[1]
|
M. Akgul, A note on shadow prices in linear programming, Journal of the Operational Research Society, 35 (1984), 425-431.
|
[2]
|
D. C. Aucamp and D. I. Steinberg, The computation of shadow prices in linear programming, Journal of the Operational Research Society, 33 (1982), 557-565.
doi: 10.1057/jors.1982.118.
|
[3]
|
M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Nonlinear Programming: Theory and Algorithms, John Wiley & Sons Inc., Hoboken, NJ, 2006.
doi: 10.1002/0471787779.
|
[4]
|
D. P. Bertsekas, Convex Optimization Algorithms, Athena Scientific, Belmont, 2015.
|
[5]
|
D. P. Bertsekas, A. Nedi, A. E. Ozdaglar, et al., Convex Analysis and Optimization, Athena Scientific, Belmont, 2003.
|
[6]
|
D. P. Bertsekas and A. E. Ozdaglar, Pseudonormality and a lagrange multiplier theory for constrained optimization, Journal of Optimization Theory and Applications, 114 (2002), 287-343.
doi: 10.1023/A:1016083601322.
|
[7]
|
J. P. Caulkins, D. Grass, G. Feichtinger and G. Tragler, Optimizing counter-terror operations: Should one fight fire with"fir" or"wate"?, Computers & Operations Research, 35 (2008), 1874-1885.
doi: 10.1016/j.cor.2006.09.017.
|
[8]
|
T.-L. Chen, J. T. Lin and S.-C. Fang, A shadow-price based heuristic for capacity planning of tft-lcd manufacturing, Journal of Industrial & Management Optimization, 6 (2010), 209-239.
doi: 10.3934/jimo.2010.6.209.
|
[9]
|
B. Col, A. Durnev and A. Molchanov, Foreign risk, domestic problem: Capital allocation and firm performance under political instability, Management Science, 64 (2018), 1975-2471.
doi: 10.1287/mnsc.2016.2638.
|
[10]
|
M. E. Dyer, The complexity of vertex enumeration methods, Mathematics of Operations Research, 8 (1983), 381-402.
doi: 10.1287/moor.8.3.381.
|
[11]
|
J. Gauvin, Shadow prices in nonconvex mathematical programming, Mathematical Programming, 19 (1980), 300-312.
doi: 10.1007/BF01581650.
|
[12]
|
M. Hessel and M. Zeleny, Optimal system design: towards new interpretation of shadow prices in linear programming, Computers & Operations Research, 14 (1987), 265-271.
doi: 10.1016/0305-0548(87)90063-3.
|
[13]
|
B. Jansen, J. De Jong, C. Roos and T. Terlaky, Sensitivity analysis in linear programming: Just be careful!, European Journal of Operational Research, 101 (1997), 15-28.
doi: 10.1016/S0377-2217(96)00172-5.
|
[14]
|
T. T. Ke, Z.-J. M. Shen and J. M. Villas-Boas, Search for information on multiple products, Management Science, 62 (2016), 3576-3603.
doi: 10.1287/mnsc.2015.2316.
|
[15]
|
R. Kutsuzawa, A. Yamashita, N. Takemura, J. Matsumoto, M. Tanaka and N. Yamanaka, Demand response minimizing the impact on the consumers' utility towards renewable energy, in Smart Grid Communications (SmartGridComm), 2016 IEEE International Conference on, IEEE, 2016, 68–73.
doi: 10.1109/SmartGridComm.2016.7778740.
|
[16]
|
J. Kyparisis, On uniqueness of kuhn-tucker multipliers in nonlinear programming, Mathematical Programming, 32 (1985), 242-246.
doi: 10.1007/BF01586095.
|
[17]
|
C.-Y. Lee and P. Zhou, Directional shadow price estimation of co2, so2 and nox in the united states coal power industry 1990–2010, Energy Economics, 51 (2015), 493-502.
|
[18]
|
O. L. Mangasarian, Uniqueness of solution in linear programming, Linear Algebra and Its Applications, 25 (1979), 151-162.
doi: 10.1016/0024-3795(79)90014-4.
|
[19]
|
W. Meng and X. Wang, Distributed energy management in smart grid with wind power and temporally coupled constraints, IEEE Transactions on Industrial Electronics, 64 (2017), 6052-6062.
doi: 10.1109/TIE.2017.2682001.
|
[20]
|
K. Schittkowski, More Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems, 282. Springer-Verlag, Berlin, 1987.
doi: 10.1007/978-3-642-61582-5.
|
[21]
|
N. Walter, Microeconomic Theory: Basic Principles and Extensions., Nelson Education, Canada, 2005.
|
[22]
|
Q. Wei and H. Yan, A method of transferring polyhedron between the intersection-form and the sum-form, Computers & Mathematics with Applications, 41 (2001), 1327-1342.
doi: 10.1016/S0898-1221(01)00100-6.
|
[23]
|
L. Zhang, D. Feng, J. Lei, C. Xu, Z. Yan, S. Xu, N. Li and L. Jing, Congestion surplus minimization pricing solutions when lagrange multipliers are not unique, IEEE Transactions on Power Systems, 29 (2014), 2023-2032.
doi: 10.1109/TPWRS.2014.2301213.
|