• Previous Article
    A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem
  • JIMO Home
  • This Issue
  • Next Article
    Extension of Littlewood's rule to the multi-period static revenue management model with standby customers
July  2021, 17(4): 2203-2215. doi: 10.3934/jimo.2020065

Strict efficiency of a multi-product supply-demand network equilibrium model

1. 

School of Management, Hefei University of Technology, Hefei, 230009, China

2. 

Institute of Applied Mathematics, Beifang University of Nationalities, Yinchuan, 750021, China

* Corresponding author: Guolin Yu

Received  July 2019 Revised  November 2019 Published  July 2021 Early access  March 2020

In this paper, we consider a kind of proper efficiency, namely strict efficiency, of a multi-product supply-demand network equilibrium model. We prove that strict equilibrium pattern flows with both a single criterion and multiple criteria are equivalent to vector variational inequalities. In the case of multiple criteria, we provide necessary and sufficient conditions for strict efficiency in terms of vector variational inequalities by using Gerstewitz's function without any convexity assumptions.

Citation: Ru Li, Guolin Yu. Strict efficiency of a multi-product supply-demand network equilibrium model. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2203-2215. doi: 10.3934/jimo.2020065
References:
[1]

Y. H. Cheng and W. T. Fu, Strong efficiency in a locally convex space, Mathematical Methods of Operations Research, 50 (1999), 373-384.  doi: 10.1007/s001860050076.

[2]

G. Y. ChenC. J. Goh and X. Q. Yang, Vector network equilibrium problems and nonlinear scalarization methods, Mathematical Methods of Operations Research, 49 (1999), 239-253.  doi: 10.1007/s001860050023.

[3]

T. C. E. Cheng and Y. N. Wu, A multi-product, multi-criterion supply-demand network equilibrium model, Operations Research, 54 (2006), 544-554.  doi: 10.1287/opre.1060.0284.

[4]

G. Y. Chen and N. D. Yen, On the variational inequality model for network equilibrium, Internal Report, Department of Mathematics, University of Pisa, 196 (1993), 724–735.

[5]

G. Y. Chen and X. Q. Yang, Characterizations of variable domination structures via nonlinear scalarization, Journal of Optimization Theory and Applications, 112 (2002), 97-110.  doi: 10.1023/A:1013044529035.

[6]

F. Giannessi, Theorems of alternative, quadratic programs and complementarity problems, Variational Inequalities and Complementarity Problems, Wiley, Chichester, (1980), 151–186.

[7]

X. H. Gong, Efficiency and Hening efficiency for vector equilibrium problems, Journal of Optimization Theory and Applications, 108 (2001), 139-154.  doi: 10.1023/A:1026418122905.

[8]

A. Nagurney, Network Economics: A Variational Inequality Approach,Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993. doi: 10.1007/978-94-011-2178-1.

[9]

Y. N. Wu and T. C. E. Cheng, Benson efficiency of a multi-criterion network equilibrium model, Pacific Journal of Optimization, 5 (2009), 443-458.  doi: 10.1016/j.obhdp.2009.08.002.

[10]

Y. N. WuY. C. PengL. Peng and L. Xu, Super efficiency of multicriterion network equilibrium model and vector variational inequality, Journal of Optimization Theory and Applications, 153 (2012), 485-496.  doi: 10.1007/s10957-011-9950-z.

[11]

J. G. Wardrop, Some theoretical aspects of road traffic research, Proceedings of the Institution of Civil Engineers-Part II, 1, 325–378.

[12]

G. L. YuY. Zhang and S. Y. Liu, Strong duality with strict efficiency in vector optimization involving nonconvex set-valued maps, Journal of Mathematics, 37 (2017), 223-230. 

show all references

References:
[1]

Y. H. Cheng and W. T. Fu, Strong efficiency in a locally convex space, Mathematical Methods of Operations Research, 50 (1999), 373-384.  doi: 10.1007/s001860050076.

[2]

G. Y. ChenC. J. Goh and X. Q. Yang, Vector network equilibrium problems and nonlinear scalarization methods, Mathematical Methods of Operations Research, 49 (1999), 239-253.  doi: 10.1007/s001860050023.

[3]

T. C. E. Cheng and Y. N. Wu, A multi-product, multi-criterion supply-demand network equilibrium model, Operations Research, 54 (2006), 544-554.  doi: 10.1287/opre.1060.0284.

[4]

G. Y. Chen and N. D. Yen, On the variational inequality model for network equilibrium, Internal Report, Department of Mathematics, University of Pisa, 196 (1993), 724–735.

[5]

G. Y. Chen and X. Q. Yang, Characterizations of variable domination structures via nonlinear scalarization, Journal of Optimization Theory and Applications, 112 (2002), 97-110.  doi: 10.1023/A:1013044529035.

[6]

F. Giannessi, Theorems of alternative, quadratic programs and complementarity problems, Variational Inequalities and Complementarity Problems, Wiley, Chichester, (1980), 151–186.

[7]

X. H. Gong, Efficiency and Hening efficiency for vector equilibrium problems, Journal of Optimization Theory and Applications, 108 (2001), 139-154.  doi: 10.1023/A:1026418122905.

