\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Computing shadow prices with multiple Lagrange multipliers

  • * Corresponding author: Gao Yan

    * Corresponding author: Gao Yan

Tao Jie is supported by National Natural Science Foundation of China grant No. 71601117 and Soft Science Foundation of Shanghai grant No. 19692104600

Abstract Full Text(HTML) Figure(5) / Table(2) Related Papers Cited by
  • There is a wide consensus that the shadow prices of certain resources in an economic system are equal to Lagrange multipliers. However, this is misleading with respect to multiple Lagrange multipliers. In this paper, we propose a new type of Lagrange multiplier, the weighted minimum norm Lagrange multiplier, which is a type of shadow price. An attractive aspect of this type of Lagrange multiplier is that it conveys the sensitivity information when resources are required to be proportionally input. To compute the weighted minimum norm Lagrange multiplier, we propose two algorithms. One is the penalty function method with numeric stability, and the other is the accelerated gradient method with fewer arithmetic operations and a convergence rate of $ O(\frac{1}{k^2}) $. Furthermore, we propose a two-phase procedure to compute a particular subset of shadow prices that belongs to the set of bounded Lagrange multipliers. This subset is particularly attractive since all its elements are computable shadow prices. We report the numerical results for randomly generated problems.

    Mathematics Subject Classification: Primary: 90C25, 90C30; Secondary: 90C31.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Numerical Example in Schttfkowski (1987)

    Figure 2.  Relationship of Lagrange Multiplier and Shadow Price

    Figure 3.  Numerical Example

    Figure 4.  Convergence of the $ \mathcal{PFA} $ algorithm with different penalty parameters

    Figure 5.  Example of Multiple Lagrange Multipliers

    Table 1.  Computational Times of the $ \mathcal{AGM} $ algorithm on Large - scale Data Sets

    $ m $ $ n $ Computational Time
    500 5000 10.7504
    500 10000 11.4222
    500 20000 12.5574
    500 50000 15.5700
    1000 5000 21.4259
    1000 10000 21.8054
    1000 20000 22.2733
    1000 50000 25.2937
    5000 5000 101.1437
    5000 10000 102.1762
    5000 20000 106.8786
    5000 50000 107.3515
     | Show Table
    DownLoad: CSV

    Table 2.  Result of the 2-phase Procedure with 23 Vertices of the Bounded Lagrange Multiplier Set

