778-786.
doi: 10.1016/j.ejor.2016.05.019. |
[13] |
C. Kao and S.-N. Hwang,
Efficiency measurement for network systems: IT impact on firm performance, Decis. Support Syst., 48 (2010), 437-446.
doi: 10.1016/j.dss.2009.06.002. |
[14] |
R. J. Kauffman and P. Weill, An evaluative framework for research on the performance effects of information technology investment, Proceedings of the 10th International Conference on Information Systems, (1989), 377–388.
doi: 10.1145/75034.75066. |
[15] |
M. A. Muniz, J. Paradi, J. Ruggiero and Z. Yang, Evaluating alternative DEA models used to control for non-discretionary inputs, Comput. Oper. Res., 33 (2006), 1173-1183. Google Scholar |
[16] |
L. Simar and P. W. Wilson,
Estimation and inference in two-stage, semi-parametric models of production processes, J. Econom., 136 (1997), 31-64.
doi: 10.1016/j.jeconom.2005.07.009. |
[17] |
M. Taleb, R. Ramli and R. Khalid,
Developing a two-stage approach of super efficiency slack-based measure in the presence of non-discretionary factors and mixed integer-valued data envelopment analysis, Expert. Syst. Appl., 103 (2018), 14-24.
doi: 10.1016/j.eswa.2018.02.037. |
[18] |
C. H. Wang, R. Gopal and S. Zionts, Use of data envelopment analysis in assessing information technology impact on firm performance, Ann. Oper. Res., 73 (1997), 191-213. Google Scholar |
[19] |
M. Zerafat Angiz L and A. Mustafa, Fuzzy interpretation of efficiency in data envelopment analysis and its application in a non-discretionary model, Knowl.-Based Syst., 49 (2013), 145-151. Google Scholar |
DMU j |
IT | Fixed | No. of | Deposits | Profit | Fraction |
of loans | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
4 | ||||||
5 | ||||||
6 | ||||||
7 | ||||||
8 | ||||||
9 | ||||||
10 | ||||||
11 | ||||||
12 | ||||||
13 | ||||||
14 | ||||||
15 | ||||||
16 | ||||||
17 | ||||||
18 | ||||||
19 | ||||||
20 | ||||||
21 | ||||||
22 | ||||||
23 | ||||||
24 | ||||||
25 | ||||||
26 | ||||||
27 |
DMU j |
IT | Fixed | No. of | Deposits | Profit | Fraction |
of loans | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
4 | ||||||
5 | ||||||
6 | ||||||
7 | ||||||
8 | ||||||
9 | ||||||
10 | ||||||
11 | ||||||
12 | ||||||
13 | ||||||
14 | ||||||
15 | ||||||
16 | ||||||
17 | ||||||
18 | ||||||
19 | ||||||
20 | ||||||
21 | ||||||
22 | ||||||
23 | ||||||
24 | ||||||
25 | ||||||
26 | ||||||
27 |
DMU j |
Model (2) |
DMU j |
Model (2) |
||||
|
|||||||
|
|||||||
|
|||||||
|
|||||||
|
|||||||
|
|||||||
|
|||||||
|
|||||||
|
|||||||
DMU j |
Model (2) |
DMU j |
Model (2) |
||||
|
|||||||
|
|||||||
|
|||||||
|
|||||||
|
|||||||
|
|||||||
|
|||||||
|
|||||||
|
|||||||
Fuzzy non-discretionary input | ||||||
Rank | ||||||
1 | 0.1102 | 0.5236 | 9.6335 | 0.2654 | 0.7346 | 18 |
2 | 0.1260 | 0.7723 | 12.4259 | 0.2589 | 0.7411 | 17 |
3 | 0.1586 | 0.8079 | 16.1328 | 0.3253 | 0.6747 | 25 |
4 | 0.1506 | 0.2564 | 10.9013 | 0.2864 | 0.7136 | 21 |
5 | 0.0921 | 0.2793 | 11.2165 | 0.3077 | 0.6923 | 23 |
6 | 0.4008 | 4.6342 | 45.4289 | 0.1936 | 0.8064 | 10 |
7 | 0.0600 | 0.9180 | 56.4200 | 0.0000 | 1.0000 | 1 |
8 | 0.0485 | 0.7677 | 8.0988 | 0.3173 | 0.6827 | 24 |
9 | 1.0908 | 13.1471 | 64.8529 | 0.2728 | 0.7272 | 20 |
10 | 0.0798 | 1.0715 | 12.8295 | 0.3351 | 0.6649 | 26 |
11 | 0.0797 | 1.0997 | 12.7416 | 0.3358 | 0.6642 | 27 |
12 | 0.0376 | 0.6544 | 9.7883 | 0.2490 | 0.7510 | 14 |
13 | 0.3519 | 5.3291 | 11.8900 | 0.0488 | 0.9512 | 5 |
14 | 0.3116 | 3.1047 | 29.5929 | 0.2918 | 0.7082 | 22 |
15 | 0.3212 | 3.2772 | 30.4969 | 0.2547 | 0.7453 | 16 |
16 | 0.0824 | 0.8943 | 10.7729 | 0.2512 | 0.7488 | 15 |
17 | 0.0413 | 0.3509 | 5.8871 | 0.2202 | 0.7798 | 11 |
18 | 0.3450 | 5.8920 | 15.5000 | 0.0000 | 1.0000 | 1 |
19 | 0.1080 | 0.8154 | 10.6151 | 0.1565 | 0.8435 | 7 |
20 | 0.0421 | 0.3349 | 4.4948 | 0.2343 | 0.7657 | 13 |