[8]

A. Nagurney, Network Economics: A Variational Inequality Approach,Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993. doi: 10.1007/978-94-011-2178-1.

[9]

Y. N. Wu and T. C. E. Cheng, Benson efficiency of a multi-criterion network equilibrium model, Pacific Journal of Optimization, 5 (2009), 443-458.  doi: 10.1016/j.obhdp.2009.08.002.

[10]

Y. N. WuY. C. PengL. Peng and L. Xu, Super efficiency of multicriterion network equilibrium model and vector variational inequality, Journal of Optimization Theory and Applications, 153 (2012), 485-496.  doi: 10.1007/s10957-011-9950-z.

[11]

J. G. Wardrop, Some theoretical aspects of road traffic research, Proceedings of the Institution of Civil Engineers-Part II, 1, 325–378.

[12]

G. L. YuY. Zhang and S. Y. Liu, Strong duality with strict efficiency in vector optimization involving nonconvex set-valued maps, Journal of Mathematics, 37 (2017), 223-230. 

[1]

Ren-You Zhong, Nan-Jing Huang. Strict feasibility for generalized mixed variational inequality in reflexive Banach spaces. Numerical Algebra, Control and Optimization, 2011, 1 (2) : 261-274. doi: 10.3934/naco.2011.1.261

[2]

Yunan Wu, Guangya Chen, T. C. Edwin Cheng. A vector network equilibrium problem with a unilateral constraint. Journal of Industrial and Management Optimization, 2010, 6 (3) : 453-464. doi: 10.3934/jimo.2010.6.453

[3]

T.C. Edwin Cheng, Yunan Wu. Henig efficiency of a multi-criterion supply-demand network equilibrium model. Journal of Industrial and Management Optimization, 2006, 2 (3) : 269-286. doi: 10.3934/jimo.2006.2.269

[4]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[5]

Kenji Kimura, Yeong-Cheng Liou, David S. Shyu, Jen-Chih Yao. Simultaneous system of vector equilibrium problems. Journal of Industrial and Management Optimization, 2009, 5 (1) : 161-174. doi: 10.3934/jimo.2009.5.161

[6]

Hongming Yang, C. Y. Chung, Xiaojiao Tong, Pingping Bing. Research on dynamic equilibrium of power market with complex network constraints based on nonlinear complementarity function. Journal of Industrial and Management Optimization, 2008, 4 (3) : 617-630. doi: 10.3934/jimo.2008.4.617

[7]

Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066

[8]

Markus Dick, Martin Gugat, Günter Leugering. A strict $H^1$-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction. Numerical Algebra, Control and Optimization, 2011, 1 (2) : 225-244. doi: 10.3934/naco.2011.1.225

[9]

Martin Gugat, Günter Leugering, Ke Wang. Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function. Mathematical Control and Related Fields, 2017, 7 (3) : 419-448. doi: 10.3934/mcrf.2017015

[10]

Qiusheng Qiu, Xinmin Yang. Scalarization of approximate solution for vector equilibrium problems. Journal of Industrial and Management Optimization, 2013, 9 (1) : 143-151. doi: 10.3934/jimo.2013.9.143

[11]

Adela Capătă. Optimality conditions for vector equilibrium problems and their applications. Journal of Industrial and Management Optimization, 2013, 9 (3) : 659-669. doi: 10.3934/jimo.2013.9.659

[12]

Qiu-Sheng Qiu. Optimality conditions for vector equilibrium problems with constraints. Journal of Industrial and Management Optimization, 2009, 5 (4) : 783-790. doi: 10.3934/jimo.2009.5.783

[13]

Lam Quoc Anh, Pham Thanh Duoc, Tran Ngoc Tam. Continuity of approximate solution maps to vector equilibrium problems. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1685-1699. doi: 10.3934/jimo.2017013

[14]

Jian Hou, Liwei Zhang. A barrier function method for generalized Nash equilibrium problems. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1091-1108. doi: 10.3934/jimo.2014.10.1091

[15]

De-Jun Feng, Antti Käenmäki. Equilibrium states of the pressure function for products of matrices. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 699-708. doi: 10.3934/dcds.2011.30.699

[16]

Liping Zhang. A nonlinear complementarity model for supply chain network equilibrium. Journal of Industrial and Management Optimization, 2007, 3 (4) : 727-737. doi: 10.3934/jimo.2007.3.727

[17]

S. J. Li, Z. M. Fang. On the stability of a dual weak vector variational inequality problem. Journal of Industrial and Management Optimization, 2008, 4 (1) : 155-165. doi: 10.3934/jimo.2008.4.155

[18]

Arrigo Cellina, Carlo Mariconda, Giulia Treu. Comparison results without strict convexity. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 57-65. doi: 10.3934/dcdsb.2009.11.57

[19]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

[20]

Yirmeyahu J. Kaminski. Equilibrium locus of the flow on circular networks of cells. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1169-1177. doi: 10.3934/dcdss.2018066

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (247)
  • HTML views (631)
  • Cited by (0)

Other articles
by authors

[Back to Top]