
-
Previous Article
The joint location-transportation model based on grey bi-level programming for early post-earthquake relief
- JIMO Home
- This Issue
-
Next Article
Two-period pricing and ordering decisions of perishable products with a learning period for demand disruption
Local search algorithm for the squared metric $ k $-facility location problem with linear penalties
1. | Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China |
2. | School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, China |
3. | School of Software, Shandong University, Jinan 250101, China |
In the $ k $-facility location problem, an important combinatorial optimization problem combining the classical facility location and $ k $-median problems, we are given the locations of some facilities and clients, and need to open at most $ k $ facilities and connect all clients to opened facilities, minimizing the facility opening and connection cost. This paper considers the squared metric $ k $-facility location problem with linear penalties, a robust version of the $ k $-facility location problem. In this problem, we do not have to connect all clients to facilities, but each client that is not served by any facility must pay a penalty cost. The connection costs of facilities and clients are supposed to be squared metric, which is more general than the metric case. We provide a constant approximation algorithm based on the local search scheme with add, drop, and swap operations for this problem. Furthermore, we improve the approximation ratio by using the scaling technique.
References:
[1] |
V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala and V. Pandit,
Local search heuristics for $k$-median and facility location problems, SIAM Journal on Computing, 33 (2004), 544-562.
doi: 10.1137/S0097539702416402. |
[2] |
J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan and K. Trinh, An improved approximation for $k$-median and positive correlation in budgeted optimization, ACM Transactions on Algorithms, 13 (2017), Art. 23, 31 pp.
doi: 10.1145/2981561. |
[3] |
M. Charikar and S. Guha,
Improved combinatorial algorithms for facility location problems, SIAM Journal on Computing, 34 (2005), 803-824.
doi: 10.1137/S0097539701398594. |
[4] |
M. Charikar, S. Guha, É. Tardos and D. B. Shmoys, A constant-factor approximation algorithm for the $k$-median problem, Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999), ACM, New York, (1999), 1–10.
doi: 10.1145/301250.301257. |
[5] |
M. Charikar, S. Khuller, D. M. Mount and G. Narasimhan, Algorithms for facility location problems with outliers, Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, (2001), 642–651. |
[6] |
F. A. Chudak and D. B. Shmoys,
Improved approximation algorithms for the uncapacitated facility location problem, SIAM Journal on Computing, 33 (2003), 1-25.
doi: 10.1137/S0097539703405754. |
[7] |
C. G. Fernandes, L. A. A. Meira, F. K. Miyazawa and L. L. C. Pedrosa,
A systematic approach to bound factor-revealing LPs and its application to the metric and squared metric facility location problems, Mathematical Programming, 153 (2015), 655-685.
doi: 10.1007/s10107-014-0821-x. |
[8] |
M. Hajiaghayi, R. Khandekar and G. Kortsarz,
Local search algorithms for the red-blue median problem, Algorithmica, 63 (2012), 795-814.
doi: 10.1007/s00453-011-9547-9. |
[9] |
D. S. Hochbaum,
Heuristics for the fixed cost median problem, Mathematical Programming, 22 (1982), 148-162.
doi: 10.1007/BF01581035. |
[10] |
K. Jain and V. V. Vazirani,
Approximation algorithms for metric facility location and $k$-median problems using the primal-dual schema and Lagrangian relaxation, Journal of the ACM, 48 (2001), 274-296.
doi: 10.1145/375827.375845. |
[11] |
S. Li,
A 1.488 approximation algorithm for the uncapacitated facility location problem, Information and Computation, 222 (2013), 45-58.
doi: 10.1016/j.ic.2012.01.007. |
[12] |
Y. Li, D. L. Du, N. H. Xiu and D. C. Xu,
Improved approximation algorithms for the facility location problems with linear/submodular penalties, Algorithmica, 73 (2015), 460-482.