21 | 0.0441 | 0.3904 | 4.3686 | 0.2268 | 0.7732 | 12 |
22 | 0.0813 | 0.3043 | 11.6775 | 0.1707 | 0.8293 | 8 |
23 | 0.0853 | 0.3216 | 11.9554 | 0.1802 | 0.8198 | 9 |
24 | 0.1925 | 2.4125 | 18.3176 | 0.0654 | 0.9346 | 6 |
25 | 0.0488 | 0.5448 | 7.5342 | 0.2717 | 0.7283 | 19 |
26 | 0.1000 | 0.8720 | 12.1000 | 0.0000 | 1.0000 | 1 |
27 | 0.0106 | 1.7570 | 12.7000 | 0.0000 | 1.0000 | 1 |
Fuzzy non-discretionary input | ||||||
Rank | ||||||
1 | 0.1102 | 0.5236 | 9.6335 | 0.2654 | 0.7346 | 18 |
2 | 0.1260 | 0.7723 | 12.4259 | 0.2589 | 0.7411 | 17 |
3 | 0.1586 | 0.8079 | 16.1328 | 0.3253 | 0.6747 | 25 |
4 | 0.1506 | 0.2564 | 10.9013 | 0.2864 | 0.7136 | 21 |
5 | 0.0921 | 0.2793 | 11.2165 | 0.3077 | 0.6923 | 23 |
6 | 0.4008 | 4.6342 | 45.4289 | 0.1936 | 0.8064 | 10 |
7 | 0.0600 | 0.9180 | 56.4200 | 0.0000 | 1.0000 | 1 |
8 | 0.0485 | 0.7677 | 8.0988 | 0.3173 | 0.6827 | 24 |
9 | 1.0908 | 13.1471 | 64.8529 | 0.2728 | 0.7272 | 20 |
10 | 0.0798 | 1.0715 | 12.8295 | 0.3351 | 0.6649 | 26 |
11 | 0.0797 | 1.0997 | 12.7416 | 0.3358 | 0.6642 | 27 |
12 | 0.0376 | 0.6544 | 9.7883 | 0.2490 | 0.7510 | 14 |
13 | 0.3519 | 5.3291 | 11.8900 | 0.0488 | 0.9512 | 5 |
14 | 0.3116 | 3.1047 | 29.5929 | 0.2918 | 0.7082 | 22 |
15 | 0.3212 | 3.2772 | 30.4969 | 0.2547 | 0.7453 | 16 |
16 | 0.0824 | 0.8943 | 10.7729 | 0.2512 | 0.7488 | 15 |
17 | 0.0413 | 0.3509 | 5.8871 | 0.2202 | 0.7798 | 11 |
18 | 0.3450 | 5.8920 | 15.5000 | 0.0000 | 1.0000 | 1 |
19 | 0.1080 | 0.8154 | 10.6151 | 0.1565 | 0.8435 | 7 |
20 | 0.0421 | 0.3349 | 4.4948 | 0.2343 | 0.7657 | 13 |
21 | 0.0441 | 0.3904 | 4.3686 | 0.2268 | 0.7732 | 12 |
22 | 0.0813 | 0.3043 | 11.6775 | 0.1707 | 0.8293 | 8 |
23 | 0.0853 | 0.3216 | 11.9554 | 0.1802 | 0.8198 | 9 |
24 | 0.1925 | 2.4125 | 18.3176 | 0.0654 | 0.9346 | 6 |
25 | 0.0488 | 0.5448 | 7.5342 | 0.2717 | 0.7283 | 19 |
26 | 0.1000 | 0.8720 | 12.1000 | 0.0000 | 1.0000 | 1 |
27 | 0.0106 | 1.7570 | 12.7000 | 0.0000 | 1.0000 | 1 |
[1] |
Xiao-Xu Chen, Peng Xu, Jiao-Jiao Li, Thomas Walker, Guo-Qiang Yang. Decision-making in a retailer-led closed-loop supply chain involving a third-party logistics provider. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021014 |
[2] |
Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1111-1127. doi: 10.3934/dcdsb.2020155 |
[3] |
Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077 |
[4] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[5] |
Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011 |
[6] |
Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020167 |
[7] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[8] |
Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020170 |
[9] |
Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021002 |
[10] |
Rajendra K C Khatri, Brendan J Caseria, Yifei Lou, Guanghua Xiao, Yan Cao. Automatic extraction of cell nuclei using dilated convolutional network. Inverse Problems & Imaging, 2021, 15 (1) : 27-40. doi: 10.3934/ipi.2020049 |
[11] |
Editorial Office. Retraction: Honggang Yu, An efficient face recognition algorithm using the improved convolutional neural network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 901-901. doi: 10.3934/dcdss.2019060 |
[12] |
Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435 |
[13] |
Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020449 |
[14] |
Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020381 |
[15] |
Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018 |
[16] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[17] |
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 |
[18] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[19] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[20] |
Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021018 |
2019 Impact Factor: 1.366
Tools
Article outline
Figures and Tables
[Back to Top]