    Vertices Elements
    $ v_1 $ 0.0000 1.6118 0.0000 0.0000 0.0000 0.0000 0.4939 0.0000 0.0000
    $ v_2 $ 0.0000 2.1057 0.4939 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
    $ v_3 $ 0.0000 3.0834 0.0000 0.0000 0.1352 0.0000 0.0000 0.6957 0.0000
    $ v_4 $ 0.0000 3.4207 0.0000 0.0000 0.0026 0.0000 0.0064 0.7603 0.1801
    $ v_5 $ 0.0000 5.7145 0.0000 0.0000 3.1147 2.5431 3.6277 0.0000 0.0000
    $ v_6 $ 0.0000 7.1430 0.0000 4.9601 0.9637 0.0000 1.9331 0.0000 0.0000
    $ v_7 $ 0.0000 7.2983 0.0000 0.0000 0.0000 1.7188 3.3700 0.0000 2.6128
    $ v_8 $ 0.0000 7.5898 0.0000 4.3192 0.0000 0.0000 2.0493 0.0000 1.0416
    $ v_9 $ 0.0000 7.7043 2.9184 0.0000 2.4098 1.9675 0.0000 0.0000 0.0000
    $ v_{10} $ 0.0000 8.1361 1.7390 4.2912 0.8338 0.0000 0.0000 0.0000 0.0000
    $ v_{11} $ 0.0000 8.5707 1.8287 3.7067 0.0000 0.0000 0.0000 0.0000 0.8939
    $ v_{12} $ 0.0000 8.8386 2.7554 0.0000 0.0000 1.3515 0.0000 0.0000 2.0545
    $ v_{13} $ 0.0000 9.0761 0.0000 3.0271 0.9637 0.0000 0.0000 1.9331 0.0000
    $ v_{14} $ 0.0000 9.1971 0.0000 0.0000 1.9422 1.1568 0.0000 2.7039 0.0000
    $ v_{15} $ 0.0000 9.6392 0.0000 2.2699 0.0000 0.0000 0.0000 2.0493 1.0416
    $ v_{16} $ 0.0000 10.0534 0.0000 0.0000 0.0000 0.6918 0.0000 2.5809 1.6740
    $ v_{17} $ 0.0000 3.4315 0.0050 0.0000 0.0027 0.0000 0.0000 0.7627 0.1807
    $ v_{18} $ 0.6494 10.2980 0.0000 0.0000 0.0000 0.0000 0.0000 2.4700 1.5827
    $ v_{19} $ 1.0475 9.6669 0.0000 0.0000 1.7714 0.0000 0.0000 2.5142 0.0000
    $ v_{20} $ 1.2187 9.3956 2.5332 0.0000 0.0000 0.0000 0.0000 0.0000 1.8526
    $ v_{21} $ 1.5166 8.1461 0.0000 0.0000 0.0000 0.0000 3.0317 0.0000 2.3055
    $ v_{22} $ 1.6981 8.6358 2.5864 0.0000 2.0798 0.0000 0.0000 0.0000 0.0000
    $ v_{23} $ 2.1242 7.1628 0.0000 0.0000 2.6016 0.0000 3.1114 0.0000 0.0000
     | Show Table
    DownLoad: CSV
  • [1] M. Akgul, A note on shadow prices in linear programming, Journal of the Operational Research Society, 35 (1984), 425-431.
    [2] D. C. Aucamp and D. I. Steinberg, The computation of shadow prices in linear programming, Journal of the Operational Research Society, 33 (1982), 557-565. doi: 10.1057/jors.1982.118.
    [3] M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Nonlinear Programming: Theory and Algorithms, John Wiley & Sons Inc., Hoboken, NJ, 2006. doi: 10.1002/0471787779.
    [4] D. P. Bertsekas, Convex Optimization Algorithms, Athena Scientific, Belmont, 2015.
    [5] D. P. Bertsekas, A. Nedi, A. E. Ozdaglar, et al., Convex Analysis and Optimization, Athena Scientific, Belmont, 2003.
    [6] D. P. Bertsekas and A. E. Ozdaglar, Pseudonormality and a lagrange multiplier theory for constrained optimization, Journal of Optimization Theory and Applications, 114 (2002), 287-343.  doi: 10.1023/A:1016083601322.
    [7] J. P. CaulkinsD. GrassG. Feichtinger and G. Tragler, Optimizing counter-terror operations: Should one fight fire with"fir" or"wate"?, Computers & Operations Research, 35 (2008), 1874-1885.  doi: 10.1016/j.cor.2006.09.017.
    [8] T.-L. ChenJ. T. Lin and S.-C. Fang, A shadow-price based heuristic for capacity planning of tft-lcd manufacturing, Journal of Industrial & Management Optimization, 6 (2010), 209-239.  doi: 10.3934/jimo.2010.6.209.
    [9] B. ColA. Durnev and A. Molchanov, Foreign risk, domestic problem: Capital allocation and firm performance under political instability, Management Science, 64 (2018), 1975-2471.  doi: 10.1287/mnsc.2016.2638.
    [10] M. E. Dyer, The complexity of vertex enumeration methods, Mathematics of Operations Research, 8 (1983), 381-402.  doi: 10.1287/moor.8.3.381.
    [11] J. Gauvin, Shadow prices in nonconvex mathematical programming, Mathematical Programming, 19 (1980), 300-312.  doi: 10.1007/BF01581650.
    [12] M. Hessel and M. Zeleny, Optimal system design: towards new interpretation of shadow prices in linear programming, Computers & Operations Research, 14 (1987), 265-271.  doi: 10.1016/0305-0548(87)90063-3.
    [13] B. JansenJ. De JongC. Roos and T. Terlaky, Sensitivity analysis in linear programming: Just be careful!, European Journal of Operational Research, 101 (1997), 15-28.  doi: 10.1016/S0377-2217(96)00172-5.
    [14] T. T. KeZ.-J. M. Shen and J. M. Villas-Boas, Search for information on multiple products, Management Science, 62 (2016), 3576-3603.  doi: 10.1287/mnsc.2015.2316.
    [15] R. Kutsuzawa, A. Yamashita, N. Takemura, J. Matsumoto, M. Tanaka and N. Yamanaka, Demand response minimizing the impact on the consumers' utility towards renewable energy, in Smart Grid Communications (SmartGridComm), 2016 IEEE International Conference on, IEEE, 2016, 68–73. doi: 10.1109/SmartGridComm.2016.7778740.
    [16] J. Kyparisis, On uniqueness of kuhn-tucker multipliers in nonlinear programming, Mathematical Programming, 32 (1985), 242-246.  doi: 10.1007/BF01586095.
    [17] C.-Y. Lee and P. Zhou, Directional shadow price estimation of co2, so2 and nox in the united states coal power industry 1990–2010, Energy Economics, 51 (2015), 493-502. 
    [18] O. L. Mangasarian, Uniqueness of solution in linear programming, Linear Algebra and Its Applications, 25 (1979), 151-162.  doi: 10.1016/0024-3795(79)90014-4.
    [19] W. Meng and X. Wang, Distributed energy management in smart grid with wind power and temporally coupled constraints, IEEE Transactions on Industrial Electronics, 64 (2017), 6052-6062.  doi: 10.1109/TIE.2017.2682001.
    [20] K. Schittkowski, More Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems, 282. Springer-Verlag, Berlin, 1987. doi: 10.1007/978-3-642-61582-5.
    [21] N. Walter, Microeconomic Theory: Basic Principles and Extensions., Nelson Education, Canada, 2005.
    [22] Q. Wei and H. Yan, A method of transferring polyhedron between the intersection-form and the sum-form, Computers & Mathematics with Applications, 41 (2001), 1327-1342.  doi: 10.1016/S0898-1221(01)00100-6.
    [23] L. ZhangD. FengJ. LeiC. XuZ. YanS. XuN. Li and L. Jing, Congestion surplus minimization pricing solutions when lagrange multipliers are not unique, IEEE Transactions on Power Systems, 29 (2014), 2023-2032.  doi: 10.1109/TPWRS.2014.2301213.
  • 加载中

Figures(5)

Tables(2)

SHARE

Article Metrics

HTML views(1225) PDF downloads(725) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return