doi: 10.1007/s00453-014-9911-7. |
[13] |
D. B. Shmoys, É. Tardos, and K. Aardal, Approximation algorithms for facility location problems, Proceedings of the 29th Annual ACM Symposium on Theory of Computing, ACM, New York, NY, (1997), 265–274.
doi: 10.1145/258533.258600. |
[14] |
Y. S. Wang, D. C. Xu, D. L. Du and C. C. Wu,
An approximation algorithm for the nth power metric facility location problem with linear penalties, Optimization Letters, 11 (2017), 983-993.
doi: 10.1007/s11590-015-0989-x. |
[15] |
Y. S. Wang, D. C. Xu, D. L. Du and C. C. Wu,
An approximation algorithm for $k$-facility location problem with linear penalties using local search scheme, Journal of Combinatorial Optimization, 36 (2018), 264-279.
doi: 10.1007/s10878-016-0080-2. |
[16] |
Y. C. Xu, D. C. Xu, D. L. Du and D. M. Zhang,
Approximation algorithm for squared metric facility location problem with nonuniform capacities, Discrete Applied Mathematics, 264 (2019), 208-217.
doi: 10.1016/j.dam.2019.03.013. |
[17] |
Y. C. Xu, D. C. Xu, D. L. Du and C. C. Wu,
Local search algorithm for universal facility location problem with linear penalties, Journal of Global Optimization, 67 (2017), 367-378.
doi: 10.1007/s10898-015-0394-0. |
[18] |
P. Zhang,
A new approximation algorithm for the $k$-facility location problem, Theoretical Computer Science, 384 (2007), 126-135.
doi: 10.1016/j.tcs.2007.05.024. |
[19] |
D. M. Zhang, D. C. Xu, Y. S. Wang, P. Zhang and Z. N. Zhang,
Local search approximation algorithms for the sum of squares facility location problems, Journal of Global Optimization, 74 (2019), 909-932.
doi: 10.1007/s10898-018-00733-2. |
[20] |
D. M. Zhang, D. C. Xu, Y. S. Wang, P. Zhang and Z. N. Zhang,
A local search approximation algorithm for a squared metric $k$-facility location problem, Journal of Combinatorial Optimization, 35 (2018), 1168-1184.
doi: 10.1007/s10878-018-0261-2. |
show all references
References:
[1] |
V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala and V. Pandit,
Local search heuristics for $k$-median and facility location problems, SIAM Journal on Computing, 33 (2004), 544-562.
doi: 10.1137/S0097539702416402. |
[2] |
J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan and K. Trinh, An improved approximation for $k$-median and positive correlation in budgeted optimization, ACM Transactions on Algorithms, 13 (2017), Art. 23, 31 pp.
doi: 10.1145/2981561. |
[3] |
M. Charikar and S. Guha,
Improved combinatorial algorithms for facility location problems, SIAM Journal on Computing, 34 (2005), 803-824.
doi: 10.1137/S0097539701398594. |
[4] |
M. Charikar, S. Guha, É. Tardos and D. B. Shmoys, A constant-factor approximation algorithm for the $k$-median problem, Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999), ACM, New York, (1999), 1–10.
doi: 10.1145/301250.301257. |
[5] |
M. Charikar, S. Khuller, D. M. Mount and G. Narasimhan, Algorithms for facility location problems with outliers, Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, (2001), 642–651. |
[6] |
F. A. Chudak and D. B. Shmoys,
Improved approximation algorithms for the uncapacitated facility location problem, SIAM Journal on Computing, 33 (2003), 1-25.
doi: 10.1137/S0097539703405754. |
[7] |
C. G. Fernandes, L. A. A. Meira, F. K. Miyazawa and L. L. C. Pedrosa,
A systematic approach to bound factor-revealing LPs and its application to the metric and squared metric facility location problems, Mathematical Programming, 153 (2015), 655-685.
doi: 10.1007/s10107-014-0821-x. |
[8] |
M. Hajiaghayi, R. Khandekar and G. Kortsarz,
Local search algorithms for the red-blue median problem, Algorithmica, 63 (2012), 795-814.
