[1]
|
Ş. İ. Birbil, G. Gürkan and O. Listeş, Solving stochastic mathematical programs with complementarity constraints using simulation, Math. Oper. Res., 31 (2006), 739-760.
doi: 10.1287/moor.1060.0215.
|
[2]
|
B. T. Chen and P. T. Harker, A non-interior-point continuation method for linear complementarity problems, SIAM J. Matrix Anal. Appl., 14 (1993), 1168-1190.
doi: 10.1137/0614081.
|
[3]
|
X. J. Chen, H. L. Sun and R. J.-B. Wets, Regularized mathematical programs with stochastic equilibrium constraints: Estimating structural demand models, SIAM J. Optim., 25 (2015), 53-75.
doi: 10.1137/130930157.
|
[4]
|
S. Christiansen, M. Patriksson and L. Wynter, Stochastic bilevel programming in structural optimization, Struct. Multidiscip. Optim., 21 (2001), 361-371.
doi: 10.1007/s001580100115.
|
[5]
|
F. H. Clarke, Optimization and Nonsmooth Analysis, Second edition, Classics in Applied Mathematics, 5. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990.
doi: 10.1137/1.9781611971309.
|
[6]
|
H. Y. Jiang and H. F. Xu, Stochastic approximation approaches to the stochastic variational inequality problem, IEEE Trans. Autom. Control, 53 (2008), 1462-1475.
doi: 10.1109/TAC.2008.925853.
|
[7]
|
C. Kanzow, Some noninterior continuation methods for linear complementarity problems, SIAM J. Matrix Anal. Appl., 17 (1996), 851-868.
doi: 10.1137/S0895479894273134.
|
[8]
|
A. J. King and R. T. Rockafellar, Sensitivity analysis for nonsmooth generalized equations, Math. Program., 55 (1992), 193-212.
doi: 10.1007/BF01581199.
|
[9]
|
G.-H. Lin, M.-J. Luo and J. Zhang, Smoothing and SAA method for stochastic programming problems with non-smooth objective and constraints, J. Global Optim., 66 (2016), 487-510.
doi: 10.1007/s10898-016-0413-9.
|
[10]
|
G.-H. Lin, M.-J. Luo, D. L. Zhang and J. Zhang, Stochastic second-order-cone complementarity problems: expected residual minimization formulation and its applications, Math. Program., 165 (2017), 197-233.
doi: 10.1007/s10107-017-1121-z.
|
[11]
|
G.-H. Lin, H. F. Xu and M. Fukushima, Monte Carlo and quasi-Monte Carlo sampling methods for a class of stochastic mathematical programs with equilibrium constraints, Math. Method Oper. Res., 67 (2008), 423-441.
doi: 10.1007/s00186-007-0201-x.
|
[12]
|
Y. C. Liu and G.-H. Lin, Convergence analysis of a regularized sample average approximation method for stochastic mathematical programs with complementarity constraints, Asia Pac. J. Oper. Res., 28 (2011), 755-771.
doi: 10.1142/S0217595911003338.
|
[13]
|
Y. C. Liu, H. F. Xu and J. J. Ye, Penalized sample average approximation methods for stochastic mathematical programs with complementarity constraints, Math. Oper. Res., 36 (2011), 670-694.
doi: 10.1287/moor.1110.0513.
|
[14]
|
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Grundlehren der mathematischen Wissenschaften, 317. Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-642-02431-3.
|
[15]
|
A. Shapiro, D. Dentcheva and A. Ruszczyński, Lectures on Stochastic Programming, Society for Industrial and Applied Mathematics, 2009.
doi: 10.1137/1.9780898718751.
|
[16]
|
S. Smale, Algorithms for solving equations, Proceedings of the International Congress of Mathematicians, Amer. Math. Soc., Providence, RI, 1, 2 (1986), 172-195.
|
[17]
|
H. L. Sun, C.-L. Su and X. J. Chen, SAA-regularized methods for multiproduct price optimization under the pure characteristics demand model, Math. Program., 165 (2017), 361-389.
doi: 10.1007/s10107-017-1119-6.
|
[18]
|
G. X. Wang, J. Zhang, B. Zeng and G.-H. Lin, Expected residual minimization formulation for a class of stochastic linear second-order cone complementarity problems, Eur. J. Oper. Res., 265 (2018), 437-447.
doi: 10.1016/j.ejor.2017.09.008.
|
[19]
|
H. F. Xu, Uniform exponential convergence of sample average random functions under general sampling with applications in stochastic programming, J. Math. Anal. Appl., 368 (2010), 692-710.
doi: 10.1016/j.jmaa.2010.03.021.
|
[20]
|
H. F. Xu and D. L. Zhang, Smooth sample average approximation of stationary points in nonsmooth stochastic optimization and applications, Math. Program. Ser. A, 119 (2009), 371-401.
doi: 10.1007/s10107-008-0214-0.
|
[21]
|
J. J. Ye, The exact penalty principle, Nonlinear Anal., 75 (2012), 1642-1654.
doi: 10.1016/j.na.2011.03.025.
|
[22]
|
J. J. Ye and J. C. Zhou, First-order optimality conditions for mathematical programs with second-order cone complementarity constraints,, SIAM J. Optim., 26 (2016), 2820-2846.
doi: 10.1137/16M1055554.
|
[23]
|
J. J. Ye and J. C. Zhou, Verifiable sufficient conditions for the error bound property of second-order cone complementarity problems, Math. Program. Ser. A, 171 (2018), 361-395.
doi: 10.1007/s10107-017-1193-9.
|
[24]
|
J. Zhang, L.-W. Zhang and S. Lin, A class of smoothing SAA methods for a stochastic mathematical program with complementarity constraints, J. Math. Anal. Appl., 387 (2012), 201-220.
doi: 10.1016/j.jmaa.2011.08.073.
|
[25]
|
Y. Zhang, Y. Jiang, L. W. Zhang and J. Z. Zhang, A perturbation approach for an inverse linear second-order cone programming, J. Ind. Manag. Optim., 9 (2013), 171-189.
doi: 10.3934/jimo.2013.9.171.
|
[26]
|
Y. Zhang, L. W. Zhang and J. Wu, Convergence properties of a smoothing approach for mathematical programs with second-order cone complementarity constraints, Set-Valued Var. Anal., 19 (2011), 609-646.
doi: 10.1007/s11228-011-0190-z.
|