# American Institute of Mathematical Sciences

doi: 10.3934/jimo.2020066

## A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem

 1 School of Mathematics and Statistics, Linyi University, Linyi Shandong, 276005, China 2 School of Management Science, Qufu Normal University, Rizhao Shandong, 276800, China

* Corresponding author: Hongchun Sun

Received  July 2019 Revised  October 2019 Published  March 2020

Fund Project: This work is supported by the Natural Science Foundation of China (Nos. 11671228, 11801309), and the Applied Mathematics Enhancement Program of Linyi University

In this paper, a three-level supply chain network equilibrium problem with direct selling and multi-commodity flow is considered. To this end, we first present equilibrium conditions which satisfy decision-making behaviors for manufacturers, retailers and consumer markets, respectively. Based on this, a nonlinear complementarity model of supply chain network equilibrium problem is established. In addition, we propose a new projection-type algorithm to solve this model without the backtracking line search, and global convergence result and $R-$linearly convergence rate for the new algorithm are established under weaker conditions, respectively. We also illustrate the efficiency of given algorithm through some numerical examples.

Citation: Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020066
##### References:

show all references

##### References:
The network structure of the supply chain
The network structure of $i-$th manufacturer
The network structure of $j$'s retailer
The network structure of $k-$th consumer
The network structure of the supply chain of Example 4.1
The network structure of the supply chain of Example 4.2
The network structure of the supply chain of Example 4.3
The network structure of the supply chain for Example 4.5
Productions from manufacturers to retailers
 $(q_{ij}^1/q_{ij}^2)$ Retailer 1 Retailer 2 Retailer 3 Manufacturer 1 7.9043/7.8023 7.9295/7.8056 7.9800/7.1543 Manufacturer 2 7.9800/7.8100 7.8790/7.8432 8.0305/8.0025 Manufacturer 3 7.9295/7.6265 7.9800/7.6770 8.0305/7.7275
 $(q_{ij}^1/q_{ij}^2)$ Retailer 1 Retailer 2 Retailer 3 Manufacturer 1 7.9043/7.8023 7.9295/7.8056 7.9800/7.1543 Manufacturer 2 7.9800/7.8100 7.8790/7.8432 8.0305/8.0025 Manufacturer 3 7.9295/7.6265 7.9800/7.6770 8.0305/7.7275
Productions from manufacturers to consumer markets
 $(\tilde{q}_{ik}^1/\tilde{q}_{ik}^2)$ Consumer market 1 Consumer market 2 Consumer market 3 Manufacturer 1 9.4445/9.1415 9.4950/9.1920 9.5455/9.2425 Manufacturer 2 9.4445/9.1415 9.5455/9.2425 9.4950/9.1920 Manufacturer 3 9.5455/9.5455 9.3435/9.3435 9.4950/9.4950
 $(\tilde{q}_{ik}^1/\tilde{q}_{ik}^2)$ Consumer market 1 Consumer market 2 Consumer market 3 Manufacturer 1 9.4445/9.1415 9.4950/9.1920 9.5455/9.2425 Manufacturer 2 9.4445/9.1415 9.5455/9.2425 9.4950/9.1920 Manufacturer 3 9.5455/9.5455 9.3435/9.3435 9.4950/9.4950
Productions from retailers to consumer markets
 $(\hat{q}_{jk}^1/\hat{q}_{jk}^2)$ Consumer market 1 Consumer market 2 Consumer market 3 Retailer 1 1.2475/1.2345 1.2424/1.2323 1.2374/1.2172 Retailer 2 1.2374/1.2475 1.2323/1.2233 1.2273/1.2172 Retailer 3 1.2273/1.2475 1.2222/1.2323 1.2172/1.2172
 $(\hat{q}_{jk}^1/\hat{q}_{jk}^2)$ Consumer market 1 Consumer market 2 Consumer market 3 Retailer 1 1.2475/1.2345 1.2424/1.2323 1.2374/1.2172 Retailer 2 1.2374/1.2475 1.2323/1.2233 1.2273/1.2172 Retailer 3 1.2273/1.2475 1.2222/1.2323 1.2172/1.2172
Price from manufacturers to consumer markets
 $(\tilde{\rho}_{ik}^1/\tilde{\rho}_{ik}^2)$ Consumer market 1 Consumer market 2 Consumer market 3 Manufacturer 1 198.2578/228.0022 200.0245/230.5247 201.1178/228.7279 Manufacturer 2 198.2445/228.0022 200.8785/227.2225 200.0110/225.7920 Manufacturer 3 196.3135/220.1133 211.8830/234.5435 200.0110/220.4950
 $(\tilde{\rho}_{ik}^1/\tilde{\rho}_{ik}^2)$ Consumer market 1 Consumer market 2 Consumer market 3 Manufacturer 1 198.2578/228.0022 200.0245/230.5247 201.1178/228.7279 Manufacturer 2 198.2445/228.0022 200.8785/227.2225 200.0110/225.7920 Manufacturer 3 196.3135/220.1133 211.8830/234.5435 200.0110/220.4950