doi: 10.1007/s00453-011-9547-9. |
[9] |
D. S. Hochbaum,
Heuristics for the fixed cost median problem, Mathematical Programming, 22 (1982), 148-162.
doi: 10.1007/BF01581035. |
[10] |
K. Jain and V. V. Vazirani,
Approximation algorithms for metric facility location and $k$-median problems using the primal-dual schema and Lagrangian relaxation, Journal of the ACM, 48 (2001), 274-296.
doi: 10.1145/375827.375845. |
[11] |
S. Li,
A 1.488 approximation algorithm for the uncapacitated facility location problem, Information and Computation, 222 (2013), 45-58.
doi: 10.1016/j.ic.2012.01.007. |
[12] |
Y. Li, D. L. Du, N. H. Xiu and D. C. Xu,
Improved approximation algorithms for the facility location problems with linear/submodular penalties, Algorithmica, 73 (2015), 460-482.
doi: 10.1007/s00453-014-9911-7. |
[13] |
D. B. Shmoys, É. Tardos, and K. Aardal, Approximation algorithms for facility location problems, Proceedings of the 29th Annual ACM Symposium on Theory of Computing, ACM, New York, NY, (1997), 265–274.
doi: 10.1145/258533.258600. |
[14] |
Y. S. Wang, D. C. Xu, D. L. Du and C. C. Wu,
An approximation algorithm for the nth power metric facility location problem with linear penalties, Optimization Letters, 11 (2017), 983-993.
doi: 10.1007/s11590-015-0989-x. |
[15] |
Y. S. Wang, D. C. Xu, D. L. Du and C. C. Wu,
An approximation algorithm for $k$-facility location problem with linear penalties using local search scheme, Journal of Combinatorial Optimization, 36 (2018), 264-279.
doi: 10.1007/s10878-016-0080-2. |
[16] |
Y. C. Xu, D. C. Xu, D. L. Du and D. M. Zhang,
Approximation algorithm for squared metric facility location problem with nonuniform capacities, Discrete Applied Mathematics, 264 (2019), 208-217.
doi: 10.1016/j.dam.2019.03.013. |
[17] |
Y. C. Xu, D. C. Xu, D. L. Du and C. C. Wu,
Local search algorithm for universal facility location problem with linear penalties, Journal of Global Optimization, 67 (2017), 367-378.
doi: 10.1007/s10898-015-0394-0. |
[18] |
P. Zhang,
A new approximation algorithm for the $k$-facility location problem, Theoretical Computer Science, 384 (2007), 126-135.
doi: 10.1016/j.tcs.2007.05.024. |
[19] |
D. M. Zhang, D. C. Xu, Y. S. Wang, P. Zhang and Z. N. Zhang,
Local search approximation algorithms for the sum of squares facility location problems, Journal of Global Optimization, 74 (2019), 909-932.
doi: 10.1007/s10898-018-00733-2. |
[20] |
D. M. Zhang, D. C. Xu, Y. S. Wang, P. Zhang and Z. N. Zhang,
A local search approximation algorithm for a squared metric $k$-facility location problem, Journal of Combinatorial Optimization, 35 (2018), 1168-1184.
doi: 10.1007/s10878-018-0261-2. |



[1] |
Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020405 |
[2] |
Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039 |
[3] |
Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021017 |
[4] |
Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365 |
[5] |
Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328 |
[6] |
Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278 |
[7] |
Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129 |
[8] |
Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246 |
[9] |
Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293 |
[10] |
Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228 |
[11] |
Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317 |
[12] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020378 |
[13] |
Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265 |
[14] |
Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067 |
[15] |
Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020123 |
[16] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[17] |
Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363 |
[18] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020447 |
[19] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020445 |
[20] |
Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020442 |
2019 Impact Factor: 1.366
Tools
Article outline
Figures and Tables
[Back to Top]