Price from retailers to consumer markets
 $(\hat{\rho}_{jk}^1/\hat{\rho}_{jk}^2)$ Consumer market 1 Consumer market 2 Consumer market 3 Retailer 1 220.2273/250.2245 218.2323/248.2475 221.7715/252.2172 Retailer 2 218.2374/248.5455 219.9423/249.1415 220.1920/250.2172 Retailer 3 222.7415/247.1420 222.9435/249.1835 223.1920/251.3570
 $(\hat{\rho}_{jk}^1/\hat{\rho}_{jk}^2)$ Consumer market 1 Consumer market 2 Consumer market 3 Retailer 1 220.2273/250.2245 218.2323/248.2475 221.7715/252.2172 Retailer 2 218.2374/248.5455 219.9423/249.1415 220.1920/250.2172 Retailer 3 222.7415/247.1420 222.9435/249.1835 223.1920/251.3570
Price from manufacturers to retailers
 $(\rho_{ij}^1/\rho_{ij}^2)$ Retailer 1 Retailer 2 Retailer 3 Manufacturer 1 157.5213/186.7230 160.1246/187.4950 158.2275/186.2711 Manufacturer 2 155.2117/184.1917 159.3287/190.0058 158.2365/185.5003 Manufacturer 3 156.2226/185.2459 159.4962/189.2234 159.1435/189.3872
 $(\rho_{ij}^1/\rho_{ij}^2)$ Retailer 1 Retailer 2 Retailer 3 Manufacturer 1 157.5213/186.7230 160.1246/187.4950 158.2275/186.2711 Manufacturer 2 155.2117/184.1917 159.3287/190.0058 158.2365/185.5003 Manufacturer 3 156.2226/185.2459 159.4962/189.2234 159.1435/189.3872
Consumer market demand price
 $\rho_k^l$ Consumer market 1 Consumer market 2 Consumer market 3 Product 1 236.2227 225.5642 215.2359 Product 2 209.2117 201.4962 189.1165
 $\rho_k^l$ Consumer market 1 Consumer market 2 Consumer market 3 Product 1 236.2227 225.5642 215.2359 Product 2 209.2117 201.4962 189.1165
Compared with the results in Example 2([17])
 Literature results Results of this paper Iteration steps 12 64 Running time 0.47 0.43
 Literature results Results of this paper Iteration steps 12 64 Running time 0.47 0.43
Compared with the results in Example 4 ([17])
 Literature results Results of this paper Iteration steps 12 58 Running time 0.09 0.07
 Literature results Results of this paper Iteration steps 12 58 Running time 0.09 0.07
Compared with the results in Example 5 ([17])
 Literature results Results of this paper Iteration steps 12 109 Running time 0.11 0.086
 Literature results Results of this paper Iteration steps 12 109 Running time 0.11 0.086
 [1] Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077 [2] Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164 [3] George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 [4] Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1 [5] Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020181 [6] Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165 [7] Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020173 [8] Wenyan Zhuo, Honglin Yang, Leopoldo Eduardo Cárdenas-Barrón, Hong Wan. Loss-averse supply chain decisions with a capital constrained retailer. Journal of Industrial & Management Optimization, 2021, 17 (2) : 711-732. doi: 10.3934/jimo.2019131 [9] Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101 [10] Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465 [11] Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367 [12] Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29 [13] Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $L^2-$norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 [14] Editorial Office. Retraction: Honggang Yu, An efficient face recognition algorithm using the improved convolutional neural network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 901-901. doi: 10.3934/dcdss.2019060 [15] Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170 [16] Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167 [17] Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020175 [18] Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172 [19] Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125 [20] Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

2019 Impact Factor: 1.366

## Tools

Article outline

Figures and Tables